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Abstract

To defend against multi-step intrusions in high-speed networks, efficient algorithms are needed to correlate isolated alerts into
attack scenarios. Existing correlation methods usually employ an in-memory index for fast searches among received alerts. With finite
memory, the index can only be built on a limited number of alerts inside a sliding window. Knowing this fact, an attacker can prevent
two attack steps from both falling into the sliding window by either passively delaying the second step or actively injecting bogus
alerts between the two steps. In either case, the correlation effort is defeated. In this paper, we first address the above issue with a
novel queue graph (QG) approach. Instead of searching all the received alerts for those that prepare for a new alert, we only search
for the latest alert of each type. The correlation between the new alert and other alerts is implicitly represented using the temporal
order between alerts. Consequently, our approach can correlate alerts that are arbitrarily far away, and it has a linear (in the number
of alert types) time complexity and quadratic memory requirement. Then, we extend the basic QG approach to a unified method to
hypothesize missing alerts and to predict future alerts. Finally, we propose a compact representation for the result of alert correlation.
Empirical results show that our method can fulfill correlation tasks faster than an IDS can report alerts. Hence, the method is a prom-
ising solution for administrators to monitor and predict the progress of intrusions and thus to take appropriate countermeasures in a
timely manner.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A network intrusion that is composed of multiple
attacks preparing for each other can infiltrate a well-guard-
ed network. Defending against such multi-step intrusions is
important but challenging. It is usually impossible to
respond to such intrusions based on isolated alerts corre-
sponding to individual attack steps. The reason lies in the
well-known impreciseness of Intrusion Detection Systems
(IDSs). That is, alerts reported by IDSs are usually filled
with false alerts that correspond to either normal traffic
or failed attack attempts.

To more effectively defend against multi-step intrusions,
isolated alerts need to be correlated into attack scenarios.
0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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Alerts can be correlated based on similar attributes (for
example, the same destination hosts) and prior knowledge
about alert types or corresponding vulnerabilities. Regard-
less of the different knowledge used to decide whether an
alert prepares for another, the following nested loop proce-
dure is usually adopted. Each new alert searches all the pre-
vious alerts for those who prepare for it. For off-line
applications with a fixed set of alerts, such as computer
forensics, the nested loop approach is a natural choice with
reasonably good performance.

However, the defense against multi-step intrusions in
large-scale high-speed networks poses a new challenge to
the nested loop approach. To correlate potentially inten-
sive alerts, the search in alerts must be implemented using
an in-memory index [21]. However, an index built on all the
received alerts would quickly exhaust any finite memory.
Hence, the index can only be maintained for those alerts
that are close enough to the new alert, namely, those inside
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a sliding window. Unfortunately, an attacker aware of this
fact can prevent two attack steps from both falling into
the sliding window by either passively delaying the second
step or actively injecting bogus alerts between the two
steps. In either case, the correlation effort is completely
defeated.

In this paper, we first propose a novel queue graph

approach to remove the above obstacle towards efficient
alert correlation. A queue graph only keeps in memory
the latest alert matching each of the known exploits (that
is, host-bound vulnerabilities). The correlation between a
new alert and those in-memory alerts is explicitly recorded,
whereas the correlation with other alerts is implicitly repre-
sented using the temporal order between alerts. Our
approach has a linear time complexity and a quadratic
memory requirement (both in the number of known
exploits in the given network). Those are both independent
of the number of received alerts, meaning the efficiency
does not decrease over time. Our approach can correlate
two alerts that are separated by arbitrarily many others.
It is thus immune to deliberately slowed intrusions and
injected bogus attacks.

Our second contribution is a unified method for the
correlation, hypothesis, and prediction of intrusion alerts.
The method compares knowledge encoded in a queue
graph with facts represented by correlated alerts. An
inconsistency between the knowledge and the facts
implies potential attacks missed by IDSs, whereas
extending the facts in a consistent way with respect to
the knowledge indicates potential future attacks. Empiri-
cal results indicate that our method can fulfill those tasks
even faster than the IDS can report alerts. The proposed
techniques thus provide a promising solution for admin-
istrators to monitor and predict the progress of intru-
sions, and thus to take appropriate countermeasures in
a timely manner.

Finally, we extend the preliminary results in [42] with a
compact representation of the result graph. This compact
representation removes all transitive edges and aggregates
those alerts that are indistinguishable in terms of correla-
tion. Consequently, the result graph contains no redundant
information and becomes more perceptible. We modify the
QG approach to support the compact representation.
Unlike existing methods that take extra efforts to compress
a result graph, the modified QG approach is actually more
efficient in most cases. This extension is especially impor-
tant in high-speed networks where potentially intensive
attacks can lead to complex result graphs.

The rest of this paper is organized as follows. The
next section reviews related work. Section 3 states basic
concepts and assumptions. Section 4 proposes the queue
graph approach. Section 5 devises a unified method for
alert correlation, hypothesis, and prediction. Section 6
proposes a compact representation for the result graph.
Section 7 gives empirical results. Finally, Section 8 con-
cludes the paper. All the figures can be found at the
end of the paper.
2. Related work

To reconstruct attack scenarios from isolated alerts,
some correlation techniques employ prior knowledge about
attack strategies [7,9,4,10,38] or alert dependencies
[3,20,22]. Some techniques aggregate alerts with similar
attributes [2,6,37,41] or statistical patterns [17,29]. Hybrid
approaches combine different techniques for better results
[22,30,43]. Alert correlation techniques are also used for
other purposes than analyzing multi-step intrusions, such
as to relate alerts to the same thread of attacks [14]. The
privacy issue of alert correlation has recently been investi-
gated [44]. Alert correlation is employed to deal with insid-
er attacks [32,31]. To our best knowledge, the limitation of
the nested-loop approach, especially for correlating inten-
sive alerts in high-speed networks, has not been addressed.

Network vulnerability analysis enumerates potential
attack sequences between fixed initial conditions and
attack goals [26,33,5,34,36,16,1,15,25,45,11]. To avoid
potential combinatorial explosion in the number of attack
sequences, we adopt a notation of attack graphs similar to
that of [1,26]. However, we do not assume fixed initial or
goal conditions but let alerts to indicate the actual start
and end of an intrusion. Efforts in integrating information
from different sources include the formal model M2D2 [19]
and the Bayesian network-based approach [46]. We adopt
the vulnerability-centric approach to alert correlation [24]
because it can effectively filter out bogus alerts irrelevant
to the network. However, the nested loop procedure is still
used in [24].

Attack scenarios broken by missed attacks are reassem-
bled by clustering alerts with similar attributes [23], and
those caused by incomplete knowledge are pieced together
through statistical analyses [30,29]. Instead of repairing a
broken scenario afterwards, our method can tolerate and
hypothesize missed attacks at the same time of correlation.
Real-Time detection of isolated alerts is studied in [18,28].
Some products claim to support real-time analyses of
alerts, such as the Tivoli Risk Manager [13]. Designed for
a different purpose, the RUSSEL language is similar to
our approach in that the analysis of data only requires
one-pass of processing [12].

This paper extends the preliminary results reported in
[42] as follows. First, we show that a result graph produced
by the basic QG approach given in [42] still contains redun-
dant information, such as transitive edges. The transitive
edges can be removed to simplify a result graph without
losing any information. Moreover, some alerts in a result
graph are indistinguishable with respect to their relationship
with others. Those alerts can thus be aggregated to make
the result graph more perceptible. Second, we modify the
basic QG approach such that it produces result graphs with
all transitive edges removed and indistinguishable alerts
aggregated. Unlike existing approaches that take extra
efforts to compress result graphs, the modified version of
our QG approach not only produces more compact result
graphs, but also is more efficient in most cases.
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3. Preliminaries

This section reviews relevant concepts and states our
assumptions. Section 3.1 introduces attack graphs and Sec-
tion 3.2 discusses intrusion alerts. Section 3.3 then indicates
the limitations of the nested loop approach to motivate our
study.

3.1. Attack graph

An attack graph represents prior knowledge about a giv-
en network in terms of vulnerabilities and connectivity
[1,36]. An attack graph is a directed graph having two type
of vertices, exploits and security conditions. Exploits are
host-bound vulnerabilities. More precisely, an exploit,
denoted as a triple (vul, src, dest), indicates that the vulner-
ability vul exists on the host dest and the two hosts src and
dest are connected (src and dest may refer to the same host
in a local exploitation). Security conditions refer to the net-
work states required or implied by exploits, such as privi-
lege levels or trusts. The interdependencies between
exploits and security conditions form the edges of an attack
graph. An edge from a security condition to an exploit indi-
cates that the exploit cannot be executed until the security
condition has been satisfied; an edge from an exploit to a
security condition indicates that executing the exploit will
satisfy the security condition.

Example 3.1. Fig. 1 depicts part of an attack graph.
Security conditions appear as ovals and exploits as
rectangles. The edges indicate that the buffer overflow
exploit can be executed only if the attacker can access the
source host and the destination host has the vulnerable
service.

We assume attack graphs can be obtained with existing
tools, such as the Topological Vulnerability Analysis
(TVA) system [15], which can model 37,000 vulnerabilities
taken from 24 information sources including X-Force,
Bugtraq, CVE, CERT, Nessus, and Snort. We assume
the attack graph can be placed in memory. For a given net-
work, the size of an attack graph can usually be estimated
and the required memory can be accordingly allocated.
User privilege on host1

Sadmind buffer overflow vulnerability 
host1 → host2

Vulnerable Sadmind RPC service on  host2

Arbitrary code execution with 
root privileges on host2

Fig. 1. An example of attack graph.
Unlike in [36,33], we do not assume fixed initial or goal
conditions in an attack graph but let alerts to indicate
the actual start and end of an intrusion. We do not assume
external host addresses to be trustful and use wildcards to
match them. This may cause false correlations when multi-
ple attackers concurrently launch similar attacks while they
do not intend to cooperate with each other.

To simplify our discussion, we introduce some nota-
tions to formally denote attack graphs. Let E be the set
of known exploits, and C be the set of relevant security
conditions. Denote the require and imply relationship
between exploits and security conditions as the relation
Rr ˝ C · E and Ri ˝ E · C, respectively. An attack graph
is the directed graph G(E [ C, Rr [ Ri). The prepare-for
relationship between exploits, as captured by many alert
correlation methods [3,20], is simply the composite rela-
tion Ri � Rr. We shall denote this composite relation using
the symbol fi.

3.2. Intrusion alert

Intrusion alerts reported by IDS sensors in a given net-
work typically contain attributes like the type of events, the
address of the source and destination host, the time stamp,
and so on. Our discussion does not depend on specific for-
mat of alerts, so we simply regard each alert as a relational
tuple with a given (usually implicit) schema. For example,
with the schema (event type, source IP, destination IP, time

stamp), an alert will have the form (RPC portmap sadmind

request UDP, 202.77.162.213, 172.16.115.20, 03/07-
08:50:04.74612).

A vulnerability-centric correlation approach matches
alerts with exploits such that alerts can be correlated using
the knowledge encoded in an attack graph [24]. To match
alerts with exploits, the event type attributes of alerts need
to be mapped to the vulnerability attributes of exploits
using domain knowledge, such as the correspondence
between Snort identifiers and Nessus identifiers [27]. For
simplicity, we denote the matching between alerts and
exploits as a function Exp () from the set of alerts A to
the set of exploits E (in some cases an event type matches
multiple vulnerabilities, which will be handled by creating
a copy of alert for each matched exploit).

The vulnerability-centric approach can mitigate the neg-
ative impact of disruptive alerts. For example, if the attack-
er blindly launches some Windows-specific attacks on
UNIX machines, then the reported alerts will be ignored
by the approach. On the other hand, the approach also
has limitations in that relevant alerts do not always match
exploits. For example, an ICMP PING matches no vulner-
ability, but it may signal the probing preparation for fol-
lowing attacks. Such relevant alerts can be identified
based on attack graphs and the knowledge about alert
types. We extend the concept of exploits to include alert
types in the place of vulnerability attributes. Such special
exploits are added to attack graphs and the function Exp
is extended accordingly.
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ai aj ak…… …  ah ……

Exp(ai) = Exp(aj) = Exp(ak)
Exp(ak) → Exp(ah)

Fig. 3. Implicit and explicit correlation.
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Our methods critically depend on temporal characteris-
tics of alerts, such the order of arrivals and timestamps. In
practice, those characteristics are expected to exhibit much
uncertainty due to various delays in hosts and network,
especially when alerts are collected from multiple sensors
at different locations. We address such temporal imprecise-
ness in more details in Section 4.3. We assume the clocks of
IDS sensors are loosely synchronized with the correlation
engine. This can be achieved in many different ways
depending on specific IDS systems. For example, Snort
has built-in support of automatic time synchronization
through the network time protocol (NTP) [35]. We leave
the case where attackers may temper with the clocks as
future work.

3.3. The nested loop approach and its limitations

A natural way to correlate alerts is to search all the
received alerts for those who prepare for a new alert. This
nested loop procedure is assumed by many correlation
methods. The left side of Fig. 2 shows a sequence of alerts
ascending in time, a0, a1, . . . , an. For each i = 1, 2, . . . , n,
the approach searches a0, a1, . . . , ai-1 for those ajs that sat-
isfy Exp(aj) fi Exp (ai). However, this does not imply that
ai must be compared to every aj (0 6 j 6 i � 1), although it
comprises a simple implementation of the search. The
search for the alerts that prepare for ai can be optimized
with an index on a0, a1, . . . , ai-1. After ai is processed, an
entry corresponding to ai is inserted into the index. By
maintaining such an index in memory, the nested loop
approach can have a relatively good performance (for
example, 65 k alerts can be processed in less than 1 s [21]).

It is not always possible to have enough memory for
indexing all the alerts. Hence, a sliding window approach
comes to the rescue. That is, only the alerts close enough
to the new alert are considered for correlation. As illustrat-
ed in the right side of Fig. 2, for the alert ai the search is
only performed on ai-k, ai-k+1, . . . , ai-1, where k is a given
window size determined by available memory. However,
this sliding window approach leads to an unavoidable
tradeoff between the performance and the completeness
of correlation. On one hand, the performance requires k

to be small enough so the index fits in memory. On the
other hand, a smaller k means less alerts will be considered
for correlation with the new alert, and thus the result may
be incomplete as two related alerts may in fact be separated
by more than k others.

This tradeoff between the performance and the
completeness causes a more serious problem for real-time
a1 a0 …

time 

a1 ai …  ana0 … ai-1

search

Fig. 2. The nested loop approach w
correlation in high-speed networks, where performance is
critical and attacks can be intensive. The problem is exac-
erbated by those attackers who are aware of the ongoing
detection effort. An attacker can employ the following slow

attack to defeat alert correlation. More specifically, given
an arbitrarily large window size k, for any two attacks that
raise the correlated alerts ai and aj, the attacker can delay
the second attack until at least k other alerts have been
raised since ai, so j � i > k meaning ai and aj will not be cor-
related. Instead of passively awaiting, a smarter attacker
can actively launch bogus attacks between the two real
attack steps, so the condition j � i > k can be satisfied in
a shorter time. The attacker can even script bogus attack
sequences between the real attack steps, such that a
deceived correlation engine will be kept busy in producing
bogus attack scenarios, while the real intrusion will be
advanced in peace of mind.

4. The queue graphs (QG) approach to correlating alerts

This section proposes a novel Queue Graph (QG) data
structure to remove the limitation of a nested loop
approach. Section 4.1 makes a key observation. Section
4.2 then introduces the QG data structure. Finally, Section
4.3 deals with alerts with imprecise temporal
characteristics.

4.1. Implicit correlation and explicit correlation

The key observation is that the correlation between
alerts does not always need to be explicit. In Fig. 3, suppose
the first three alerts ai, aj, and ak all match the same exploit
Exp(ak) (that is, their event types match the same vulnera-
bility and they involve the same source and destination
hosts); the alert ah matches another exploit Exp (ah);
Exp(ak) prepares for Exp (ah). Hence, ai, aj, and ak should
all be correlated with ah. However, if the correlation
between ak and ah is explicitly recorded (shown as a solid
line in the figure), then the correlation between aj and ah

can be kept implicit (shown as a dotted-line). More precise-
ly, the facts Exp (aj) = Exp (ak) and Exp(ak) fi Exp (ah)
time 

ai-k ai… …  anai-1

search

k

ith or without a sliding window.
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jointly imply Exp (aj) fi Exp (ah), and the facts that aj

occurs before ak and ak occurs before ah jointly imply that
aj must also occur before ah. Similar arguments apply to
the correlation between ai and ah.

To generalize the above observation, a new alert only
needs to be explicitly correlated with the latest alert match-
ing each exploit. Its correlation with other alerts matching
the same exploit can be kept implicit with the temporal
order (for example, aj occurs before ak and ak occurs before
ah) and with the matching between alerts and exploits (for
example, aj and ak match the same exploit). In the above
case, if ak is indeed the latest alert matching Exp (ak), then
only the correlation between ah and ak needs to be explicit.
As we shall show shortly, keeping correlations implicit can
significantly reduce the complexity and memory require-
ment. Intuitively, for each exploit the correlation algorithm
only needs to search backward for the first (ak in the above
case) alert matching that exploit. For the nested loop
approach, however, the correlation is always explicit.
Hence, the approach must unnecessarily search all the
received alerts, as discussed in Section 3.3.

4.2. Correlating alerts using queue graphs

We design an in-memory data structure, called Queue

Graph, to take advantage of the above observation about
implicit correlation. A queue graph is an in-memory mate-
rialization of the given attack graph with enhanced features
(the purpose of the features will be clear in the following
sections). Each exploit is realized as a queue of length
one, and each security condition as a variable.

The realization of edges is a little more complicated.
Starting from each exploit ei, a breadth-first search
(BFS) is performed in the attack graph by following
the directed edges. For each edge encountered during
the search, a forward pointer is created to connect the
corresponding queue and variable. Similarly, another
search is performed by following the directed edges in
their reversed direction, and a backward pointer is creat-
ed for each encountered edge. Later, we shall use the
backward edges for correlation purposes and use the for-
ward edges for prediction purposes.
c1

e2 e3

c2

e1

Q2 Q3

v2

v1

Q1

Queues, Variables Attack Graph 

Fig. 4. An exampl
The two collections of pointers are then placed at a sep-
arate layer tailored to the queue that corresponds to the
exploit ei. The reason for separating pointers into layers
is as follows. A BFS always creates a tree (namely, the
BFS tree), and hence later another BFS starting from the
same queue can follow only the pointers at that layer. This
later BFS will then be performed within a tree instead of a
graph, reducing the complexity from quadratic to linear.
We first illustrate the concepts in Example 4.1.

Example 4.1. In Fig. 4, from left to right are a given attack
graph, the corresponding queues (shown as buckets) and
variables (shown as texts), and the (both forward and
backward) pointers at different layers. Notice that the layer
one pointers do not include those connecting v2 and Q3,
because a BFS in the attack graph starting from e1 will
reach c2 only once (either via e2 or via e3, but we assume e2

in this example). The layer one pointers thus form a tree
rooted at Q1.

In Section 3.3, we discussed how a nested loop approach
correlates alerts that prepare for each other. As a compar-
ison, we now perform the same correlation using a queue
graph (we shall discuss other correlation requirements in
Section 5). Intuitively, we let the stream of alerts flow
through the queue graph, and at the same time we collect
correlation results by searching the queue graph. More spe-
cifically, each incoming alert is first matched with an
exploit and placed in the corresponding queue. Then,
because the length of each queue is one, a non-empty queue
must dequeue the current alert before it can enqueue a new
alert.

During this process, the results of correlation are collect-
ed as a directed graph, namely, the result graph. First, each
new alert is recorded as a vertex in the result graph. Sec-
ond, when a new alert forces an old alert to be dequeued,
a directed edge between the two alerts is added into the
result graph, which records the temporal order between
the two alerts and the fact that they both match the same
exploit. Third, after each new alert is enqueued, a search
starts from the queue and follows two consecutive back-
ward pointers; for each non-empty queue encountered dur-
ing the search, a directed edge from the alert in that queue
Layer 1  
Pointers 

Layer 3  
Pointers 

Layer 2  
Pointers 

Q2

v1

Q1

Q3 Q2

v2 v2

Q3

v2

v1

Q1

v1

Q1

e queue graph.



Fig. 5. A procedure for correlating alerts with queue graphs.
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to the new alert is added into the result graph. This is illus-
trated in Example 4.2.

Example 4.2. Consider correlating the four alerts ai, aj,
ak, and ah in Fig. 3 with the queue graph given in Fig. 4,
and suppose Exp (ah) = e1, Exp(ak) = e2, and no other
alerts match e1 or e2 besides ai, aj, ak, and ah. First,
when ai arrives, it is placed in the empty queue Q2.
Then, aj forces ai to be dequeued from Q2, and a
directed edge (ai,aj) in the result graph records the facts
that ai is before aj and they both match e2. Similarly, ak

replaces aj in Q2, and a directed edge (aj,ak) is recorded.
Finally, ah arrives and occupies Q1, a search starting
from Q1 and following two layer one backward pointers
will find the alert ak in Q2. Hence, a directed edge (ak,ah)
records the only explicit correlation.

Definition 1. Let G (E [ C,Rr [ Ri) be an attack graph,
where E = {ei j 1 6 i 6 n}, C = {ci j 1 6 i 6 m},
Rr ˝ C · E, and Ri ˝ E · C.

• For k = 1, 2, . . . , n,

[•] use BFSR (k) to denote the set of edges visited by a

breadth-first search in G (E [ C,Rr [ Ri) starting
from ek, and

[•] use BFS (k) for the set of edges visited by a breadth-
first search in GðE [ C;R�1

r [ R�1
i Þ staring from ek,

where R�1
r and R�1

i are the inverse relations.
• The queue graph Qg is a data structure with the following

components:

[•]
[•]
[•]
Q ¼ fQi j 1 6 i 6 ng are n queues of length one,
V ¼ fvi j 1 6 i 6 mg are m variables,
for each k = 1, 2, . . . , n,
Pk ¼ fhQj; vii j ðci; ejÞ 2 BFSðkÞg [ fhvi;Qji j
ðej; ciÞ 2 BFSðkÞg are the layer k backward
pointers, and
PRk ¼ fhvi;Qji j ðci; ejÞ 2 BFSRðkÞg [ fhQj; vii j
ðej; ciÞ 2 BFSRðkÞg are the layer k forward
pointers.
1 We use the notation Æa,bæ for a pointer in a queue graph and (a,b) for
an edge in a graph.
Definition 1 formally characterizes the queue graph data
structure. To rephrase Example 4.1 using those notations,
the queue graph has three queues Q ¼ fQ1;Q2;Q3g and
two variables V ¼ fv1; v2g.
The layer-one forward pointers are PR1 ¼ /,
and the layer-one backward pointers are
P1 ¼ fhQ1; v1i; hv1;Q2i; hQ2; v2i; hv1;Q3ig.1 The layer two
pointers include P2 ¼ fhQ2; v2ig and PR2 ¼
fhQ2; v1i; hv1;Q1ig. The layer three pointers include
P3 ¼ fhQ3; v2ig and PR3 ¼ fhQ3; v1i; hv1;Q1ig.

The process for correlating alerts using a queue graph, as
illustrated in Example 4.2, is more precisely stated as the pro-
cedure QG_Alert_Correlation in Fig. 5 . The result graph Gr

has a set of vertices V and two separate sets of edges Er and
El. The edges in Er correspond to the explicit correlations and
those in El record the temporal order between alerts match-
ing the same exploit. Initially, we set the queues in Q, the sets
V, Er, and El as empty. The first step of the procedure inserts
the new alert into the result graph. The second step dequeues
a non-empty queue and updates the result graph by adding
an edge between the old alert and the new alert. The third
step enqueues the new alert into the queue graph. The fourth
step does correlation by searching for the alerts that need to
be explicitly correlated to the new alert.

4.2.1. Complexity analysis

The procedure QG_Alert_Correlation demonstrates the
advantages of the QG approach over the nested loop
approach (some of the features of a queue graph, such as
the variables and the forward pointers, are not used by the
procedure and will be needed in the next section). First, the
time for processing each new alert with the QG approach is
linear in (m + n), that is the number of exploits and security
conditions in the attack graph. In Procedure QG_Alert_Cor-

relation, the fourth step visits at most (m + n) edges, because
it searches in a tree (that is, the BFS tree rooted at Qi) by fol-
lowing the layered pointers in Pi; the other steps of the pro-
cedure take almost constant time. Hence, the performance of
the QG approach does not depend on the number of received
alerts, as n and m are relatively stable for a given network. On
the other hand, the nested loop approach (without using a
sliding window) searches all alerts, and hence the perfor-
mance keeps decreasing as more and more alerts are
received.



Fig. 6. A procedure for alert correlation and hypothesis.
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Second, the memory usage of the QG approach is
roughly O (n (n + m)) (n layers, with each layer having
maximally (n + m) pointers),2 and hence does not
depend on the number of received alerts, either. In
comparison, the nested loop approach without a sliding
window needs memory for indexing on all the received
alerts. Third, the QG approach is not vulnerable to
slowed attacks, which can easily defeat the nested loop
approach using a sliding window as described in
Section 3.3. In the procedure QG_Alert_Correlation,
an alert is dequeued (and no longer considered for
correlation) only when a new alert matching the same
exploit arrives. Hence, if one alert prepares for
another, then no matter how many unrelated alerts
are injected, the earlier alert will always sit in the
queue graph waiting for the later one. In case some
temporal constraint states that an alert should not be
considered for correlation once it gets too old, a timer
can be used to periodically dequeue alerts. However,
care must be taken in using such temporal constraints
because they may render the correlation vulnerable to
slowed attacks again.

4.3. Alerts with imprecise temporal characteristics

The correctness of the QG approach critically depends on
the correct order of alerts. However, neither the order sug-
gested by timestamps nor the order of arrivals should be
trusted, because the temporal characteristics of alerts are
2 The correlation only appends to the result graph but does not read
from it, and hence the result graph needs not to be in memory.
typically imprecise. Instead, we adopt the following conser-
vative approach. First, any two alerts whose timestamps
have a difference no greater than a given threshold tcon are
treated as concurrent; the correct order of concurrent alerts
is always the one that allows the alerts to be correlated. Sec-
ond, for non-concurrent alerts, the correct order is the one
suggested by their timestamps, but alerts are allowed to
arrive in a different (and incorrect) order. This conservative
approach takes into account varying delays in a network
and small differences between the clocks of sensors.3

The basic QG approach does not work properly if alerts
do not arrive in the correct order. Consider an alert a1 that
prepares for another alert a2 but arrives later then a2. As
described in Section 4.2, the procedure QG_Alert_Correla-
tion will only look for those alerts that prepare for a1, but
not those that a1 prepares for (a2 in this case). Moreover, if
another concurrent alert a02 matches the same exploit as a2

does and arrives after a2 but before a1. Then, a2 is already
dequeued by the time a1 arrives, and hence the correlation
between a1 and a2 will not be discovered.

We address this issue by reordering alerts inside a time
window before feeding them into the queue graph.4 More
specifically, assume the varying delays are bounded by a
threshold tmax. We postpone the processing of an alert a1

with a timestamp t1 until tmax (the larger one between tmax

and tcon, when concurrent alerts are also considered) time
has passed since the time we receive a1. We reorder the
postponed alerts, so they arrive at the correlation engine
in the correct order. Then after tmax time, any alert a2 will
have a timestamp t2 satisfying t2 > t1 (the worst case is
when a1 is not delayed but a2 is delayed tmax time, and
the fact a2 is received tmax later than a1 indicates
t2 + tmax � tmax > t1, and hence t2 > t1).

The capability of dealing with concurrent alerts and
varying delays comes at a cost. The additional delay intro-
duced for reordering alerts causes an undesired decrease in
the timelineness of alert correlation. However, if we choose
to report results immediately as each alert arrives, then the
imprecise temporal characteristics of alerts may cause
incorrect and confusing results. Such results may diminish
the value of the correlation effort. This reflects the inherent
tradeoff between the capability of containing unavoidable
uncertainties and the performance of processing alerts.

5. A unified method for alert correlation, hypothesis, and

prediction

In this section, we extend the basic QG-based correla-
tion procedure to a unified method for correlating received
alerts, hypothesizing missing alerts, and predicting future
alerts. Section 5.1 introduces some key concepts. Sections
We assume the clocks are loosely synchronized, as discussed in Section
3.2.

4 Notice that here a time window is used for reordering alerts and no
alert is excluded from correlation, which is different from the time window
used by the nested loop approach.
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5.2 describes the integration of alert correlation with alert
hypothesis. Section 5.3 then discusses alert prediction.

5.1. Consistent and inconsistent alert sequences

The queue graph approach introduced in Section 4 pro-
vides unique opportunities to tolerate and hypothesize
alerts missed by IDSs, as well as to predict possible conse-
quences. Intuitively, missing alerts cause inconsistency

between the knowledge (encoded in attack graphs) and
the facts (represented by received alerts).5 By reasoning
about such inconsistency, missing alerts can be plausibly
hypothesized. On the other hand, by extending the facts
in a consistent way with respect to the knowledge, possible
consequences of an intrusion can be predicted. To elabo-
rate on those ideas, we first illustrate consistent and incon-
sistent sequences of alerts in Example 5.1 and Example 5.2.

Example 5.1. The sequence of alerts shown on the left
hand side of Fig. 7(that is, a0,a3) is inconsistent with
respect to the attack graph, because the security condition
c3 is not satisfied before the exploit e3 is executed (as
indicated by the alert a3).

Example 5.2. In Fig. 7, the sequence a0, a1, a3 is consis-
tent, because executing the exploit e1 (as indicated by the
alert a1) satisfies the only security condition c3 that is
required by the execution of e3 (as indicated by a3). The
sequence shown on the right hand side of Fig. 7 is inconsis-
tent, because the security condition c4 is not satisfied before
the execution of e3.

To generalize the above examples, we say an exploit is
ready to be executed if all of its required security conditions
are satisfied by previous executions of exploits (or initially
satisfied security conditions, such as c1 in Fig. 7). We say a
sequence of alerts is consistent, if every alert in the sequence
matches an exploit that is ready to be executed by the time
5 Notice that we assume our vulnerability-centric correlation approach
can effectively filter out bogus alerts that do not match any existing
vulnerability, and hence attacks cannot fool the system into producing
false inconsistency.
the alert is received. Example 5.1 depicts an inconsistent
alert sequence in which the consecutive executions of
exploits is broken by missing alerts. Example 5.2 indicates
that the relationship between exploits can be either disjunc-

tive (executing e1 or e2 makes e3 ready in the first case) or
conjunctive (both e1 and e2 must be executed to make e3

ready), and security conditions play an important role in
such relationship (the approach in [24] cannot distinguish
the two cases in Example 5.2, because it is based on a sim-
plified version of attack graphs with no security
conditions).

5.2. Alert correlation and hypothesis

In Section 4.2, the correlation algorithm searches for the
alerts that prepare for a new alert by following two consec-
utive pointers. Such an approach only works for consistent
alert sequences. For inconsistent sequences, such as those
in Example 5.1 and Example 5.2, the search will stop at
empty queues that correspond to missing alerts and the
correlation result will be incomplete. A natural question
is, Can we continue to search and hypothesize missing alerts

if necessary? This question motivates us to propose a uni-
fied method to correlating received alerts and at the same
time making hypotheses of missing alerts.

Intuitively, the approach attempts to explain the occur-
rence of a new alert by including it in a consistent sequence
of alerts (alert correlation) and missing alerts (alert hypoth-
esis). More specifically, a search starts from the queue that
contains the new alert; it hypothesizes about a missing alert
for each encountered empty queue; it stops at each received
alert because it knows that this received alert must have
already been explained previously. The search expands its
frontier in a breadth-first manner6 after each hypothesis
is made, because the hypothesis itself may also need an
explanation. Such attempts continue until a satisfactory
explanation for the new alert and all the hypothesized ones
is obtained. The explanations of all received alerts collec-
6 Other approaches, such as a DFS, may work as well, but a queue
graph organizes its pointers in layered BFS trees to improve performance,
and this makes BFS a preferred choice.
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tively form the result, that is a graph composed of alerts,
hypothesized alerts, and security conditions that are either
satisfied or hypothetically satisfied. This is illustrated in
Example 5.3.

Example 5.3. Consider again the three cases, from left to
right, in Fig. 7 when the alert a3 is received. For the first
case, two missing alerts matching e1 and e2 need to be
hypothesized and then a3 can be correlated to a0 (through
one of the hypothesized alerts). For the second case, no
alert needs to be hypothesized because the sequence is
already consistent, and a3 needs to be correlated to a1. For
the third case, a0 needs to be correlated to a1, and it also
needs to be correlated to a0 through a hypothesized alert
matching e2.

We extend the basic QG approach described in Section 4
by modifying its correlation sub-procedure. The new pro-
cedure, as shown in Fig. 6, correlates and hypothesizes
alerts as follows. Given a queue graph Qg with n queues
Q and m variables V. Each variable in V can now have
one of the three values TRUE, FALSE, and HYP, together
with a timestamp; those denote a satisfied security condi-
tion, an unsatisfied one, a hypothetically satisfied one,
and the time of the last update, respectively. Each queue
in Q can contain alerts or hypothesized alerts. The result
graph Gr (V,El [ Er) is similar to that described in Section
4.2. However, the vertex set V now includes not only alerts
but also hypothesized alerts and security conditions.

Suppose a new alert anew with the timestamp tnew is
received and enqueued in the queue Qi (1 6 i 6 n). First,
we start from Qi and follow the pointers in PRi to set each
variable vj(1 6 j 6 m) adjacent to Qi with the value TRUE
and the timestamp tnew. This step records the security con-
ditions satisfied by anew. Second, we start from Qi and
make a partial BFS by following the pointers in Pi. The
BFS is partial, because it stops upon leaving7 a variable
with the value TRUE or the value HYP (or a queue that
contains a hypothesized alert). This step correlates anew

to previously received or hypothesized alerts.
The result graph Gr is updated during the above process

as follows. First, after we enqueue anew into Qi and make
changes to each vj adjacent to Qi, we add anew and vj (that
is, the value and timestamp of vj) as vertices, and an edge
from anew pointing to vj into the result graph Gr. This step
records the fact that the new alert anew satisfies its implied
security conditions at time tnew. Second, during the partial
BFS, we record each hypothesis. Whenever we change the
value of a variable vj from FALSE to HYP, we record this
update in Gr; similarly, whenever we enqueue a hypothe-
sized alert into an empty queue, we record this hypothe-
sized alert in Gr. Third, whenever we leave a variable v

and reach a queue Q, we insert into Gr a directed edge from
7 Given that a BFS is implemented through manipulating a separate
queue as usual, we shall refer to the enqueues as reaching and the dequeues
as leaving to avoid confusions.
each queue Q to v; similarly, we insert edges from a queue
to its connected variables when we leave the queue.

Example 5.4. Consider the left-hand side case of Fig. 7.
The first alert a0 will only cause (the variable corresponding
to) the security condition c2 to be changed from FALSE to
TRUE. The result graph will be updated with the alert a0

and satisfied security condition c2 and the directed edge
connecting them. When a3 is received, a search starts from
(the queue corresponding to) e3; it changes c3 from FALSE

to HYP; it inserts a hypothesized alert a1 into e1 and a2 into
e2, respectively; it stops at c1 (which is initially set as
TRUE) and c2 (which has been set as TRUE when a0

arrived). The result graph will be updated with the alert a3,
the hypothesized alerts a1 and a2, the hypothetically
satisfied security condition c3, and the directed edges
between them.
5.2.1. Complexity analysis

At first glance, the procedure described above takes qua-
dratic time, because a BFS takes time linear in the number
of vertices (n + m) and edges (n + m)2, where n and m is the
number of exploits and security conditions in the attack
graph, respectively. However, this is not the case. As
described in Section 4.2, a queue graph organizes its point-
ers in separate layers, and each layer is a BFS tree rooted at
a queue. Hence, a BFS that starts from a queue and follows
the pointers in the corresponding layer will be equivalent to
a tree traversal, which takes linear time (n + m). This per-
formance gain seems to be obtained at the price of more
memory requirement, because a pointer may appear in
more than one layer. However, as described in Section
4.2, the memory requirement is quadratic (that is,
O (n (n + m))), which is indeed asymptotically the same as
that of the original attack graph.

5.3. Attack prediction

In the previous section, we explain the occurrence of a
new alert by searching backwards (that is, in the reversed
direction of the edges in attack graphs) for correlated (or
hypothesized) alerts. Conversely, we can also predict possi-
ble consequences of each new alert by searching forwards.
A BFS is also preferred in this case, because the predicted
security conditions will be discovered in the order of their
(shortest) distances to the new alert. This distance roughly
indicates how imminent a predicted attack is, based on the
alerts received so far (although not pursued in this paper,
probability-based prediction techniques, such as [30], can
be easily incorporated into the QG data structure).

The procedure of prediction is similar to that of correla-
tion and hypothesis discussed in the previous section, and
hence is omitted. The main differences between the two
procedures are as follows. After the correlation and
hypothesis completes, the prediction starts. It begins at
the security conditions satisfied by the new alert and makes
a partial BFS in the queue graph by following the pointers
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in PRi (suppose the new alert is enqueued by Qi). The
search stops at previously received (or hypothesized) alerts
and their (hypothetically) satisfied security conditions to
avoid repeating the previous prediction.

The result of the prediction process is a sequence of non-
empty sets Con1, Con2, . . . , with Coni (1 6 i 6 m) contain-
ing the security conditions that can possibly be satisfied
in i steps from now. Unlike in correlation and hypothesis,
the prediction process does not reason about the disjunc-
tive and conjunctive relationship between exploits as dis-
cussed in Section 5.1. Instead, a security condition c will
appear in the set Coni as long as there exists a path of
length 2i (the path consists of both security conditions
and exploits) from c to some previously satisfied security
condition. Hence, the number i provides a lower bound
to the number of exploits that must be executed before c

can be satisfied.

6. Compressing result graphs

In this section, we propose a compact representation for
the correlation result graph. First, Section 6.1 shows that
the size of a result graph can be reduced without losing
information by removing transitive edges and aggregating
indistinguishable alerts. Then, Section 6.2 explains how
the QG approach can produce the compact result graph,
and how this will improve the performance.

6.1. A compact representation of result graphs

Avoiding unnecessary searches enables the QG
approach to have a constant performance regardless of
the number of received alerts. As a side-effect, the approach
also reduces the size of result graphs by having less transi-
tive edges. However, the QG approach does not completely
remove transitive edges from result graphs, as illustrated in
Example 6.1. In practice, brute force attempts of the same
attack with different parameters usually lead to a large
number of alerts in a short time (the treasure hunt data
used in Section 7 is a good example for such brute force
attempts). In Example 6.1, if the bis happen to be such
an attack, then a large number of transitive edges will make
the result graph less perceptible. It is thus desired to
remove such transitive edges.

Example 6.1. The left side of Fig. 8 shows the result graph
of correlating a series of alerts using the QG approach. It
can be observed that transitive edges, such as (a1,b1) and
time 
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b1 b2 b3 b4
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…
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Fig. 8. An example of compressing result graphs.
(a2,b1), are not present. Because when b1 arrives, the QG
approach will search backwards and inserts the edge (a3,b1)
into the result graph, and then it immediately stops (on the
other hand, the nested loop approach will continue to
search in this case). However, the edges (a3,b2) and (a3,b3)
are both transitive edges. When b2 and b3 arrives, the QG
approach repeats the same search as it does for b1 and thus
the two transitive edges are inserted into the result graph.
Similarly, the edge (c,a3) is also transitive.

In addition to transitive edges, some alerts carry redun-
dant information as well. Following the above example, b1,
b2, and b3 are indistinguishable in terms of alert correlation.
That is, any other alert prepares for (or be prepared for by)
either all or none of them. The three alerts can thus be
aggregated as a single vertex in the result graph, with the
edges connecting those alerts deleted. Similarly, a2 and a3

are also indistinguishable. However, a1, a2, a3 are not indis-
tinguishable, because c prepares for a2 and a3 but not a1.
The right side of Fig. 8 shows the compact version of result
graph, with transitive edges deleted and indistinguishable
alerts aggregated.

6.2. Modifying the QG approach to produce compact result

graphs

Existing approaches usually take extra efforts in making
the result graph more compact, such as aggregating alerts
before correlating them [20]. The additional step increases
the performance overhead of alert correlation. We show
that our QG approach can be modified to directly produce
a compact result graph. We also show that the modified
QG approach is actually more efficient.

We first modify the QG approach to avoid inserting
transitive edges into the result graph. We let each backward
pointer in a queue graph to have one of the two states, on

and off. Initially, all the backward pointers are on. The
backward pointers are then switched between the two
states as follows. Whenever a directed edge (ai,aj) is insert-
ed into Er, we turn off the backward edges between the cor-
responding queues Qi and Qj. Whenever an alert is
enqueued in a queue Qi, all the backward pointers arriving
at Qi will be turned on. Finally, when we search for older
alerts that prepare for a new alert, we follow a backward
edge only if it is currently turned on. This process is illus-
trated in Example 6.2.

Example 6.2. For example, in the left side of Fig. 8
suppose the alerts ai, bi, c correspond to the queues Qa, Qb,
and Qc, respectively. When the alert b1 arrives, it searches
through the backward pointers from Qb to Qa and inserts
an edge (a3,b1) into Er. Then according to the above
discussion, the backward pointers from Qb to Qa will be
turned off. Consequently, the alerts b2 and b3 will not
follow those pointers, and the transitive edges (a3,b2) and
(a3,b3) are avoided. This remains true until the alert a4

arrives, which turns on all the backward pointers arriving
at the queue Qa. Then later when b4 arrives, it follows the
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backward pointers from Qb to Qa and inserts the edge
(a4,b4).

Alerts are aggregated during the above process as fol-
lows. Suppose an alert ai arrives and the corresponding
queue Qi already contains another alert a0i. Then ai is aggre-
gated with a0i if the following two conditions are true. First,
all the backward pointers arriving at Qi are on. Second, all
the backward pointers leaving Qi are off. The first condi-
tion ensures that a0i does not prepare for any other alerts
that arrive between a0i and ai, because otherwise ai and a0i
would not be indistinguishable. The second condition
Fig. 9. The evolving result gr
ensures that a0i and ai are prepared for by the same collec-
tion of alerts, so they are indistinguishable with respect to
those alerts. This process is illustrated in Example 6.3.

Example 6.3. Following the above example, a3 is aggre-
gated with a2 because the backward pointers from Qb to Qa

are on and those from Qa to Qc have been turned off by the
alert a2. Similarly, b2 and b3 are aggregated with b1,
because the backward pointers from Qb to Qa have been
turned off by b1. On the other hand, the alert b4 will not be
aggregated, because the backward pointers from Qb to Qa

must have been turned on by a4 by the time b4 arrives.
Time

aphs of alert correlation.
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The modified QG approach not only produces a more
compact result graph, but is also more efficient than the
original one in most cases. This is because unnecessary
searches corresponding to transitive edges are avoided. In
Fig. 8, the alerts a3, b2, and b3 will not lead to a search
in the modified approach because the backward pointers
have been turned off by earlier alerts. The performance
gain can be significant in the case of brute force attempts
where a large number of searches can be avoided.

7. Empirical results

In this section, we evaluate the proposed techniques
through implementation and empirical results. The correla-
tion engine is implemented in C++ and tested on a Pen-
tium III 860 MHz server with 1 GB RAM running
RedHat Linux. We use Snort-2.3.0 [35] to generate isolated
alerts, which are directly pipelined into the correlation
engine for analyses. We use Tcpreplay 2.3.2 [40] to replay
network traffic from a separate machine to the server run-
ning the correlation engine.

Two data sets are used for experiments, the Darpa 2000
intrusion detection LLDOS 1.0 by MIT Lincoln Labs [8],
and the treasure hunt dataset by the University of Califor-
nia, Santa Barbara [39]. The attack scenario in the Darpa
2000 dataset has been extensively explored before (such
as in [20]). Our experiments with the dataset show similar
Fig. 10. The hypothesis of missi
results, validating the correctness of our correlation algo-
rithm. The treasure hunt dataset generates a large amount
of alerts (about two million alerts taking about 1.4 GB of
disk space, with most of them being brute force attempts
of the same attacks), which may render a nested loop-based
correlation method infeasible (we found that even running
a simple database query over the data will paralyze the sys-
tem). In contrast, our correlation engine processes alerts
with negligible delays (Snort turns out to be the
bottleneck).

7.1. Effectiveness

The objective of the first set of experiments is to demon-
strate the effectiveness of the proposed algorithms in alert
correlation, hypothesis, and prediction. We use the Darpa
2000 dataset for this purpose. The reason we use this data-
set is that it has well known attack scenarios, which can be
referenced in the included description or previous work,
such as [20]. For correlation without hypothesis and pre-
diction, we expect our method to produce exactly the same
result as previous work do, with the redundant transitive
edges removed in the result graph (given that the domain
knowledge encoded in our attack graph exactly matches
that used by previous work). Notice that the key contribu-
tion of this work is to improve the performance of previous
approach and make them immune to slowed attacks. The
ng alerts during correlation.



Fig. 11. The prediction of possible consequences during correlation.
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correlation methodology itself is not different from that
found in previous work, and similarly the accuracy of the
correlation result also depends on the domain knowledge
used for correlation. However, in contrast to the static
result graph in previous work, our result evolves in time
with the continuously arriving alerts, as illustrated in
Fig. 9 (due to space limitations, only two partial snapshots
of the result graphs are shown). Such a result can more
clearly reveal the actual progress of an intrusion.

Fig. 10 shows two results on hypothesizing missing
alerts during the correlation. On the left-side of the fig-
ure, two consecutive missing alerts (ICMP PING and
ICMP Echo Reply) and the corresponding security con-
ditions are hypothesized (shown as shaded) when an
alert (RPC portmap sadmind request UDP) is received
but its required security condition (Host 10 Alive) has
not been satisfied. The right-hand side of the figure
shows a conjunctive relationship between alerts, that is
a DDoS mstream traffic between two hosts requires
the mstream software to be installed on both hosts.
We deliberately deleted the RSERVICES rsh alert on
one of the host, which is successfully hypothesized
(shown as shaded).
Fig. 11 shows a result of alert prediction. In the left fig-
ure, some security conditions are predicted to be satisfied
by possible upcoming alerts. The predicted security condi-
tions are shown as shaded, and the numbers are placehold-
ers for alerts. The right-hand side figure shows a later
snapshot of the result graph, in which some of the predict-
ed security conditions are indeed realized. Notice that here
the attack graph exactly (and only) captures the necessary
domain knowledge, and hence the prediction result is high-
ly accurate. In practice, both false positives (predicted but
not realized) and false negatives (realized but not predict-
ed) may be introduced because of incomplete or inaccurate
domain knowledge. Refining our prediction method to
reduce such inaccuracy comprises an interesting future
direction.

7.2. Performance

The objective of the second set of experiments is to evalu-
ate the performance of the correlation engine. The perfor-
mance metric includes the resource usage (CPU and
memory) and the processing time of each alert. The correla-
tion engine measures its own processing time and compares
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the processing time to the delay between receiving two con-
secutive alerts from Snort. All the results have 95% confi-
dence intervals within about 5% of the reported values.
Fig. 12 shows the CPU usage (on the left-hand side) and mem-
ory usage (on the right-hand side) over time for the Darpa
data set. The correlation engine clearly demands less resourc-
es than Snort (on average, thecorrelation engine’s CPU usage
and memory usage are both under 10% of Snort’s).

The left chart in Fig. 13 shows the processing time per
alert (averaged per 22 alerts). Clearly, the correlation
engine works faster than Snort in processing the entire data
set. The result also proves that the performance does not
decrease over time. Indeed, the processing time per alert
remains fairly steady. We examine the scalability of the
correlation engine in terms of the number of exploits and
security conditions. The treasure hunt data set is used for
this purpose. The original attack graph only has about
one hundred exploits. We increase the size of attack graphs
by randomly inserting dummy exploits and security condi-
tions. The inserted exploits increase the complexity of cor-
relation because the correlation engine must search
through them. The right chart in Fig. 13 shows that the
average processing time scales with the size of attack
graphs as expected.

We replay network traffic at relatively high speed (for
example, the Darpa data set is replayed in about 26 s while
the actual duration of the dataset is several hours). Real-
world attacks are usually less intensive, and consequently
our correlation engine will exhibit a better performance.
However, we are aware that real-world traffic may bring
up new challenges that are absent in synthesized data sets.
For example, we currently set the time window used to
reorder alerts (that is, tmax as discussed in Section 4.3) as
one second to deal with identical time stamps of alerts.
In a real network, the windows size must be decided based
on the actual placement of IDS sensors and the typical net-
work delays. In our future work, we plan to integrate our
correlation engine in our TVA tool and test it in real-world
network settings.

8. Conclusion

In this paper, we studied the real-time correlation of
intrusion alerts. We identified limitations in applying the
nested loop-based correlation methods and proposed a
novel QG approach to remove this limitation. The method
has a linear time complexity and a quadratic memory
requirement and can correlate alerts arbitrarily far away.
We extend the QG approach to a unified method for the
correlation, hypothesis, and prediction of alerts. We also
extend the method to produce a compact version of result
graphs. Empirical results showed that our correlation
engine can process alerts faster than an IDS can report
them, making our method a promising solution for an
administrator to monitor the progress of intrusions. Our
future work includes evaluating the techniques with real-
world traffic in live networks.
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