
VinciDecoder : Automatically Interpreting
Provenance Graphs into Textual Forensic Reports

with Application to OpenStack

Azadeh Tabiban1 , Heyang Zhao1, Yosr Jarraya2,
Makan Pourzandi2 , and Lingyu Wang1

1 CIISE, Concordia University, Montreal, QC, Canada
2 Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada

1{a_tabiba, z_heyang, wang}@ciise.concordia.ca
2{yosr.jarraya, makan.pourzandi}@ericsson.com

Abstract. The operational complexity and dynamicity of clouds high-
light the importance of automated solutions for explaining the root cause
of security incidents. Most existing works rely on human analysts to in-
terpret provenance graphs for root causes of security incidents. However,
navigating and understanding a large and complex cloud-scale prove-
nance graph can be very challenging for human analysts. Without such
an understanding, cloud providers cannot effectively address the under-
lying security issues causing the incidents, such as vulnerabilities or mis-
configurations. In this paper, we propose VinciDecoder, an automated
approach for generating natural language forensic reports based on prove-
nance graphs. Our main observation is that the way nodes and edges
compose a path in provenance graphs is similar to how words compose a
sentence in natural languages. Therefore, VinciDecoder leverages a novel
combination of provenance analysis, natural language translation, and
machine-learning techniques to generate forensic reports. We implement
VinciDecoder on an OpenStack cloud testbed, and evaluate its perfor-
mance based on real-world attacks. Our user study and experimental
results demonstrate the effectiveness of our approach in generating high-
quality reports (e.g., up to 0.68 BLEU score for precision).

1 Introduction

With the recent worldwide surge in adopting cloud computing, there is an
increasing need for explaining the root cause of security incidents in large
scale cloud infrastructures [1]. Sharing detailed forensic reports about such root
causes and attack techniques can raise cybersecurity awareness, and improve
threat detection and attack prevention techniques [24]. However, most existing
provenance-based solutions (e.g., [40, 47, 53]) would face a critical challenge in
such a context, i.e., it would be impractical to rely on human analysts to inter-
pret the large and complex provenance graphs produced by such solutions for a
large cloud with tens of thousands of inter-connected virtual resources [35].

There exist rule-based techniques (e.g., [49]) for generating textual summaries
of provenance graphs. However, only relying on a set of specified rules [49] would

https://orcid.org/0000-0001-6235-2317
https://orcid.org/0000-0001-9775-6231
https://orcid.org/0000-0002-7441-7541

2 A. Tabiban et al.

not be sufficient, as the unpredictable nature of security incidents [57] will neces-
sitate to constantly develop new rules, which may be costly especially for large
clouds. We will further illustrate such limitations through the following example.

Motivating example. Fig. 1(a) depicts a provenance graph (left), and an an-
alyst manually performing the task of creating a human-readable report (right)
based on the provenance graph. Specifically, upon receiving an alert about the
leakage of network traffic, the analyst begins investigating the suspicious paths
of the provenance graph (left) generated by existing tools (e.g., [54]) to manually
report the root cause as shown in Fig. 1a (right) (the exploit of a vulnerabil-
ity [3] by updating the device_owner field of a port attached to a created VM).
However, such a task can be challenging to an analyst, especially as a real world
cloud provenance graph may have tens of thousands of nodes and edges [47].

type: router
resourceID: Router2

type: AttachSubnet_to_Router
time: 14:00:24.620

user: admin

type: subnet
resourceID: Subnet3

type: VM
resourceID: VMc

type: StartVM
time: 13:03:25.311

user: admin

type: CreateVM
time: 12:05:18.254

user: admin type: subnet
resourceID: Subnet3

type: VM
resourceID: VMmal

type: CreateVM
time: 12:00:50.441
user: non-admin

type: CreatePort
time: 12:00:14.433

user: non-admin

type: UpdatePort_device_owner
time: 12:00:45.535
user: non-admin

type: port
resourceID: Portmal

type: port
resourceID: Portmal

type: CreateVM
time: 12:05:16.093

user: admin

type: port
resourceID: Portmal

type: UpdatePort_device_owner
time: 12:00:50.892
user: non-admin

type: subnet
resourceID: Subnet1

type: VM
resourceID: VMa

type: subnet
resourceID: Subnet1

type: subnet
resourceID: Subnet1

type: CreateVM
time: 12:05:18.254

user: admin

type: VM
resourceID: VMc

type: AttachSubnet_to_Router
time: 12:00:17.193

user: admin

type: subnet
resourceID:

Subnet2

type: router
resourceID: Router1

type: router
resourceID: Router1

type: AttachSubnet_to_Router
time: 13:00:15.419

user: admin

type: subnet
resourceID: Subnet3

type: CreateVM
time: 12:05:17.143

user: admin

type: VM
resourceID: VMx

type: UpdatePort_device_owner
time: 12:00:46.001
user: non-admin

type: port
resourceID: Portmal

type: subnet
resourceID: Subnet1

type: CreateSubnet
time: 10:00:14.923

user: admin

type: UpdateRouter
time: 09:00:23.412

user: admin

type: UnlockVM
time: 13:03:25.311

user: admin

type: CreateVM
time: 12:05:18.254

user: admin

CreateVM
time: 12:00:50.441
user: non-admin

port
resourceID:

Portmal

UpdatePort_device_owner
time: 12:00:50.892
user: non-admin

 Provenance Graph

Human
Analyst

Manually
Written
Report

(a) Challenges of interpreting provenance graphs: excerpt of the provenance graph
(left); an analyst manually creating a report based on the provenance graph (right).

.. connected to subnet … created a
Forensic Report (Incident 1)

Provenance Graph (Incident 2)

CreatePort portsubnet
Provenance Graph (Incident 1)

if verb != "delete" then
 if Obj in ["subnet", "router"] then
 Obj.Pre("connected to a").add(obj)
 else if Obj = "port" then
 Obj.Pre("attached").add(obj)
else …
if obj["user"] != prev.user["user"]

. . .

Forensic Report (Incident 2)
...

. . .

Rule-based generation of forensic reports Learning-based generation of
forensic reports

Provenance
Graph

Forensic
Report

Provenance
Graph

Forensic
Report

(b) Our main idea: provenance graphs of several incidents (top left); existing re-
ports (top right); automatic generation of forensic reports (bottom left and right).

Fig. 1: Motivating example.
– Key ideas. Fig. 1(b) shows the two main approaches adopted by our

solution, namely VinciDecoder, for automatically interpreting provenance
graphs into forensic reports. First, our rule-based approach generates cus-
tomized forensic reports based on lexicons and grammar rules as illustrated
in Fig. 1(b) (bottom left). Such rules are specified by the analyst according
to his/her criteria (e.g., domain-knowledge) and understanding of the exist-
ing paired provenance graphs and forensic reports for similar types of future

VinciDecoder 3

attacks. Second, for use cases where such criteria are too dynamic (e.g., new
types of attacks) for a rule-based approach to handle, we also propose a
learning-based approach (bottom right) which automatically learns the cor-
respondence between pairs of provenance graphs and forensic reports using
Neural Machine Translation (NMT). Specifically, similar to words (e.g., verbs
and object) of a sentence, there is a dependency between nodes (e.g., opera-
tions and their affected resources) in a provenance graph, which inspires us
to train a translation model by applying NMT to provenance graphs (source
language) paired with human-readable reports (target language), and auto-
matically translate future provenance graphs into a natural language inter-
pretation using the trained model.

– Challenges. Although our vision for adopting NMT seems plausible, real-
izing VinciDecoder requires addressing the following two main challenges.
First, NMT is typically applied to textual data, whereas provenance graphs
are usually stored as nodes and edges. To address this, VinciDecoder con-
verts paths of provenance graphs into primitive sentences of node properties
(detailed in 3.2). Second, it is challenging to generate high quality reports
with a limited number of paired provenance graphs and reports for training.
To address this, VinciDecoder leverages tens of thousands of CVE entries
and their corresponding provenance graphs to train NMT (detailed in 4.2).

In summary, our main contributions are as follows:

• To the best of our knowledge, VinciDecoder is the first solution for generating
forensic reports based on provenance analysis results using both rule-based
and learning-based techniques. By reducing the reliance on human analysts
to interpret and document large and complex provenance graphs, our ap-
proach can avoid the limitations, human error, and delay that are natural to
such manual efforts, and thus improve the practicality of provenance analysis
in large-scale cloud environments, enable automated documentation of root
causes for security incidents, and allow for more timely incident-response.

• To automatically generate reports using NMT, we design several mechanisms
as follows. VinciDecoder first converts provenance graph paths into primitive
sentences representing properties of nodes, and removes instance-specific in-
formation to avoid mis-translation; it then learns a translation model based
on the paired primitive sentences and reports; finally, when given target
paths, VinciDecoder applies the learned model to the primitive sentences
representing the paths to generate the forensic report. Optionally, our rule-
based approach can form forensic reports by linking the node properties
extracted from the target path based on pre-specified rules.

• We implement VinciDecoder on an OpenStack-based cloud testbed, and vali-
date its effectiveness based on real-world security incidents. Our experiments
and user study show that VinciDecoder generates high-quality results (e.g.,
up to 0.68 BLEU score for precision) with sufficient readability for human an-
alysts (e.g., 92% of our participants agree that understanding the attack steps
is much easier using VinciDecoder’s report than using provenance graphs).

4 A. Tabiban et al.

The rest of this paper is organized as follows: Section 2 provides some back-
ground on data provenance and NMT. Section 3 details our methodology. Sec-
tion 4 describes our implementation and presents the evaluation results. We
discuss different aspects of our work and the related work in Section 5 and Sec-
tion 6, respectively. We conclude the paper in Section 7.

2 Preliminaries
This section provides a background on data provenance, NMT and our assump-
tions.

2.1 Provenance Graph

As a powerful technique to capture the dependencies between data objects (e.g.,
virtual resources or operating system files) and events (e.g., management op-
erations or system calls) in a graph representation, data provenance has been
applied to clouds. We show an example of a cloud management-level provenance
graph [47] in Fig. 2(a) consisting of two types of nodes: entities (shown as ovals)
and activities (shown as rectangles), where entities represent virtual resources
(e.g., a virtual port Portmal), and activities represent cloud management opera-
tions (e.g., an operation CreateVM). Each node stores several properties such as
the type of the operations/resources and the user who triggers the operations.
Edges indicate the dependency between an operation and its affected resources.
For example, in Fig. 2(a), the edge from CreateVM to Portmal shows that this
operation attaches Portmal to the created VM VMmal.

2.2 Neural Machine Translation

Neural Machine Translation (NMT) [46] builds a conditional probability model,
P (Y |X), such that the likelihood of a target sentence Y given a source sentence
X is maximized [22]. As Fig. 2(b) shows, NMT usually consists of an encoder
and a decoder, which typically utilize recurrent neural networks (RNN) such
as a Long Short-Term Memory (LSTM) [23]. To initialize the training, LSTM
cells are assigned with random weights, and the encoder captures the semantics
of X by encoding it into a fixed-length vector H. Then, the decoder generates
the target sentence given the computed vector H. NMT computes the devia-
tion of the generated sentence from the reference sentence Y and improves the
model by optimizing the assigned weights based on other pairs of sentences. In
Section 3.4 and 3.5, we detail how VinciDecoder leverages this mechanism to
generate forensic reports.

2.3 Assumptions

We assume the accuracy of provenance analysis results provided by existing tools
(e.g., [54]), such as suspicious paths capturing the attack steps or malicious be-
havior. We also assume the correctness and completeness of provenance-based
root cause analysis solutions (e.g., [21, 54]) in identifying suspicious paths cap-
turing the attack steps. We assume that the provenance construction tool is not

VinciDecoder 5

CreateVM
12:00:46.441
non-admin

CreatePort
12:00:45.535
non-admin

VM
VMmal

port
Portmal

UpdateDevice_owner
12:00:46.362
non-admin

port
Portmal

subnet
Subnet1

port
Portmal

UpdateDevice_owner
12:00:48.369
non-admin

CreateVM
10:50:42.132

admin

VM
VMa

subnet
Subnet1

CreateVM
03:15:16.101

admin

VM
VMb

(a)

CreateVM Port

Null

En
co

d
er

187 232 91 ...

LSTM
cell

X sentence

Y sentence

H vector

LSTM
cell

D
ec

o
d

er

...User .

...User .created

(b)

Fig. 2: An excerpt of a cloud management-level provenance graph (a); an example
of NMT Encoder-Decoder model (b).

compromised. Finally, similar to most other learning-based data-to-text tech-
niques (e.g., [42]), we assume the availability of a sufficient amount of training
data (i.e., paired forensic reports and suspicious paths) for training our model1.

3 VinciDecoder
In this section, we provide an overview of VinciDecoder, detail its different mod-
ules, and describe the interaction between them.

3.1 Overview

Fig. 3 shows an overview of VinciDecoder, which consists of two main phases:
learning phase and automatic report generation phase. In the learning phase,
VinciDecoder collects paired suspicious paths and reports for training, and then
transforms suspicious paths into primitive sentences in our intermediary lan-
guage (Section 3.2), which represents the properties of a node as a compound
word, and removes the instance-specific information (Section 3.3). Next, it ap-
plies NMT to train a translation model profiling the correspondence between
the obtained sentences and their forensic reports (Section 3.4). In the automatic
report generation phase, VinciDecoder applies the trained translation model to
generate forensic reports based on the suspicious paths of the provenance graph
associated with the newly detected incident (Section 3.5). Optionally, VinciDe-
coder can generate reports using our rule-based mechanism (Section 3.5).

3.2 Path to Intermediary Language Translation (PILT)

NMT is typically applied to textual sentences, which renders its application to
provenance graphs challenging. To address this, the PILT module converts each
suspicious path into a primitive sentence by querying the database to sequentially
scan the nodes, extract their properties, and record them as one compound word
of the sentence (see Fig. 3). Algorithm 1 details the mechanism of PILT as
follows: PILT extracts the properties type and user from operation nodes and
appends them to the created primitive sentence (line 3-5). Moreover, it calculates

1 In Section 4.2, we discuss how we obtain more pairs of reports and paths for training.

6 A. Tabiban et al.

Identified
suspicious paths

Learning

Existing reports

Translation
Model Training

Primitive sentences

Automatic Report
Generation

Normalized
reports

Normalized primitive sentences

Translation
model

Provenance
Analysis

Tool

Newly identified
Suspicious path

VinciDecoder

Normalization

Primitive
sentence

Translation

Normalized
primitive sentence

Path to Intermediary

Language Translation (PILT)

Rule-based Report Generation

Pre-specified rules

Forensic
report

Cloud

In
ci

d
en

t
al

e
rt

Normalization
Path to Intermediary

Language Translation (PILT)

Learning-based

Rule-based

Fig. 3: Overview of VinciDecoder.
the elapsed time between the timestamp properties stored at two consecutive
operation nodes (line 6-7) and appends the calculated value with a proper post-
fix (e.g., “-millisecond", “-hours", etc.) to the sentence (line 8-9). The elapsed
time may be interesting for reporting the incidents where the attacker attempts
to issue a large number of operations in a short period of time, e.g., to launch
race condition or DoS attacks. PILT also records the type and the identifier of
resources (line 10-13). In the next section, we detail how obtained sentences are
modified and leveraged to train the translation model.

Algorithm 1 Path to Intermediary Language Translation
Input: path ← Suspicious path identified by the provenance analysis tool

Output: SenRepresentingPath

1. foreach node ∈ path do

2. if isOperation(node) then %Appending the operation properties to sentence

3. OperationType ← node["data"]["OperationType"]

4. User ← node["data"]["user"]

5. SenRepresentingPath.append("type:" + OperationType + "user:" + User)

 %Appending the approximate elapsed time between operations to sentence

6. if isNotFirstNode(node) then

7. ElapsedTime ← ThisOperation – PreviousOperationTime

8. ElapsedApprox ← ElapsedTimeApproximator (ElapsedTime)

9. SenRepresentingPath.append(ElapsedApprox)

10. else if isResource(node) then%Appending resource properties to sentence

11. ResourceType ← node["data"]["ResourceType"]

12. ResourceID ← node["data"]["ID"]

13. SenRepresentingPath.append("type:" + ResourceType + "ID:" + ResourceID)

14. return SenRepresentingPath

Example 1. Fig. 4 shows the translation of a path (left) into a primitive sentence
(right) in our intermediary language. As we can see, the properties of each node
(e.g., the node representing CreatePort operation) are represented by a word
(e.g., “type:CreatePort,user:non-admin") in the obtained sentence.

3.3 Normalization

To allow NMT to focus on generic words in the primitive sentences instead
of application-specific ones (which may lead to mis-translation), VinciDecoder

VinciDecoder 7

type:CreatePort
time:12:00:14.433

user:non-admin

type:UpdatePort
time:12:00:45.535
user: non-admin

type:port
resourceID:

Portmal

...“type:Port,resourceID:Portm
al”“type:UpdatePort,user:nona
dmin,ElapsedTime: 31-sec”

Fig. 4: Simplified example path (left) translated into a primitive sentence (right).

needs to remove instance-specific information from the dataset before feeding
it to NMT. Specifically, the forensic reports and their corresponding primitive
sentences used for training may contain values (e.g., the name/ID of resources)
that are related to semantics of the specific scenarios (which NMT is not aware
of). Retaining such values is known to reduce the quality of the reports generated
by the trained neural translation model [43]. Therefore, VinciDecoder identifies
and replaces all instance-specific values (e.g., the number preceding the string
“-milliseconds”2) with a placeholder (i.e., \0), and the name of the applications
or software platforms with the word “platform” based on our specified rules.

3.4 Translation Model Training
This module builds a translation model to profile the correspondence between
the existing forensic reports and their associated suspicious paths. To this end,
we leverage NMT [26], as it automatically captures the context of words and
nodes (i.e., the dependencies between words in a report and nodes in a path)
using embeddings. By applying NMT, VinciDecoder first projects words of a
report and the words of the obtained primitive sentences (i.e., properties of
nodes) into a high-dimensional numerical vector space such that words/nodes
with similar contexts have closer vector representations. Next, VinciDecoder
builds a translation model based on the derived vectors that optimally maps
each provided forensic report to its paired primitive sentence.

Example 2. Fig. 5 shows an excerpt of the training dataset composed of the prim-
itive sentences obtained from the suspicious paths (left) and their corresponding
manually created reports (right). The semantically related information on each
side are illustrated with the same type of lines.

...

A non-admin user creates a port, then creates
a VM attached to that port, and immediately
updates the port device_owner field so the
anti-spoofing rule is bypassed due to the
vulnerability exploit.

...

“type:CreatePort,ElapsedTime:\0-seconds,user:non-admin,
ID: Portmal” “type:port,user:non-admin” “type:CreateVM,
Elapsed Time:\0-seconds,user:non-admin” “type:port,
user:non-admin” “type:UpdatePortDeviceOwner, Elapsed
Time: \0-milliseconds”

Fig. 5: Example paths in our intermediary language (left) and their correspond-
ing manually written reports (right). Semantically related information are high-
lighted by the same type of lines.

3.5 Automatic Report Generation

Once a new security incident is detected, VinciDecoder automatically generates
forensic reports based on the suspicious path identified by existing tools (e.g., [21,
54]) using our learning-based and rule-based techniques.
2 Despite removing the numbers, the range of the elapsed time (e.g., milliseconds vs.

hours) retains useful information about the incidents.

8 A. Tabiban et al.

Learning-based report generation. After building the translation model in
the learning phase, VinciDecoder can be applied to generate forensic reports
based on the detected suspicious path. Specifically, VinciDecoder converts the
suspicious path into a primitive sentence in our intermediary language, and re-
moves the instance-specific information by following the same techniques as men-
tioned in Section 3.2 and Section 3.3. Next, it applies the translation model to
each normalized primitive sentence to automatically generate the corresponding
forensic report. To improve the quality of generated reports, VinciDecoder also
allows the analyst to conduct post-editing [28] by identifying the instance-specific
information using the primitive sentences and adding them to the reports.

Rule-based report generation. To ensure the applicability of our approach
when there is a lack of a sufficient number of reports for training, VinciDecoder
is also equipped with a rule-based mechanism, which enables translation with-
out training data. Specifically, VinciDecoder sequentially scans nodes on each
path, and extracts the following properties stored at each node: the type and ID
of resources/operations, the user triggering an operation, and the elapsed time
between the timestamp values stored in two consecutive operation nodes. Then,
it creates an ordered list, where each item represents the properties of a node.
Next, VinciDecoder generates sentences based on rules specified by the analyst,
and it sequentially links the items such that the extracted user, resource, opera-
tion and elapsed time are included as the subject, object, verb and propositional
phrase in generated sentences, respectively (detailed in Appendix). Finally, Vin-
ciDecoder generates an introductory and a concluding sentence to describe an
overview of the incident (e.g., describing the time of the detection).

Example 3. Fig. 6 shows the report related to the incident in our motivating
example (Section 1). The report starts with explaining the number of operations
in the suspicious path, continues with describing the attack steps, and concludes
with indicating the ID of nodes in the suspicious paths.

By the detection time, there are 4 operations performed in 1 minute corresponding to the resource vmmal. A nonadmin
user created a port named portmal on a subnet. Once done, this user modified portdeviceowner after less than a minute.
(S)He also created a vm named vmmal on that port after less than a second. Then, (s)he modified that portdeviceowner
after less than a second. More details can be found in the provenance graph in path [416 - 419 - 422 - 425].

Fig. 6: Automatically generated report on the incident discussed in our motivat-
ing example (Section 1).

4 Implementation and Evaluation

In this section, we detail the implementation of VinciDecoder and evaluate our
solution.

4.1 Evaluation using Cloud Management-level Provenance Graphs

To evaluate VinciDecoder under different scenarios (e.g., various lengths of sus-
picious paths), we apply VinciDecoder to cloud management-level provenance
graphs generated in our testbed cloud.

VinciDecoder 9

4.1.1 Implementation and Data Collection We implement VinciDecoder
in a cloud testbed based on OpenStack [8] (a popular open-source cloud plat-
form). We note that only our PILT module (Section 3.2) and our rules (Ap-
pendix) are platform-specific, and the modular design of VinciDecoder makes it
easily portable to other platforms or provenance models (e.g., OS-level prove-
nance [25]). We export provenance graphs from Neo4j [7] into JSON format for
processing. We leverage Open-Source Toolkit for Neural Machine Translation
(ONMT) [26] (a popular tool for language translation). Similar to some other
solutions (e.g., [54]), we choose the default options for embedding paths (i.e., 500
dimensional vector) as well as the batch size and the dropout rate (i.e., 64 and
0.3, respectively). We leverage the metrics in [45] to evaluate our approach. We
run VinciDecoder on an Ubuntu 20.04 server equipped with 128 GB of RAM. We
generate the provenance graphs through deploying and updating different types
of virtual resources. Moreover, we enrich our training dataset by leveraging the
rule-based mechanism (detailed in Section 3.5). To simulate reports authored
based on various writing styles, we specify rules capturing the writing styles of
our different authors.

Table 1: Statistics of our testbed datasets.
Training Testing

Dataset Dtr-size1 Dtr-size2 Dtr-size3 Dtr-size4 Dtr-len1 Dtr-len2 Dtr-len3 Dtr-len4 Dts1 Dts2
of paths 2000 4000 6000 8000 2000 2000 2000 2000 2000 2000
lmin 4 4 4 4 4 8 12 16 4 8

Table 1 shows the statistics of our datasets. To evaluate the effect of length
and number of available samples (i.e., the suspicious paths) on the performance,
we conduct our experiments based on two groups of training datasets: 1) varying
the number of paths: four datasets (Dtr-size1 to Dtr-size4) each consisting of a
different number of paths with the same minimum length; 2) varying the length
of paths: four datasets (Dtr-len1 to Dtr-len4) consisting of the same number of
paths with different specified minimum lengths. We randomly select 70% and
30% of the paths from each training dataset to build and validate (used by
NMT to automatically tune the hyperparameters in training [22]) the models,
respectively. Our training and testing datasets are selected from disjoint parts of
the provenance graph, so we can evaluate the ability of VinciDecoder in handling
unseen datasets. We also evaluate our approach based on two testing datasets
with paths of different minimum lengths as shown in Table 1.

4.1.2 Effectiveness Evaluation We reproduce in our testbed eight real-
world incident scenarios that involve cloud management operations, and apply
VinciDecoder to generate reports based on the captured provenance graphs. Ta-
ble 2 shows those scenarios and corresponding incidents. Most of those scenarios
are discussed in previous works (e.g., [14,34,48,50,55]) focusing on security ver-
ification. For all cases, our generated reports capture all operations that led to
the incidents. Table 3 demonstrates the effectiveness of VinciDecoder based on
five scenarios. We also showcased our result for the sixth scenario in Section 3.5.
The other two scenarios (Table 2, seventh and eighth rows) involve fewer types
of operations and are thus omitted due to space limitation.

10 A. Tabiban et al.

Table 2: Attack scenarios used to evaluate the effectiveness of VinciDecoder.
Index Root cause Incident
1 Improper authorization [55] Port Scanning
2 Failed update of security groups [48] Data leakage
3 Soft-rebooting migrated VM [5] Data corruption
4 Deleting resized VM [4] Disk utilization
5 Incorrect role assignment [50] Data leakage
6 Race condition in update port [48] Data leakage
7 Wrong VLAN ID [14] Data leakage
8 Excessive VM creation on a host [34] Disk utilization

Table 3: Reports generated by VinciDecoder for five scenarios in Table 2. The
sixth scenario is showcased in Section 3.5.
Index Provenance graph path Automatically generated report

1

CreateVM
12:52:10.152
non-admin

AttachRouterToSubnet
12:00:41.424

admin

VM
VMmal

CreatePort
12:51:46.531
non-admin

router
Router1

subnet
Subnet1

CreatePort
10:50:42.032

admin

subnet
Subnet1

subnet
Subnet2

router
Router1

subnet
Subnet1

port
Porta

port
Porta

An admin user created a port named porta on a sub-
net. This admin user attached that subnet to a router
after around 1 hours. A nonadmin user created a port
on that subnet and on that router, previously affected
by a different user. After that, (s)he created a vm
named vmmal, which is associated to the alert.

2 StartVM
05:51:05.515

admin

VM
VMb

CreateVM
05:50:12.101

admin

VM
VMb

subnet
Subnet1

CreateVM
03:27:16.923
non-admin

DeleteSecurityGroupRule
07:00:56.315

admin

Security-group
SG1

Security-group
SG1

VM
VMmal

subnet
Subnet1

VM
VMb

AddSecurityGroup
06:59:46.012

admin

A nonadmin user created vm named vmmal on a sub-
net. An admin user created a vm named vmb on that
subnet. Once done, (s)he started that vm vmb. Then
attached a securitygroup named SG1 on that vm. The
administrator deleted securitygrouprule from that Se-
curityGroup after around 1 minutes.

3 SoftRebootVM
13:52:18.141
non-admin

vm
VMa

VMLiveMigrate
13:51:26.031

admin

host
host1

vm
VMa

An admin user livemigrated a vm named vma to a
host. A nonadmin user softrebooted that vm, previ-
ously affected by a different user.

4

ResizeVM
01:18:01.142
non-admin

vm
VMa

CreateVM
01:17:13.531
non-admin

host
host1

vm
VMa

DeleteVM
01:18:57.127
non-admin

A nonadmin user created a vm named vma on a host.
Later, (s)he resized that vm after less than a minutes.
Next, (s)he deleted that vm after less than a minute.

5 ChangeVMPassword
21:43:11.127
non-admin

vm
VMa

CreateVM
18:05:51.012

admin

subnet
subnet1

vm
VMa

An admin user created a vm, named vma on a subnet.
A nonadmin user changedpassword a vm, previously
affected by a different user after around 3 hours.

Example of verifying the captured information. Fig. 7(a) shows the auto-
matically generated report explaining the operations (i.e., the creation of a rogue
port on a router created by a different user) to exploit a vulnerability [2] that
led to the attack on VMa (Table 2, first row). VinciDecoder correctly details the
steps described by the manually created report shown in Fig. 7(b).

4.1.3 Performance Evaluation We showcase the high quality of generated
reports with different number and length of paths in training datasets based on
well known translation metrics BLEU and ROUGE [45]. BLEU (precision) mea-
sures the fraction of the generated information that are relevant to the manually
written reports and ROUGE (recall) indicates the fraction of information from
the reference reports that are included in automatically generated reports. As
VinciDecoder proposes the first learning-based provenance translation solution,
we cannot directly compare our results to existing works, while we note that
scores above 0.5 are generally known to reflect high quality translations [29].

Number of training samples. Fig. 8(a) shows that, in most cases, there is
a minor variation in the evaluated performance as the number of the training
samples increases. This can be explained by the possibility that our transla-
tion models trained by larger datasets may become more biased [33] due to the

VinciDecoder 11

Automatically generated report: By the detection
time, there are 4 operations performed in 3 hours
corresponding to the alert entity of vm vmmal. An
admin user created a port named porta on a subnet.
This admin user attached a subnet named subnet1 on
a router after around 1 hours. A nonadmin user
created a port on a subnet and on a router,
previously affected by a different user. After that, he
created a vm named vmmal, which is associated with
the alert. This node (ID: 60) might worth a closer
look because this operation is performed on admin
resource by nonadmin user.

(a) Automatically generated report.

Manually written report [2]:
The l3-agent does not check tenant_id and allows
tenants to plug ports into other's routers if the
device_id is set to another tenants router.
use admin’s credential
$ source openrc admin
Create router as admin
$ neutron router-create admin-router
use a different cloud tenant’s credential
$ source openrc non-admin
Create port with the router device_id
$ neutron port-create --device-id (router-id)

(b) Manually created report about ex-
ploiting the same vulnerability [2].

Fig. 7: Verifying the information captured by our generated report. The seman-
tically relevant information are highlighted with the same type of line.

0.02.5
0.0
0.5

Dts1 BLEU Dts1 ROUGE Dts2 BLEU Dts2 ROUGE

Dtr size1 Dtr size2 Dtr size3 Dtr size4
Training datasets

0.2
0.4
0.6
0.8

Pe
rfo

rm
an

ce

(a) Performance vs. num-
ber of training samples.

Dtr len1 Dtr len2 Dtr len3 Dtr len4
Training datasets

0.2
0.4
0.6
0.8

Pe
rfo

rm
an

ce

(b) Performance vs. length
of training samples.

10 20 30 40 50
of epochs

0.1

0.3

0.5

0.7

Pe
rfo

rm
an

ce

BLEU ROUGE

(c) Performance vs. number
of epochs.

Fig. 8: Evaluation with cloud management-level provenance graphs.

frequent appearances of similar patterns of cloud management operations. To
further illustrate this effect, Fig. 9 compares an excerpt of a manually written
report of a path with the ones generated by VinciDecoder based on the four
training datasets. As we can see, larger training datasets (e.g., Dtr-size4) cause
more extra or missing information in the generated reports. We conclude that
our approach remains useful even with a limited number of training samples.

Length of training samples. Fig. 8(b) shows that the performance decreases
when the length of paths in the training dataset increases, which may be due
to the degraded performance of NMT for longer sentences [18]. The reduction
is more significant for Dts1 due to the difference between the length of paths
in this testing dataset (with minimum four nodes) and that of paths in the
training datasets, Dtr-len3 and Dtr-len4 (with minimum 12 and 16 nodes). The
training datasets Dtr-len1 and Dtr-len2 (with paths of minimum four and eight
nodes) cause a noticeably higher performance for Dts1 than for Dts2 due to the
general positive impact of shorter paths of Dts1 on the performance and the
similarity between training and testing datasets regarding the lengths of paths.

Number of epochs. Fig. 8(c) shows that the performance is significantly im-
proved with the number of epochs (i.e., the number of times NMT iterates
through a training dataset). We also measure the perplexity (i.e., the extent
a trained model could predict a newly provided data [15]) and the accuracy for
different numbers of epochs and training datasets. Fig. 10(a) shows that the

12 A. Tabiban et al.

Dtr-size4: An Admin user created a port named \0 connected to that subnet. Then created a port named\0

connected to that subnet. This Admin user created a port named \0 connected to that subnet after
around minutes. Once done, he created a port named \0 connected to that subnet. He created a server
named \0 attached to that port after less than a minute. [not using pronoun] This Admin user modified a
port named \0 after less than a minute. Then updated a port named \0.

Dtr-size3: [missing create server] An Admin user updated a port named \0. The administrator updated a

port named \0 , after around \0minutes.

Dtr-size1: An Admin user created a server

named \0 attached to that port. Once done, he
updated a port named\0 [missing elapsed time].

Dtr-size2: An Admin user created a server named \0

attached to that port. [not using pronoun] The Admin
user modified a port named\0, after less than a minute.

Path (converted to a sentence in the intermediary language): '"type:CreateServers,user:Admin,
ElapsedTime:\0-seconds” “type:port” “type:UpdatePorts,user:Admin,ElapsedTime:\0-seconds”

Manually written report: An admin user created a server attached to a port, named \0. He later updates
that port after less than a minute.

Fig. 9: Comparing reports generated by training datasets with different numbers
of samples (irrelevant parts of the generated reports are crossed out).

perplexity decreases to around 1.2 after 20 epochs, and Fig. 10(b) shows that
the accuracy increases to around 97% after 40 epochs. We conclude that the
perplexity and accuracy of VinciDecoder improve with the number of epochs,
and reach almost constant values after training over maximum 40 epochs.

5 15 25 35
of epochs

0

20

40

60

80

Pe
rp

le
xi

ty

Dtr size1
Dtr size2
Dtr size3
Dtr size4

(a)

0 15 30 45
of epochs

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Dtr size1
Dtr size2
Dtr size3
Dtr size4

(b)

2 4 6 8
of training paths (x103)

0
5

10
15
20
25

Vo
ca

bu
la

ry
 (x

10
3)

No normalization
With normalization

(c)

2 4 6 8
of training paths (x103)

35

40

45

50

Un
se

en
 v

oc
ab

. (
%

) No normalization
With normalization

(d)

Fig. 10: (a) Perplexity (the smaller is better) and (b) accuracy at different epochs;
(c) the growth of vocabulary size, and (d) the proportion of unseen words.

Out-of-vocabulary evaluation. Fig. 10(c) shows that, without normaliza-
tion (Section 3.3), the size of the vocabulary significantly grows with the size
of the dataset, which may subsequently reduce the performance. Furthermore,
Fig. 10(d) shows that, on average, the proportion of unseen words in the testing
dataset (i.e., words that do not exist in the training datasets, and thus may be
translated incorrectly) is around 6% less after conducting normalization. This
shows that our normalization technique effectively increases the applicability of
the trained models for describing new provenance graphs in testing datasets. In
summary, our results demonstrate the feasibility and quality of the produced
reports for datasets with different number and length of paths.

4.2 Large Scale Experiments using CVE-based Provenance Graphs

As our evaluation in Section 4.1 is limited to the data collected from our testbed,
to evaluate our approach based on more realistic and larger scale datasets, we
apply VinciDecoder to CVE-based provenance graphs in this section.

VinciDecoder 13

Data Collection. The performance of NMT may be adversely affected by the
scarce available pairs of input data [19]. Therefore, to enrich our dataset, we
adopt an approach similar to recent works (e.g., [13,20,44]) on extracting prove-
nance graphs from cyber threat intelligence (CTI) reports such as vulnerability
databases [6]. Similar to such solutions, we leverage a combination of rule-based
and machine learning techniques (e.g., Part-of-Speech Tagging [17]) to extract
different components of provenance graphs (e.g., affected systems, attackers’ ac-
tivities, and the impact of attacks), which allows us to generate a large number of
provenance graphs paired with their CTI reports to train our translation model.
To this end, we processed 60,000 CVE entries. Inspired by existing solutions
(e.g., [44]), to decrease the verbosity of CVE entries and facilitate extracting
provenance information, we apply a summarization technique3 to the entries,
and subsequently, extract provenance metadata. Finally, we clean the dataset
by removing the entries from which the attackers’ activities and impact cannot
be extracted, and we obtain six datasets with the total number of 40,151 entries
as shown in Table 4. We randomly select 80%, 10% and 10% of entries in each
dataset for training, testing and validation, respectively.

Table 4: Statistics of our datasets prepared with CVE entries.
D1 D2 D3 D4 D5 D6

Total before cleaning 30000 36000 42000 48000 54000 60000
Total after cleaning 20626 25188 28575 32333 36283 40151
Training 16600 20271 22997 26022 29201 32314
Validation 2060 2514 2852 3227 3621 4007
Testing 1966 2403 2726 3084 3461 3830

Number of epochs. We showcase the high quality of our generated reports
by first identifying the number of epochs that yields the highest performance
(average BLEU and ROUGE scores) for each dataset. Fig. 11(a) shows that
VinciDecoder achieves higher performance with smaller datasets after a fewer
number of epochs (e.g., 30 epochs for D1). This can be explained by the possibil-
ity that training on smaller datasets for a larger number of epochs would cause
overfitting [38], which decreases the performance. On the other hand, the per-
formance related to our larger datasets (D4, D5 and D6 in Fig. 11(b)) remains
high for a larger number of epochs. For instance, we maximise the performance
by training on our largest dataset (D6) for 100 epochs.

Number of training samples. We measure the performance of VinciDecoder
trained with different datasets for the number of epochs that achieved the highest
performance in Fig. 11(a) and 11(b) (e.g., 30 and 100 epochs for D1 and D6,
respectively). Fig. 11(c) shows that both the BLEU and ROUGE scores remain
almost similar and above 0.68 and 0.74, respectively, for all datasets. This shows
that despite the complex content and various writing styles that are natural to
CVE reports, VinciDecoder performs well in generating such reports4.

3 https://pypi.org/project/nlpaug/
4 Note that while both sets of our experiments in Section 4.1 and 4.2 show high

quality reports, directly comparing their results is not meaningful as their reports

https://pypi.org/project/nlpaug/

14 A. Tabiban et al.

20 40 60 80 100
of epochs

0.60

0.64

0.68

0.72

Pe
rfo

rm
an

ce
D1
D2

D3

(a) Performance vs. # of
epochs (smaller datasets).

20 40 60 80 100
of epochs

0.60

0.64

0.68

0.72

Pe
rfo

rm
an

ce

D4
D5

D6

(b) Performance vs. # of
epochs (larger datasets).

D1 D2 D3 D4 D5 D6
Dataset

0.2
0.4
0.6
0.8

Pe
rfo

rm
an

ce

BLEU ROUGE

(c) Performance vs. size of
datasets.

Fig. 11: Evaluation with CVE-based provenance graphs.

4.3 User-based Study
To evaluate the quality and usefulness of our generated reports in helping human
analysts, we conduct a user study5 based on standard practices [10], where par-
ticipants have to evaluate the factual correctness and fluency of the reports gen-
erated by VinciDecoder. Our participants include eight cybersecurity researchers
working in a major telecommunication organization and five graduate researchers
working in cybersecurity labs of our university. Table 5 shows the percentage of
participants in each group, their reported level of expertise, and the average
score for all statements.
Table 5: Average quantified agreement levels for each group (scores will be ex-
plained later). PG means provenance analysis. (A), (L), and (N) signs represent
advanced, little and no knowledge, respectively, as reported by the participants.

Industry Academia
Background (Cloud-PG) A-A A-L A-N L-L L-N A-L
Participants (%) 15 23 8 8 8 38
Scores (out of 5) 3.83 4.28 3.83 3.83 3 4.13

At the beginning of the study, we show an attack scenario (our motivating
example in Section 1) to the participants. Next, we provide the participants with
the provenance graph, the report generated by VinciDecoder, and the manually
written report. Our study asks participants to evaluate their investigation with
and without VinciDecoder, and accordingly express their level of agreement with
the provided statements (shown in Table 6) by choosing one of the following
options: Strongly agree, Agree, Neutral, Disagree and Strongly disagree. We then
quantify the results by assigning an integer between one and five to each option,
where five means Strongly agree and one means Strongly disagree.

100 50 0 50 100

S1
S2
S3
S4
S5
S6St

at
em

en
ts Strongly Disagree

Disagree
Neutral
Agree
Strongly Agree

Fig. 12: Participants’ agreement with statements in Table 6.
Fig. 12 shows the distribution of participants’ agreement with each statement.

For most participants, understanding the attack steps is much easier using our

are of incomparable lengths (e.g., cloud management-level provenance graph-based
reports are typically longer which has a negative effect on the performance).

5 This study has been identified as quality assurance by Research Ethics/Office of
Research of our university, which means it requires no ethics approval.

VinciDecoder 15

Table 6: Survey statements and scores. The agreement level of participants are
converted to scores between one and five (score five represents Strongly agree).

Statement Score
S1 Understanding the attack steps using the generated text is easier than using the path. 4.3
S2 The generated text is consistent with the explained attack scenario. 3.92
S3 The generated text is consistent with the path regarding the relationships of operations. 4.31
S4 The generated text captures all the information of the suspicious path. 4
S5 The generated text is sufficiently fluent compared with the manually written report. 3.46
S6 The generated text is consistent with the manually written report regarding attack steps. 3.92

generated report than the provenance graph (S1). According to most partici-
pants, our generated report contains no information contradicting the described
attack scenario and the provenance graph (S2 and S3). Additionally, the results
(S4) affirm that all the information captured by the provenance graph is reflected
in our generated report. Most users find the generated report almost as fluent
as the manually created one (S5), while the slightly lower fluency is expected for
automatically generated reports [28]. Finally, the attack steps described by the
generated report is consistent with the report created by the human analyst (S6).
We show the average quantified scores in Table 5. VinciDecoder achieves scores
above three among all groups despite their low level (little or no) of expertise,
which confirm the benefits of VinciDecoder to users in investigating incidents.

5 Discussion
In this section, we discuss future directions and limitations of VinciDecoder.

Application to other models. Our approach is generic enough to support var-
ious provenance models (e.g., [25,37] and [53] for the OS and Internet of things
environments, respectively) after converting paths into primitive sentences cap-
turing both nodes and edges as words in our intermediary language. Likewise,
an interesting future direction is to apply VinciDecoder to other graphical secu-
rity models such as attack graphs [13] paired with their corresponding textual
interpretation.

Coverage. In this work, we leverage NMT for generating forensic reports from
long suspicious paths, as it is known to perform well in translating long sen-
tences [46]. In our future work, we will further investigate the possibility of
applying other translation techniques [31] that may increase the performance of
VinciDecoder. Finally, our goal is to assist analysts, instead of replacing them, by
allowing them to focus on more important but light-weight tasks, e.g., validating
the report to ensure its legal value.

6 Related Work

Provenance-based security solutions have been extensively explored [25,40,41,47,
53]. King et al. [25] propose data provenance to investigate security incidents in
operating systems. ProvDetector [54] is a provenance solution to detect anoma-
lous programs using embedded sentences representing paths. Poirot [36] identifies
attack-related subgraphs, and SteinerLog [12] detects attack campaigns across
multiple hosts using alert correlation. Some of recent solutions (e.g., [37, 58])

16 A. Tabiban et al.

focus on increasing the interpretability of provenance graphs. ATLAS [9] adopts
sequence learning to model the signature of attacks. There exist efforts adapting
provenance analysis to domains other than operating systems such as the In-
ternet of Things (IoT) (e.g., [53]) and SDN environments (e.g., [51, 52]). Wu et
al. [56] propose an approach explaining the absence of events. The authors in [32]
and [11] propose a provenance-based investigation and access control scheme for
clouds, respectively. The authors in [39], propose a solution to enhance the access
control mechanism in OpenStack. Chen et. al [16] propose CLARION to cap-
ture precise provenance graphs across namespaces of different containers. Unlike
our work, none of those solutions generates a human-readable description of the
provenance graph, and our approach can be applied to most of those solutions
to automatically translate their results into natural language reports.

Several solutions [27,30,42] have been proposed to generate human-readable
descriptions based on non-linguistic information. The authors in [42] propose a
solution to generate textual summaries about basketball games based on tables
of information using NMT. [30] is a neural text generation solution to generate
the first sentence of a Wikipedia entry based on a provided infobox. Finally, [27]
proposes a solution that generates abstracts for scientific papers (with the BLEU
score of around 0.14) based on paired titles and knowledge graphs (with 4.43
edges, on average). None of those solutions are designed for generating forensic
reports based on typically larger and more complex provenance graphs that are
natural to the security context or cloud scale. ProvTalk [49] proposes a rule-
based approach for generating textual summaries of provenance graphs, which is
generalized and complemented with a learning-based approach in VinciDecoder.

7 Conclusion

In this paper, we presented VinciDecoder, the first solution for automatically
translating provenance analysis results into human-readable forensic reports us-
ing both rule-based and learning-based techniques. To this end, we first explored
the characteristics of the provenance graph to represent it in an intermediary
language, which can then be translated into a natural language. We showed the
feasibility of our approach by implementing VinciDecoder based on an Open-
Stack cloud, and demonstrated the high quality of generated reports for real-
world incident scenarios using both numerical (up to 0.56 and 0.68 BLEU scores
for cloud management-level and CVE-based provenance graphs, respectively)
and user-based evaluations. As future work, we will integrate VinciDecoder with
other (e.g., OS-level) provenance analysis tools. We will also explore other trans-
lation techniques and hyperparameters (i.e., the size of embedding vectors and
batch size), which may further improve the effectiveness of our approach.

Acknowledgment. We thank the anonymous reviewers for their valuable com-
ments. This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada and Ericsson Canada under the Industrial Research
Chair in SDN/NFV Security and the Canada Foundation for Innovation under
JELF Project 38599.

VinciDecoder 17

Appendix

Algorithm 2 shows our rule-based mechanism generating reports based on
the cloud management-level provenance graphs (e.g., the provenance graph in
Fig. 1). To generate fluent sentences, we specify rules for indicating differ-
ent subjects (line 2-5). We add resources extracted from the names of opera-
tions (e.g., a VM in CreateVM) through the template a $resource_type named
$main_resource_name (line 7-9). We specify various rules (line 11-20) for de-
scribing other affected resources connected to an operation node. We also specify
rules to record other information such as the elapsed time between operations
(line 21-26). Through such rules specifically designed for each type of operations,
resources, and users, VinciDecoder generates reports when there is an insufficient
amount of training data for generating high quality reports.

Algorithm 2 Rule-based Report Generation
Input: path ← Suspicious path identified by the provenance analysis tool

 Middle_Sentence_Subjects = ["Next, this user", "Later, he/she", "He/She also",

 "This user then", "Once done, he/she "]

Output: Description

1. foreach node ∈ path do

2. if isFirstNode(node) or isNotEqualPreviousUser(node) then%User of the first operation

3. Subj_main ← Admin_NonAdmin_Specifier(userID, adminID)

4. else %Other users with prior words (e.g., "Once done, he/she")

5. Subj_main ← random_choice(Middle_Sentence_Subjects)

6. if isAnOperation(node) then

7. Verb, MainObject ← OperationType.split(operation)

8. MainObject ← MainObject.setDeterminer("a")

9. MainObject ← addAfter("with the ID " + MainObject["id"])

10. OtherAffectedResources ← EndOfOutgoingEdges(node)

11. foreach SecondaryObject ∈ OtherAffectedResources: %Choosing prior words

12. if verb != "delete" then

13. SecondaryObject.addBefore("on").addAfter(resource["id"])

14. else

15. SecondObject.addBefore("from a").addAfter(resource["id"])

16. if previousUser(resource) != operation["user"] then %Update by a different user

17. SecondaryObject.addAfter(", previously affected by a different user,")

18. if isNotFirstNode(node) then %Range of elapsed time between operations

19. ElapsedTime ← TimeRangeDescriptor(ThisOperation – PreviousOperationTime)

20. if isAlertNode(node) then

21. MainObject.addAfter(", which is associated to the alert.")

22. sentence.setSubj(Subj_main).setVerb(Verb).setObj(MainObject) %Form sentence

23. sentence.addAfter(SecondaryObject).addAfter(ElapsedApprox)

24. if ThisOperation = PreviousOperation then %Emphasize the repetition

25. sentence.addComponent("again")

26. PathDescription.append(sentence)

27. return Description

References

1. Cisco AVOS, accessed July 28, 2022. https://github.com/CiscoSystems/avos
2. CVE-2014-0056, accessed July 28, 2022, https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2014-0056/

 https://github.com/CiscoSystems/avos
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0056/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0056/

18 A. Tabiban et al.

3. CVE-2015-5240, accessed July 28, 2022, https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-5240

4. CVE-2016-7498, accessed July 28, 2022, https://nvd.nist.gov/vuln/detail/
CVE-2016-7498

5. CVE-2020-17376, accessed July 28, 2022, https://bugs.launchpad.net/nova/
+bug/1890501

6. CVE details, accessed June 14, 2022, https://www.cvedetails.com/
vulnerability-list/

7. Neo4j Graph Platform, accessed July 28, 2022. https://neo4j.com/
8. OpenStack, accessed July 28, 2022. https://www.openstack.org/
9. Alsaheel, A., Nan, Y., Ma, S., Yu, L., Walkup, G., Celik, Z.B., Zhang, X., Xu,

D.: ATLAS: A Sequence-based Learning Approach for Attack Investigation. In:
USENIX Security. pp. 3005–3022 (2021)

10. Assila, A., Ezzedine, H., et al.: Standardized Usability Questionnaires: Features
and Quality Focus. eJCIST (2016)

11. Bates, A., Mood, B., Valafar, M., Butler, K.R.B.: Towards Secure Provenance-
based Access Control in Cloud Environments. In: CODASPY. pp. 277–284 (2013)

12. Bhattarai, B., Huang, H.: SteinerLog: Prize Collecting the Audit Logs for Threat
Hunting on Enterprise Network. In: ASIA CCS. pp. 97–108 (2022)

13. Binyamini, H., Bitton, R., Inokuchi, M., Yagyu, T., Elovici, Y., Shabtai, A.: A
Framework for Modeling Cyber Attack Techniques from Security Vulnerability
Descriptions. In: KDD. p. 2574–2583 (2021)

14. Bleikertz, S., Vogel, C., Groß, T., Mödersheim, S.: Proactive Security Analysis of
Changes in Virtualized Infrastructures. In: ACSAC. pp. 51–60. ACM (2015)

15. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. Computer Speech & Language 13(4), 359–394 (1999)

16. Chen, X., Irshad, H., Chen, Y., Gehani, A., Yegneswaran, V.: CLARION: Sound
and Clear Provenance Tracking for Microservice Deployments. In: USENIX Secu-
rity. pp. 3989–4006 (2021)

17. Chiche, A., Yitagesu, B.: Part of speech tagging: a systematic review of deep learn-
ing and machine learning approaches. Journal of Big Data 9(1), 1–25 (2022)

18. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the Properties of
Neural Machine Translation: Encoder–Decoder Approaches. In: SSST. pp. 103–
111. ACL (2014)

19. Fadaee, M., Bisazza, A., Monz, C.: Data Augmentation for Low-Resource Neural
Machine Translation. In: ACL. pp. 567–573 (2017)

20. Gao, P., Shao, F., Liu, X., Xiao, X., Qin, Z., Xu, F., Mittal, P., Kulkarni, S.R.,
Song, D.: Enabling Efficient Cyber Threat Hunting with Cyber Threat Intelligence.
In: ICDE. pp. 193–204. IEEE (2021)

21. Hassan, W.U., Aguse, L., Aguse, N., Bates, A., Moyer, T.: Towards Scalable Clus-
ter Auditing Through Grammatical Inference over Provenance Graphs. In: NDSS
(2018)

22. He, D., Lu, H., Xia, Y., Qin, T., Wang, L., Liu, T.Y.: Decoding with Value Net-
works for Neural Machine Translation. Advances in Neural Information Processing
Systems 30 (2017)

23. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural computation
9(8), 1735–1780 (1997)

24. Johnson, C., Badger, L., Waltermire, D., Snyder, J., Skorupka, C., et al.: Guide to
cyber threat information sharing. NIST special publication 800(150) (2016)

25. King, S.T., Chen, P.M.: Backtracking Intrusions. In: SOSP. pp. 223–236 (2003)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5240
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5240
 https://nvd.nist.gov/vuln/detail/CVE-2016-7498
 https://nvd.nist.gov/vuln/detail/CVE-2016-7498
 https://bugs.launchpad.net/nova/+bug/1890501
 https://bugs.launchpad.net/nova/+bug/1890501
https://www.cvedetails.com/vulnerability-list/
https://www.cvedetails.com/vulnerability-list/
https://neo4j.com/
https://www.openstack.org/

VinciDecoder 19

26. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: Open-Source
Toolkit for Neural Machine Translation. In: Proceedings of ACL, System Demon-
strations. pp. 67–72. ACL (2017)

27. Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., Hajishirzi, H.: Text Gen-
eration from Knowledge Graphs with Graph Transformers. In: NAACL (2019)

28. Läubli, S., Sennrich, R., Volk, M.: Has Machine Translation Achieved Human
Parity? A Case for Document-level Evaluation. In: EMNLP. pp. 4791–4796. ACL
(2018)

29. Lavie, A.: Evaluating the Output of Machine Translation Systems. AMTA Tutorial
86 (2010)

30. Lebret, R., Grangier, D., Auli, M.: Neural Text Generation from Structured Data
with Application to the Biography Domain. In: EMNLP. pp. 1203–1213. ACL
(2016)

31. Lopez, A.: Statistical Machine Translation. ACM Computing Surveys (CSUR)
40(3), 1–49 (2008)

32. Lu, R., Lin, X., Liang, X., Shen, X.S.: Secure Provenance: The Essential of Bread
and Butter of Data Forensics in Cloud Computing. In: ASIA CCS. pp. 282–292
(2010)

33. L’Heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.M.: Machine learn-
ing with big data: Challenges and approaches. IEEE Access 5, 7776–7797 (2017).
https://doi.org/10.1109/ACCESS.2017.2696365

34. Madi, T., Zhang, M., Jarraya, Y., Alimohammadifar, A., Pourzandi, M., Wang, L.,
Debbabi, M.: QuantiC: Distance Metrics for Evaluating Multi-Tenancy Threats in
Public Cloud. In: CloudCom. pp. 163–170. IEEE (2018)

35. Miao, H., Deshpande, A.: Understanding Data Science Lifecycle Provenance via
Graph Segmentation and Summarization. In: ICDE. pp. 1710–1713. IEEE (2019)

36. Milajerdi, S.M., Eshete, B., Gjomemo, R., Venkatakrishnan, V.: Poirot: Aligning
Attack Behavior with Kernel Audit Records for Cyber Threat Hunting. In: CCS.
pp. 1795–1812 (2019)

37. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.N.:
HOLMES: Real-Time APT Detection through Correlation of Suspicious Informa-
tion Flows. In: IEEE S&P. pp. 1137–1152 (2019)

38. Mitchell, T.M.: Machine Learning. McGraw-hill New York (1997)
39. Nguyen, D., Park, J., Sandhu, R.: Adopting Provenance-based Access Control in

OpenStack Cloud IaaS. In: NSS. pp. 15–27. Springer (2014)
40. Pasquier, T., Han, X., Goldstein, M., Moyer, T., Eyers, D., Seltzer, M., Bacon, J.:

Practical Whole-System Provenance Capture. In: SoCC. pp. 405–418 (2017)
41. Pasquier, T., Han, X., Moyer, T., Bates, A., Hermant, O., Eyers, D., Bacon, J.,

Seltzer, M.: Runtime Analysis of Whole-System Provenance. In: CCS. pp. 1601–
1616. ACM (2018)

42. Puduppully, R., Dong, L., Lapata, M.: Data-to-Text Generation with Content Se-
lection and Planning. In: AAAI. vol. 33, pp. 6908–6915 (2019)

43. Santana, M.A.B., Ricca, F., Cuteri, B.: Reducing the Impact of out of Vocabulary
Words in the Translation of Natural Language Questions into SPARQL Queries.
arXiv preprint arXiv:2111.03000 (2021)

44. Satvat, K., Gjomemo, R., Venkatakrishnan, V.: EXTRACTOR: Extracting Attack
Behavior from Threat Reports. In: EuroS&P. pp. 598–615. IEEE (2021)

45. Sharma, S., El Asri, L., Schulz, H., Zumer, J.: Relevance of Unsupervised Metrics
in Task-Oriented Dialogue for Evaluating Natural Language Generation. CoRR
abs/1706.09799 (2017)

https://doi.org/10.1109/ACCESS.2017.2696365
https://doi.org/10.1109/ACCESS.2017.2696365

20 A. Tabiban et al.

46. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to Sequence Learning with Neural
Networks. Advances in neural information processing systems 27 (2014)

47. Tabiban, A., Jarraya, Y., Zhang, M., Pourzandi, M., Wang, L., Debbabi, M.: Catch-
ing Falling Dominoes: Cloud Management-Level Provenance Analysis with Appli-
cation to OpenStack. In: CNS. pp. 1–9. IEEE (2020)

48. Tabiban, A., Majumdar, S., Wang, L., Debbabi, M.: PERMON: An Openstack
Middleware for Runtime Security Policy Enforcement in Clouds. In: CNS. pp. 1–7.
IEEE (2018)

49. Tabiban, A., Zhao, H., Jarraya, Y., Pourzandi, M., Zhang, M., Wang, L.: ProvTalk:
Towards Interpretable Multi-level Provenance Analysis in Networking Functions
Virtualization (NFV). In: NDSS (2022)

50. Thirunavukkarasu, S.L., Zhang, M., Oqaily, A., Chawla, G.S., Wang, L., Pourzandi,
M., Debbabi, M.: Modeling NFV Deployment to Identify the Cross-level Inconsis-
tency Vulnerabilities. In: CloudCom. pp. 167–174. IEEE (2019)

51. Ujcich, B.E., Jero, S., Edmundson, A., Wang, Q., Skowyra, R., Landry, J., Bates,
A., Sanders, W.H., Nita-Rotaru, C., Okhravi, H.: Cross-App Poisoning in Software-
Defined Networking. In: CCS. pp. 648–663 (2018)

52. Wang, H., Yang, G., Chinprutthiwong, P., Xu, L., Zhang, Y., Gu, G.: Towards
Fine-grained Network Security Forensics and Diagnosis in the SDN Era. In: CCS.
pp. 3–16. ACM (2018)

53. Wang, Q., Hassan, W.U., Bates, A., Gunter, C.: Fear and Logging in the Internet
of Things. In: NDSS (2018)

54. Wang, Q., Hassan, W.U., Li, D., Jee, K., Yu, X., Zou, K., Rhee, J., Chen, Z.,
Cheng, W., Gunter, C., et al.: You Are What You Do: Hunting Stealthy Malware
via Data Provenance Analysis. In: NDSS (2020)

55. Wang, Y., Madi, T., Majumdar, S., Jarraya, Y., Alimohammadifar, A., Pourzandi,
M., Wang, L., Debbabi, M.: TenantGuard: Scalable Runtime Verification of Cloud-
Wide VM-Level Network Isolation. In: NDSS (2017)

56. Wu, Y., Zhao, M., Haeberlen, A., Zhou, W., Loo, B.T.: Diagnosing Missing Events
in Distributed Systems with Negative Provenance. In: ACM SIGCOMM. pp. 383–
394 (2014)

57. Yusif, S., Hafeez-Baig, A.: A Conceptual Model for Cybersecurity Governance.
Journal of Applied Security Research 16(4), 490–513 (2021)

58. Zeng, J., Chua, Z.L., Chen, Y., Ji, K., Liang, Z., Mao, J.: WATSON: Abstracting
Behaviors from Audit Logs via Aggregation of Contextual Semantics. In: NDSS
(2021)

	VinciDecoder: Automatically Interpreting Provenance Graphs into Textual Forensic Reports with Application to OpenStack

