
5GFIVer: Functional Integrity Verification for 5G
Cloud-Native Network Functions
A S M Asadujjaman∗, Mohammad Ekramul Kabir∗, Hinddeep Purohit∗,
Suryadipta Majumdar∗, Lingyu Wang∗, Yosr Jarraya†, Makan Pourzandi†

∗CIISE, Concordia University, Montreal, QC, Canada
Email: {a asaduj, m kabi, h puroh, majumdar, wang}@encs.concordia.ca

†Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada
Email: {yosr.jarraya, makan.pourzandi}@ericsson.com

Abstract—5G networks attain a better performance along with
a reduction in cost by cloudifying its network functions as Cloud-
native Network Functions (CNFs). However, CNF may introduce
new security concerns (e.g., data exfiltration and ransomware)
due to potential code injection attacks against network functions
at runtime. This will potentially result in a breach of functional
integrity of these network functions. Towards verifying such
functional integrity breaches of CNFs at the 5G-operator-level,
existing approaches fell short, as most of them either (i) perform
pre-deployment verification (i.e., verifying the CNF image before
the deployment) and hence fail to verify integrity breaches
occurring after the deployment, or (ii) perform post-deployment
verification (i.e., verifying against attack signatures or normal be-
havior patterns) approaches that require provider-level data (e.g.,
system calls) which is usually inaccessible to 5G operators. In this
paper, we propose 5GFIVer, a new operator-oriented approach
for functional integrity verification of CNFs that overcomes the
above-mentioned limitations. First, our approach utilizes the side-
channel information such as performance metrics (which are
already available at the operator level) so that no provider-level
data is needed. Second, our approach implements unsupervised
machine learning algorithms to detect outliers through time-series
analysis of those available performance metrics, and hence no
instrumentation for the data collection as well as no training data
is required. Third, we leverage the correlation between multiple
CNFs to improve the accuracy and minimize false positives
(e.g., caused by cloud dynamics). Our experimental results under
an open source 5G testbed demonstrate the effectiveness and
negligible overhead of our solution.

I. INTRODUCTION

The cloudification of network functions (NFs) in 5G net-
works is recently empowered by the cloud-native technolo-
gies (e.g., containers) to ensure high-speed, cost-efficient, and
large-scale connectivity [1]. However, running these software
as Cloud-Native Network Functions (CNFs), where the NFs
share resources (e.g., operating system kernel) with poten-
tially malicious collocated tenants, increase the risk of many
threats including code injection attack that might lead to
malicious modifications of the in-memory instructions of the
NFs (a.k.a. breach of functional integrity) at runtime [2],
[3]. For instance, such vulnerabilities have been reported in
open source implementations of 5G core network software
(e.g., Open5GS [4]). Additionally, some reused libraries and
software components have been shown to be vulnerable to code

injection (e.g., Log4j [5] and CVE-2022-28391 [6]). For exam-
ple, our scanning of the Open5GS [4] project using Trivy [7],
an open-source security scanner, reveals numerous bugs (1,309
vulnerabilities, where 41 of those vulnerabilities are critical
and 317 vulnerabilities are highly severe). Considering the
vital role of 5G in various cyber critical infrastructure and
their security, tackling malicious code injection and verifying
functional integrity of NFs are very important for the security
of 5G networks.

However, two major approaches (i.e., pre-deployment and
post-deployment) to verifying functional integrity are usually
insufficient in the context of CNFs in 5G mainly due to the fol-
lowing reasons: i) Pre-deployment: The verification approaches
(e.g., [8], [9]) that are conducted before the deployment of
the network functions in the cloud cannot detect the integrity
breaches that are caused by the malicious code injected at run-
time (i.e., after the deployment). (ii) Post-deployment: The ver-
ification approaches (e.g., [10], [11]) that are conducted after
the deployment of the network functions require infrastructure-
level data (which is usually inaccessible to 5G operator [12]).
On the other hand, relying on an infrastructure-level runtime
solution (e.g., using system-call interception) to verify such
functional integrity may add significant latency [13], [14] to the
performance sensitive of 5G applications. We further illustrate
these limitations and our main ideas through a motivating
example as follows.

A. Motivating Example

The top of Fig. 1 illustrates a practical scenario of functional
integrity breaches in a possible 5G core implementation, and
the bottom depicts the limitations of existing verification solu-
tions.

Functional integrity breach. By exploiting the existing vul-
nerabilities, e.g., Open5GS PFCP [4], an attacker, e.g., col-
located tenant ([2], [3]) can inject code into some NFs. Par-
ticularly, as shown in the figure, the attacker injects malicious
code into the in-memory NF, Access and Mobility Management
Function (AMF), to modify its functionality.

Limitations of existing solutions. The existing verification
approaches could be divided into two major categories: 1) the
bottom left illustrates the pre-deployment approaches and 2)978-1-5386-4633-5/18/$31.00 ©2021 IEEE

UDMUPF

AMF

UE

In search of a solution

Functional integrity breach in CNFs

AUSF

gNB

NF bugs

- Open5GS PFCP bug

OS bugs

- CVE-2022-28391

Bugs in CNF Software

Library bugs

- Log4Shell SMF

Attacker

(Collocated tenant)

5G Core CNFs

AMF is injected with ransomware!

Pre-deployment

Attack happens later at runtime

AMF AMF AMF

Signature-based

(e.g., byte sequence)

Zero-day attack

Runtime (post-deployment)

How can the 5G operator practically

verify functional integrity?

AMF codeAttack signature

Unknown!

=?

5G Operator

(Cloud tenant)

AMF System (SYS) call sequence:

Normal: SYS1, SYS7, SYS8, …

Current: SYS1, SYS3, SYS7, SYS8, …

Infrastructure-level Data

Requiring SYS calls

Behavior-based

(e.g., System calls)

010010

$Increased cost

and overhead

Deployment Runtime

Fig. 1: An example of functional integrity breach in a possible CNF implementation of 5G core (top) and limitations of existing
solutions (bottom)

the bottom right depicts the post-deployment approaches. A
pre-deployment approach verifies the integrity of AMF before
deployment either at the operator level or at the cloud provider
level. Therefore, such an approach cannot detect this integrity
breach where AMF is modified at the runtime. On the other
hand, a post-deployment approach performs either signature-
based or behavior-based verification. Signature-based verifica-
tion (e.g., [15]) relies on the attack signature of the malicious
code snippet and checks the binary code of AMF to find a
match. On the other hand, behavior-based verification matches
the current system call sequence [16] against the normal
sequence of system calls to identify that SYS3 is a mismatch
and causing the integrity breach in AMF. However, this veri-
fication method requires access to the infrastructure-level data
which makes the approach costly (due to the instrumentation)
and inefficient (due to the frequent system-level interception).
Moreover, the adoption of CNF limits the capacity of 5G
operators in accessing provider-level data [12], and hence these
post-deployment approaches also become infeasible for the 5G
operator.

B. Main Idea

To overcome those limitations in the existing solutions, our
main ideas (Fig. 2) are as follows.

Idea 1: Performance metric as a side-channel. As depicted
in the middle of Fig. 2, our first idea is inspired by the
fact that any change in software functionality (i.e., caused by
injected code) may affect the resource (e.g., CPU, memory,
power, etc.) consumption [17] in a distinctive way. Particularly,
our idea is to perform a time-series analysis on the available
performance metrics (e.g., CPU and memory utilization of
each container) to identify outliers. The key advantages of
this idea are: 1) our approach makes the decision based on

the available performance metrics (e.g., CPU and memory
utilization of AMF, UDM, AUSF, SMF as shown in Fig. 2),
and hence, does not need any access to the infrastructure
level data, 2) these performance metrics are made available by
public cloud providers (e.g., Amazon AWS, Microsoft Azure,
IBM cloud, etc.) for the billing purpose [18], and hence, our
proposed approach does not require any instrumentation (i.e.,
no modification of 5G core NF) to collect data, and 3) the
implementation of time-series analysis in detecting outliers
provides us the opportunity to detect breaches at runtime. A
key challenge here is that, apart from the attacks mentioned
earlier, the dynamic behavior of the cloud infrastructure (e.g.,
workload variation, infrastructural changes, etc.) may also
affect the CPU and memory consumption. Therefore, relying
only on Idea 1 would result in false-positive decisions; which
motivates us to propose our second idea to address such
concerns.

Idea 2: Multi-CNF correlation. Our second idea is to corre-
late the findings of time-series analysis of the containers whose
resource consumptions are correlated with each other (detailed
in Section II-B) in order to verify the decisions made by Idea
1. The containers of the 5G core NFs are considered correlated
with each other when they tend to respond in a similar way to
any legitimate changes in their performance metrics (e.g., due
to underlying infrastructure change or workload fluctuation).
Therefore, the first step of Idea 2 is to identify the correlated
containers and then to implement a time-series analysis for
each container to identify respective outliers. If an outlier is
identified for a particular container, we correlate this finding
with its correlated containers which are expected to show
similar outliers, while for the attack, only the infected container
may show an outlier. Consequently, Idea 2 can potentially help
to reduce false positives while keeping all advantages of Idea

Time-series

outlier detection

Idea 1: Identify potential integrity breaches using

time-series analysis of performance metrics

Idea 2: Filter out noises caused by Cloud

Dynamicity via multi-CNF comparison

Integrity breach in

AMF is detected!

Functional integrity

breach?

Workload fluctuation

Infrastructure changes

Cloud Dynamicity?

Hyperscale Cloud

Provider (HCP)
Memory

Utilization

CPU

Utilization
Available Performance

Metrics

Cloud Container Service

UDM

AMF AUSF

SMF
AMF

UDM

AMF

Fig. 2: The main ideas of 5GFIVer

UE gNB

AMF UPF

SMF

AUSFUDM

DN

Fig. 3: An excerpt of 5G topology

1. We will elaborate on these ideas in Section III.
The main contributions of this work are:
• We propose an operator-oriented black-box approach to

verify functional integrity in 5G core implementation
without relying on the provider-level data.

• To improve the accuracy and minimize the false positives,
we implement time-series analysis on the available perfor-
mance metrics (e.g., memory and CPU consumption by
each container) to detect outliers and verify whether those
are due to attacks or not, through the correlation between
containers.

• Our proposed approach does not require any instrumen-
tation to collect required data, i.e., no change is required
to the 5G core during the data collection process. This
makes our solution more deployable and practical.

• We implement our solution and integrate it with
Open5GS [19], a popular open-source 5G core implemen-
tation, under our testbed, and our experimental evaluation
shows the robustness of our solution.

The rest of the paper is organized as follows. Section II
provides the background on 5G NFs and defines our threat
model. Section III describes the proposed solution. Section IV
presents our implementation details along with the experi-
mental results, and Section V describes the literature review.
Finally, Section VI concludes the work.

II. PRELIMINARIES

This section discusses 5G core cloudification, describes the
correlation among the containers, and then defines our threat
model and assumptions.

A. Cloudification of 5G Core

5G core is an essential component of 5G networks that
orchestrates various services such as authentication, authoriza-

gNB AMF UDM

1: Initial UE Message

.

.

.
15: AMF

registration with

UDM
.
.
.

(a) An example of AMF
call flow in 5G [20]

0

5

10

15

20

25

30

35

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (Minutes)

AMF

UDM

(b) CPU utilization of AMF and UDM

Fig. 4: Example of a metric (CPU utilization), that shows to
be highly correlated for AMF and UDM.

tion, session management, routing and switching, data and
policy management, and maintaining connectivity with the
client. These functionalities are completely virtualized on the
cloud deployment and called CNFs. As shown in Fig. 3, the
5G core is composed of a plethora of CNFs including but not
limited to Access and Mobility Management Function (AMF),
User Plane Function (UPF), Session Management Function
(SMF), and Unified Data Management (UDM). All of these
functions serve diverse roles, say, AMF is responsible for
letting user equipment (UE), e.g., mobile phones, connect to
the core network. 5G core can function only when these CNFs
interact. As a result of this interaction, as shown in Fig. 4a,
a new task during in one CNF (e.g., processing Initial UE
Message in AMF) also leads to a new task for another CNF
(e.g., AMF registration for UDM). Since certain CNFs share
the related responsibility, it is likely that their performance
metrics may also be correlated (discussed in Section II-B).

B. The correlation among 5G CNFs

Our experiments indicate that performance metrics (e.g.,
CPU and memory utilization) of certain CNFs (e.g., AMF)
show a strong correlation with other specific CNFs (e.g.,
UDM). For example, as shown in Fig. 4b, CPU utilization of
AMF (shown in solid green) shows a similar pattern as CPU
utilization of UDM (shown in dashed purple).

Another way to interpret the above phenomenon is that any
“unusual” behavior shown in the performance metrics due to
the cloud dynamicity (e.g., change in workload or underlying
infrastructure) is likely to affect multiple CNFs instead of only
one (i.e., it will affect all the CNFs that are correlated). We

Cloud Container and Monitoring Service

Performance Metrics

Collection

Time Series Analysis V
er

if
ic

at
io

n
 R

es
u
lt

Performance metrics

Stage 1

Stage 2

5GFIVer

Spike Detection

Level Shift Detection

Correlation

Matrix Generation

Correlation

Analysis

Offline steps

Pattern Change Detection

Seasonal Detection

Correlated CNF

Analysis and Matching

Integrity Breach

Detection

Multi-CNF Correlation steps

Fig. 5: A high-level overview of 5GFIVer

can leverage this observation to search for evidence of cloud
dynamicity and thus filter them out to avoid false positives.
Although the correlation in Fig. 4b is easy to visually identify
in this particular case, it may not be the case in the presence
of many CNFs and a large volume of data. To this end, we use
correlation analysis to identify highly-correlated CNFs, which
will be detailed in Section III.

C. Threat Model and Assumptions

This work considers integrity breaches of containerized net-
work functions (CNFs) caused by a code injected into the CNF
by exploiting vulnerabilities [21], [22] in: (i) CNF software
(e.g., Open5GS PFCP bug [4]), (ii) libraries used by the CNF
(e.g., Log4j [5]), or (iii) underlying host operating systems(e.g.,
CVE-2022-28391 [6]). This code injection happens at runtime
in-memory after the CNF is loaded from its image and does
not modify the latter. Once compromised, the CNF cannot be
trusted any longer (e.g., for collecting logs via SSH) because
it may be under the control of the attacker. In addition, the
code injection may be either (i) transient: when the code
modification is not permanent and only lasts for the duration of
the processing of the current packet/request, or (ii) permanent:
when the code modification is permanent and lasts even after
the packet/request is completed/processed. We assume that
as the vulnerabilities in each CNF are unique, it will be
difficult for the attacker to compromise all the CNFs that are
correlated with each other. We do not assume that the attack
signature is known (i.e., possibly for a zero-day attack). Also,
we do not assume that the tenant has access to the underlying
infrastructure to collect information (e.g., logs) apart from what
is commonly available to users of cloud container services.
On the other hand, the out-of-scope threats for this paper
include verifying integrity breaches due to those attacks that:
i) compromise all CNFs, ii) similarly affect the correlated
CNFs, and iii) do not have much impact on CPU/memory
consumption, which will be considered in our future work.

III. METHODOLOGY

This section presents the methodology of 5GFIVer in detail.

A. Overview

Fig. 5 shows an overview of 5GFIVer, which contains two
stages. First, in Stage 1, 5GFIVer performs a time series

0 50 100
Time (Minutes)

0

10

20

30

C
PU

 U
til

iz
at

io
n

(%
)

t=20 t=69

t=118

(a) Transient Code Injection

0 50 100
Time (Minutes)

0

20

40

C
PU

 U
til

iz
at

io
n

(%
)

t=106
t=107
t=108

(b) Permanent Code Injection
Fig. 6: 5GFIVer time series analysis; AMF (), UDM (),
analysis of AMF (△), analysis of UDM (×)

analysis of the performance metrics (e.g., CPU, memory, etc.)
to detect the outliers as an indication of potential attacks.
Specifically, in this stage, 5GFIVer first collects and processes
the available performance metrics for each container. Then,
it deploys an unsupervised learning technique (e.g., level
shift detection [23]) to perform a time series analysis of the
collected data to detect outliers for each container (e.g., AMF).
In Stage 2, 5GFIVer filters out the outliers caused by the
cloud dynamicity to identify integrity breaches. Specifically,
in this stage, 5GFIVer eliminates false-positive decisions made
in Stage 1 by using the correlated behavior among multiple
CNFs (e.g., UDM is correlated with AMF) and then identifies
integrity breaches accordingly. We detail each stage as follows.

B. Stage 1: Outliers detection

This first stage of 5GFIVer performs: (Step 1.1) performance
metrics collection, and (Step 1.2) time series analysis.

Step 1.1: Performance metrics collection. This step is to
collect available performance metrics for the CNFs to be
analyzed for detecting potential integrity breaches. According
to our investigation, different performance metrics (e.g., CPU
or memory utilization) from different public cloud container
services are available to the 5G operator [18]. Our experiments
with those available performance metrics show that these
metrics are affected by the code injection attack, and hence
can be utilized in our solution to detect such breaches. For
instance, we collect performance metrics (e.g., CPU utilization)
periodically (e.g., at every minute) during the operation of
5GFIVer as shown in Fig. 6. Hence, the outcome of this step
can be represented as a stream of timestamp-metric pairs for
time t1 to tn as follows: t1→Mt1 , t2→Mt2 , t3→Mt3 , ...,
tn→Mtn .

Step 1.2: Time series analysis. This step is to identify outliers
in the stream of timestamp-metric pairs collected in Step 1.1.
Fig. 5 lists a number of possible types of time series outlier
detection algorithms. In this paper, we demonstrate two of them
to detect two types of outliers: 1) detecting spikes caused by
the transient code injection and 2) detecting level shift caused
by the permanent code injection.

The spike (a.k.a. additive outlier [24]) is a sudden change
in the performance metrics for a short span of time. This can
be detected by considering three consecutive disjoint sliding
windows and tracking the difference in the median value

between the short central window and the other two outer
windows [24]. For instance, Fig. 6 (a) depicts the spikes as
outliers in CPU consumption of AMF at t = 20, t = 69, and
t = 118. Hence, the outcome of this spike detector for each
CNF is a set of timestamps: TS(CNF) = {tS1

, tS2
, tS3

, ...,
tSn

}, where tSn
indicates the time for a spike Sn.

On the other hand, the level shift [23] indicates a shift in
the level of the performance metrics that might occur due
to a permanent code injection. To determine this level shift,
we leverage the LevelShiftAD detector from the anomaly
detection toolkit by Arundo [25], which detects a shift in the
metrics value level by considering the difference in median
value between two adjacent sliding windows. It needs to be
mentioned that LevelShiftAD is not spike sensitive [25], and
hence any spike generated by transient injection is not detected
by this detector. Fig. 6 (b) shows that a level shift occurs at
t = 106 in the CPU consumption of AMF, while no shift
is found for UDM. The outcome of the level shift detector
is another set of timestamps: TL(CNF) = {tL1

, tL2
, tL3

, ...,
tLn

}, where tLn
indicates the time for a level shift Ln.

However, the key challenge in outlier detection is that these
outliers (i.e., spike or level shift) can occur either due to a
code injection, or a caused by legitimate changes in the cloud
infrastructure. Hence, we verify the detected outliers in Stage
2 to eliminate false positive decisions.

C. Stage 2: Integrity Breach Detection

The second stage performs: (Step 2.1) multi-CNF correla-
tion, and (Step 2.2) integrity breach detection.

Step 2.1: Multi-CNF correlation. This step (marked in light
purple background in Fig. 5) is to identify outliers (both spikes
and level shifts) caused by cloud dynamics but detected by
Stage 1. The inputs to this step are a CNF under verification
(e.g., CNF1), its correlated CNF (e.g., CNF2), and the sets
of timestamps for each of these CNFs from Stage 1. This
step consists of (i) conducting an offline process to find which
CNF metrics are correlated with each other, and (ii) conducting
an online process to identify outliers caused by the cloud
dynamicity.

The offline process generates a correlation matrix, i.e., the
matrix containing the similarity in resource consumption pat-
terns of different containers (e.g., AMF, UDM, AUSF, etc.). For
instance, Fig. 6 shows that the CPU consumption, respectively,
of AMF and UDM have similarities (evaluated in Fig. 7a) and
hence, these two CNFs are correlated with each other. Hence,
the outcome of this offline process is a matrix containing
the information regarding the correlated CNFs (e.g., AMF is
correlated with UDM or SMF is with UPF) which will be
available to the online process. This outcome enables the next
steps, for any CNF under verification (e.g., CNF1), to know
its correlated CNF (e.g., CNF2).

The online process performs correlation to identify the
common ones among the detected outliers (in Stage 1) of the
correlated CNFs (i.e., CNF1 and CNF2). The outcome of this
step is the number of outliers that are in common in CNF2 and

in CNF1, for each type. As these CNFs have correlated metrics,
the outliers in common can be related to cloud dynamicity
issues as discussed in Section II-B. Thus, the number outliers
in common of type spike, denoted by NCS

, and the number
outliers in common of type level shift, denoted by NCL

, can
be computed as follows:

NCS
= n({TS(CNF1) ∩ TS(CNF2)}) (1)

NCL
= n({TL(CNF1) ∩ TL(CNF2)}) (2)

where n(T) is the number of elements in a set T . For instance,
in Fig. 6a (it is noteworthy that 6a and 6b are from different
experiments and we do not show the corresponding spike
detection for 6b due to lack of space), three spikes are detected
in CPU consumption of AMF (i.e., CNF1) at t = 20, t = 69,
and t = 118, while two spikes are detected for UDM (i.e.,
CNF2) at matched timestamps (i.e., at t = 20, and t = 118).
The online process computes that NCS

= 2. Similarly, as no
level shift is detected in UDM in Fig. 6b, it computes NCL

= 0.

Step 2.2: Integrity breach detection. Using the findings from
the previous step, this step identifies integrity breaches and
classifies them (i.e., transient or permanent).

The input to this step are the same pair of CNFs as in Step
2.1, the number of their respective identified outliers, and the
number of outliers common between them. Let NCNF1 be
the total number of identified outliers (in Stage 1) for CNF1
computed using the following equation,

NCNF1 = NCNF1S +NCNF1L (3)
Here, NCNF1S is the number of outliers detected by the

spike detector, and NCNF1L is the number of outliers detected
by the level shift detector in CPU utilization of CNF1 (e.g.,
AMF). Now a positive value of NCNF1 indicates a potential
integrity breach, whereas, if NCNF1 is zero, it indicates that
there are no integrity breaches. If NCNF1 > 0, we compute
the total number of correlated outliers NC as follows,

NC = NCS
+NCL

(4)
Then we define a parameter ∆ as follows.

∆ = NCNF1 −NC (5)
It should be noted that, according to our assumptions in

Section II-C, NCNF1 ≥ NC and NC ≥ 0. At this point, a
positive value of ∆ indicates that there is integrity breaches in
CNF1, and a zero value of ∆ indicates that there is no integrity
breach.

To further classify the type of code injection (i.e., transient or
permanent), the value of spike or level shift can be consulted.
Specifically, if ∆ > 0, the code is injected in CNF1. Now
to classify the injected code, NCNF1S and NCNF1L can be
utilized. Since transient and permanent code injections are
exclusive in our threat model, a positive value of NCNF1S in-
dicates transient code injection. On the other hand, if NCNF1L

is positive, it indicates permanent code injection.

Code Injection =

{
Transient, if NCNF1S > 0
Permanent, if NCNF1L > 0

For instance, from Fig. 6b, we can see that the total number
(both spikes and level shifts) of outliers in CNF1 (i.e., AMF)
is NCNF1 = 3, while for the correlated CNF2 (i.e., UDM),

NC = 0. Hence, we have a value of ∆ = 3 and this indicates
that there is an integrity breach in AMF. On the other hand,
since NCNF1L = 3 > 0, the breach is caused by a permanent
injection in AMF.

IV. IMPLEMENTATION AND EVALUATION

This section presents the implementation details and exper-
imental evaluation of 5GFIVer.

A. Implementation

We implement 5GFIVer as a Linux service using sys-
temd [26] running on a virtual machine (Ubuntu 20.04 server).
We use a VM-based deployment as it is easier to port
to any server. However, 5GFIVer can also be deployed on
any other platform (e.g., baremetal or containers) following
a similar architecture as described in this section. 5GFIVer
should continuously run where it is deployed (e.g., container,
VM, baremetal) to perform its verification. It uses different
open-source libraries (e.g., Python library ADTK [27] is used
to implement the Level Shift Detector) as well as scripts
developed by us in Python. The performance metrics collector
invokes a script to collect performance metrics from the
underlying cloud service which is specific to the monitoring
service (e.g., Amazon CloudWatch, Google Cloud Metrics,
Azure Monitor, or Prometheus) and prepares input for the time-
series outlier detector in it’s required format. Communication
between different components and modules is done using a
database. We use MongoDB [28], an open-source NoSQL
database engine, to implement the database.

We extended Anomaly Detection Toolkit (ADTK) [27] to
develop our spike detector, called SpikeAD, which detects
spikes by tracking the difference between median values at
the central and the other two outer windows of three sliding
time windows next to each other. Thus, SpikeAD can detect
spikes while ignoring level shifts.

B. Experimental Settings

We adopted Open5GS-2.4.8 [19] to create images of the
CNFs for the 5G core. We used UERANSIM [29] to emulate
the Radio Access Network (RAN) and user equipment (UE).
We emulated up to 10000 UEs in our experiments. We limited
the allowed CPU cores (between 1 and 8) and memory (512
MB) for each CNF.

To investigate the behavior of CNFs in terms of consuming
the resources from the cloud, we deployed containers on
Amazon Elastic Container Services (ECS). We then collected
performance metrics for our deployed containers from Amazon
CloudWatch metric monitoring service.

C. Experimental Results

This section presents the experimental results to evaluate the
effectiveness of 5GFIVer.
Metrics selection and Multi-CNF correlation. These sets of
experiments identify the correlated behavior among different
CNFs and the effectiveness of performance metrics in using
to detect code injection attacks. The heatmaps in Fig. 7

am
f

ud
m

au
sf pc
f

sm
f

ud
r

up
f

bs
f

amf
udm
ausf
pcf
smf
udr
upf
bsf

0.2

0.4

0.6

0.8

1.0

(a) Correlation (CPU utilizations)

am
f

ud
m

au
sf pc
f

sm
f

ud
r

up
f

bs
f

amf
udm
ausf
pcf
smf
udr
upf
bsf

0.2

0.4

0.6

0.8

1.0

(b) Correlaton (Memory utilizations)
Fig. 7: Heatmaps showing correlation in CPU and memory
utilizations of different CNFs (blank cells mean no correlation)

AMF UDM UPF SMF
0

5

10

Va
ria

nc
e

CPU Utilization
Memory Utilization

(a) Variance

AMF UDM UPF SMF

1

2

3

4

M
ea

n

CPU Utilization
Memory Utilization

(b) Mean
Fig. 8: The variance and mean of CPU and memory utilizations
in different CNFs

(a) Impact of window sizes on accuracy (b) Impact of factors on accuracy
Fig. 9: Accuracy of time series algorithms for different hyper-
parameter value settings

(a) Imapct of infrastructure dynamicity (b) Impact of workload variation
Fig. 10: Impact of cloud dynamicity on the accuracy of verifi-
cation on AMF for different correlated CNFs; Stage 1 (without
multi-CNF correlaton), Stage 2 (with multi-CNF correlation)

demonstrate the correlation among multiple CNFs in terms
of consuming CPU and memory. Fig. 7a) depicts that CPU
utilization of some CNFs is highly correlated (the darker the
shade, the higher the co-relation) with that of some other CNFs
(e.g., AMF and UDM are correlated with each other), while,
Fig. 7b) shows the correlation for Memory utilization. Hence,
to verify the outliers (i.e., due to attack or cloud dynamicity)

TABLE I: Performance profile of 5GFIVer on a lightweight
Amazon EC2 virtual machine (VM) of type t2.medium (i.e.,
two vCPUs and 4 GB memory)

Performance measure Average Min Max
Execution time for each iteration 1.2s 0.7s 2s

CPU utilization during each iteration 31% 11.0% 52%
Memory utilization during each iteration 1.1% 0.7% 4.0%

found in AMF, we can utilize its correlation with UDM.
On the other hand, Fig. 8 shows the variance and mean

of CPU and Memory utilization for different CNFs. Although
the variance (Fig. 8a) of the CPU utilization is quite high for
the different CNFs, the variance of memory utilization is very
low (indicating a lack of useful information [30]). Hence, to
attain a higher entropy, we select CPU utilization throughout
the rest of our experiments. However, memory utilization of
other performance metrics can also be used for this purpose.
Accuracy of detectors. The detection accuracy is highly
dependent on the adopted detection algorithms and their pa-
rameter selection. Fig. 9 shows the effectiveness of detecting
outliers using time series analysis algorithms (as mentioned in
Section III-B) for different hyper-parameters (i.e., window size
and factor value) [25]. As shown in Fig. 9a, the level shift
detector (i.e., LevelShiftAD) is most effective when window
size is between 4 and 11, as indicated by accuracy of 1.0.
Similarly, Fig. 9a, and Fig. 9b show effectiveness of detection
when the hyper-parameters of the detection algorithms are
configured correctly. Hence, by tuning these parameters, we
can achieve higher accuracy in outliers detection.
Accuracy of verification. We investigate the impact of cloud
dynamicity (i.e., changes in the infrastructure (Fig. 10a) or
workload variation (Fig. 10b) in our verification accuracy and
highlight the importance of the Stage 2 verification. To that
end, we simulate an increasing level of cloud dynamicity by
incrementing the number (by 0% to 40%) of occurrences of
fluctuations in the performance metrics of the CNFs caused by
cloud dynamicity. On the other hand, we vary the workload
dynamicity by increasing the number of UEs (from 1k to
10k). Finally, we intend to detect the breaches in AMF for
four different scenarios: 1) Implement Stage 1 only (i.e., no
verification from Stage 2), 2) Consider UDM (i.e., strongly
correlated with AMF) as the correlated CNF in Stage 2, 3)
Consider AUSF (i.e., weakly correlated with AMF) as the
correlated CNF in Stage 2, and 4) Consider UPF (i.e., very
weakly correlated with AMF) as the correlated CNF in Stage
2.

Fig. 10a illustrates that the accuracy of Stage 1 (i.e., without
verifying by Stage 2) decreases with an increased value of
dynamicity, while this decreasing trend is almost linear with
the increased workload. Then to improve the performance (i.e.,
eliminate false positive decisions due to cloud dynamicity/-
workload), we implement Stage 2 for three correlated CNFs
and find that the accuracy can be regained high when the
considered CNF (i.e., UDM) has a strong correlation with the

AMF. On the other hand, considering UPF as the correlated
CNF cannot make any significant improvement due to its very
weak correlation with AMF.
Overhead evaluation. We examine the added overhead by
5GFIVer to evaluate its effectiveness. We listed the average
value along with the observed maximum and minimum values
of required time, CPU, and memory consumption in Table I,
which shows that 5GFIVer is very fast to detect the breaches
by adding a negligible amount of CPU and memory overhead.

V. RELATED WORK

In search of a solution to detect functional integrity breaches
in virtualized 5G core, we investigated existing works close
to our problem area. To that end, we looked at the area of
5G security, malware detection, network virtualization, and
performance metrics correlation.
Functional integrity breach in 5G. Existing works in 5G
security can be categorized by the related key technologies as
follows: 1) Software Defined Networking (SDN), 2) virtualized
Network Functions (NFs), 3) Network Slicing and 4) Mobile
Edge Computing (MEC). Among these, works that discuss
security issues related to virtualized NFs are the closest to
our research. Security issues in 5G related to virtualized NFs.
Among the works in this area, authors report the possibility
of 1) code injection attack [2], 2) migration of NFs to a less
secure host to compromise it subsequently [3], 3) propagation
of malicious code to a co-hosted NF [31], however, they do
not provide any mechanism to perform integrity verification
against these attacks.
Malware detection. In the literature, extensive work has been
done on detecting malware in applications [16]. However,
existing malware detection works cannot be applied in our case
for the following reasons: (i) we classify works that statically
extract features from binaries for detection [8], [9] as pre-
deployment. However, these solutions might not be applicable
against our threat model, especially while an attack will happen
after the binaries (i.e., CNF images) are deployed and run,
(ii) on the other hand, a few works that perform during run-
time by using a signature-based approach cannot detect zero-
day attacks [32], and (iii) works [10], [11] that attempt to detect
zero-day attacks but use system features (e.g., system calls)
usually cannot be applied due to challenges in collecting those
features (e.g., lack of access to the underlying host operating
system by a tenant) and even when those features can be col-
lected, collecting them would require significant cost in terms
of overhead (considering the high throughput requirement of
5G) due to interception and need for instrumentation of each
CNF [33]–[35].
Network virtualization auditing. There has been little atten-
tion to verifying functional integrity in the area of network
virtualization, and most existing works mainly focus on ver-
ifying the integrity of virtualized networks at a higher level
of abstraction (e.g., deployment according to given specifi-
cation [36], [37], correct packet forwarding [38]–[40]). The
closest work we found in terms of objective is [41]. However,

[41] is very specific to security function outsourcing and cannot
be extended to our scenario of 5G core NFs.
Performance metrics correlation. We investigated the works
that dealt with the correlation of performance metrics in 5G.
In [42], the correlation between different metrics has been stud-
ied, while [43] studied the correlation between performance
metrics from different cells. But, none of the above works
studied the correlation among metrics of different network
functions (multi-network function metric correlation) and as
a ramification, cannot be adapted to serve our purpose.

VI. CONCLUSION

This paper proposed an operator-oriented, lightweight side-
channel-based black-box approach, namely, 5GFIVer, to verify
the functional integrity of CNFs without relying on any un-
derlying cloud infrastructure data. To that end, 5GFIVer first
analyzed performance metrics available to the 5G operators
to detect outliers that may contain many false positives due
to the dynamic behavior of clouds or noises. To filter out the
false positives, 5GFIVer then verified service chain integrity
by correlating the outliers with the outliers found in other
correlated CNFs. We integrated 5GFIVer with a popular open-
source 5G core implementation (Open5GS [19]), under our
testbed and the experimental results showed that our approach
can effectively verify functional integrity by adding a negligible
overhead. In future, we plan to extend our approach for
performing verification when the integrity of multiple CNFs
can be breached, ensemble the findings from multiple detection
algorithms to attain more accuracy and further optimize other
parameters of 5GFIVer. Furthermore, we plan to perform
extensive security analysis and more experimental evaluations
of 5GFIVer to show its effectiveness in other 5G core imple-
mentations in the future.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments. This work was supported by the Natural Sciences and
Engineering Research Council of Canada and Ericsson Canada
under the Industrial Research Chair in SDN/NFV Security
and the Canada Foundation for Innovation under JELF Project
38599.

REFERENCES

[1] Cloud native is transforming the telecom industry. [Online]. Available:
https://www.ericsson.com/en/cloud-native

[2] A. Aljuhani and T. Alharbi, “Virtualized network functions security
attacks and vulnerabilities,” in IEEE CCWC, 2017, pp. 1–4.

[3] S. Lal, T. Taleb, and A. Dutta, “NFV: Security threats and best practices,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 211–217, 2017.

[4] “Open5gs pfcp bug.” [Online]. Available: https://research.nccgroup.co
m/2021/10/06/technical-advisory-open5gs-stack-buffer-overflow-durin
g-pfcp-session-establishment-on-upf-cve-2021-41794/

[5] Exploiting, Mitigating, and Detecting CVE-2021-44228: Log4j Remote
Code Execution (RCE). [Online]. Available: https://sysdig.com/blog/ex
ploit-detect-mitigate-log4j-cve/

[6] CVE-2022-28391 Detail. [Online]. Available: https://nvd.nist.gov/vuln/
detail/cve-2022-28391

[7] Trivy. [Online]. Available: https://aquasecurity.github.io/trivy/dev/
[8] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining methods

for detection of new malicious executables,” in IEEE S&P, 2000.

[9] K. Hahn and I. Register, “Robust static analysis of portable executable
malware,” HTWK Leipzig, vol. 134, 2014.

[10] G. Wagener, A. Dulaunoy et al., “Malware behaviour analysis,” Journal
in computer virology, vol. 4, no. 4, pp. 279–287, 2008.

[11] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based
online malware detection: Towards efficient real-time protection against
malware,” IEEE TIFS, vol. 11, no. 2, pp. 289–302, 2015.

[12] A. Asadujjaman, M. Oqaily, Y. Jarraya, S. Majumdar, M. Pourzandi,
L. Wang, and M. Debbabi, “Artificial packet-pair dispersion (APPD): A
blackbox approach to verifying the integrity of NFV service chains,” in
2021 IEEE Conference on Communications and Network Security (CNS).
IEEE, 2021, pp. 245–253.

[13] M. Gebai and M. R. Dagenais, “Survey and analysis of kernel and
userspace tracers on linux: Design, implementation, and overhead,” ACM
Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–33, 2018.

[14] A. Darki, A. Duff, Z. Qian, G. Naik, S. Mancoridis, and M. Falout-
sos, “Don’t trust your router: Detecting compromised router,” in IEEE
CoNEXT, vol. 16, 2016.

[15] E. S. Parildi, D. Hatzinakos, and Y. Lawryshyn, “Deep learning-aided
runtime opcode-based windows malware detection,” Neural Computing
and Applications, vol. 33, no. 18, pp. 11 963–11 983, 2021.

[16] Ö. A. Aslan and R. Samet, “A comprehensive review on malware
detection approaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020.

[17] Y. Chen, X. Jin, J. Sun, R. Zhang, and Y. Zhang, “Powerful: Mobile app
fingerprinting via power analysis,” in IEEE INFOCOM, 2017, pp. 1–9.

[18] Amazon CloudWatch Pricing. [Online]. Available: https://aws.amazon.c
om/cloudwatch/pricing/

[19] Open5GS. [Online]. Available: https://open5gs.org/open5gs/
[20] ETSI TS 123 502: Procedures for the 5G System. [Online]. Available:

https://www.etsi.org/deliver/etsi ts/123500 123599/123502/15.02.00 6
0/ts 123502v150200p.pdf

[21] Code Injection. [Online]. Available: https://owasp.org/www-community
/attacks/Code Injection

[22] A Complete Guide to Cloud-Native Application Security. [Online].
Available: https://www.trendmicro.com/en no/devops/21/k/a-complete-g
uide-to-cloud-native-application-security.html

[23] H. Dehling, R. Fried, and M. Wendler, “A robust method for shift
detection in time series,” Biometrika, vol. 107, no. 3, pp. 647–660, 2020.

[24] Outliers Detection and Intervention Analysis. [Online]. Available:
https://datascienceplus.com/outliers-detection-and-intervention-analysis/

[25] LevelShiftAD. [Online]. Available: https://arundo-adtk.readthedocs-hoste
d.com/en/stable/notebooks/demo.html#LevelShiftAD

[26] Systemd. [Online]. Available: https://www.freedesktop.org/wiki/Softwar
e/systemd/

[27] Anomaly Detection Toolkit. [Online]. Available: https://adtk.readthedocs
.io/en/stable/

[28] MongoDB. [Online]. Available: https://www.mongodb.com/
[29] UERANSIM on GitHub. [Online]. Available: https://github.com/aligung

r/UERANSIM
[30] Feature Selection Using Variance Threshold in sklearn. [Online].

Available: https://lifewithdata.com/2022/03/13/feature-selection-using-v
ariance-threshold-in-sklearn/

[31] A. H. Anwar, G. Atia, and M. Guirguis, “It’s time to migrate! a
game-theoretic framework for protecting a multi-tenant cloud against
collocation attacks,” in IEEE CLOUD, 2018, pp. 725–731.

[32] R. Tahir, “A study on malware and malware detection techniques,”
International Journal of Education and Management Engineering, vol. 8,
no. 2, p. 20, 2018.

[33] Y. Ji, Q. Li, Y. He, and D. Guo, “Overhead analysis and evaluation
of approaches to host-based bot detection,” International Journal of
Distributed Sensor Networks, vol. 11, no. 5, p. 524627, 2015.

[34] How could I intercept linux sys calls? [Online]. Available: https://stac
koverflow.com/questions/69859/how-could-i-intercept-linux-sys-calls

[35] Default seccomp introduces significant overhead. [Online]. Available:
https://github.com/moby/moby/issues/41389

[36] Y. Yue and B. Cheng, “EasyOrchestrator: A NFV-based network service
creation platform for end-users,” in IEEE IPCCC, 2018.

[37] M. Bonfim, F. Freitas, and S. Fernandes, “A semantic-based policy
analysis solution for the deployment of NFV services,” TNSM, vol. 16,
no. 3, pp. 1005–1018, 2019.

[38] X. Zhang, Q. Li, J. Wu, and J. Yang, “vSFC: Generic and agile verifi-
cation of service function chains in the cloud,” IEEE/ACM Transactions
on Networking, pp. 1–14, 2020.

https://www.ericsson.com/en/cloud-native
https://research.nccgroup.com/2021/10/06/technical-advisory-open5gs-stack-buffer-overflow-during-pfcp-session-establishment-on-upf-cve-2021-41794/
https://research.nccgroup.com/2021/10/06/technical-advisory-open5gs-stack-buffer-overflow-during-pfcp-session-establishment-on-upf-cve-2021-41794/
https://research.nccgroup.com/2021/10/06/technical-advisory-open5gs-stack-buffer-overflow-during-pfcp-session-establishment-on-upf-cve-2021-41794/
https://sysdig.com/blog/exploit-detect-mitigate-log4j-cve/
https://sysdig.com/blog/exploit-detect-mitigate-log4j-cve/
https://nvd.nist.gov/vuln/detail/cve-2022-28391
https://nvd.nist.gov/vuln/detail/cve-2022-28391
https://aquasecurity.github.io/trivy/dev/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://open5gs.org/open5gs/
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/ts_123502v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/ts_123502v150200p.pdf
https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/attacks/Code_Injection
https://www.trendmicro.com/en_no/devops/21/k/a-complete-guide-to-cloud-native-application-security.html
https://www.trendmicro.com/en_no/devops/21/k/a-complete-guide-to-cloud-native-application-security.html
https://datascienceplus.com/outliers-detection-and-intervention-analysis/
https://arundo-adtk.readthedocs-hosted.com/en/stable/notebooks/demo.html#LevelShiftAD
https://arundo-adtk.readthedocs-hosted.com/en/stable/notebooks/demo.html#LevelShiftAD
https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/systemd/
https://adtk.readthedocs.io/en/stable/
https://adtk.readthedocs.io/en/stable/
https://www.mongodb.com/
https://github.com/aligungr/UERANSIM
https://github.com/aligungr/UERANSIM
https://lifewithdata.com/2022/03/13/feature-selection-using-variance-threshold-in-sklearn/
https://lifewithdata.com/2022/03/13/feature-selection-using-variance-threshold-in-sklearn/
https://stackoverflow.com/questions/69859/how-could-i-intercept-linux-sys-calls
https://stackoverflow.com/questions/69859/how-could-i-intercept-linux-sys-calls
https://github.com/moby/moby/issues/41389

[39] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li, and S. Zhang, “Flowcloak:
Defeating middlebox-bypass attacks in software-defined networking,” in
IEEE INFOCOM, 2018.

[40] ——, “Securing middlebox policy enforcement in SDN,” Computer
Networks, vol. 193, 2021.

[41] P. Zhang, “Towards rule enforcement verification for software defined
networks,” in IEEE INFOCOM, 2017.

[42] A. Zafeiropoulos, E. Fotopoulou, M. Peuster, S. Schneider, P. Gouvas,
D. Behnke, M. Müller, P.-B. Bök, P. Trakadas, P. Karkazis et al.,
“Benchmarking and profiling 5g verticals’ applications: An industrial
iot use case,” in IEEE NetSoft, 2020, pp. 310–318.

[43] P. Munoz, I. De La Bandera, E. J. Khatib, A. Gómez-Andrades, I. Ser-
rano, and R. Barco, “Root cause analysis based on temporal analysis
of metrics toward self-organizing 5g networks,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 3, pp. 2811–2824, 2016.

	Introduction
	Motivating Example
	Main Idea

	Preliminaries
	Cloudification of 5G Core
	The correlation among 5G CNFs
	Threat Model and Assumptions

	Methodology
	Overview
	Stage 1: Outliers detection
	Stage 2: Integrity Breach Detection

	Implementation and evaluation
	Implementation
	Experimental Settings
	Experimental Results

	Related Work
	Conclusion
	References

