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Abstract. There is a widespread adoption of intelligent electronic de-
vices (IEDs) in modern-day smart grid deployments. Consequently, any
vulnerabilities in IED �rmware might greatly a�ect the security and
functionality of the smart grid. Although general purpose techniques
exist for vulnerability detection in �rmware, they usually cannot meet
the speci�c needs, e.g., they lack the domain knowledge speci�c to IED
vulnerabilities, and they are often not e�cient enough for handling the
larger �rmware of IEDs. In this paper, we present BinArm, a scalable
approach to detecting vulnerable functions in smart grid IED �rmware
mainly based on the ARM architecture. To this end, we build compre-
hensive databases of vulnerabilities and �rmware that are both speci�c
to smart grid IEDs. Then, we propose a multi-stage detection engine
to minimize the computational cost of function matching and to address
the scalability issue in handling large IED �rmware. Speci�cally, the pro-
posed engine takes a coarse-to-�ne grained multi-stage function matching
approach by (i) �rst �ltering out dissimilar functions based on a group
of heterogeneous features; (ii) further �ltering out dissimilar functions
based on their execution paths; and (iii) �nally identifying candidate
functions based on fuzzy graph matching. Our experiments show that
BinArm accurately identi�es vulnerable functions with an average pre-
cision of 0.92 and recall of 0.83. The experimental results also show that
our detection engine can speed up the existing fuzzy matching approach
by three orders of magnitude. Finally, as a practical tool, BinArm suc-
cessfully detects 93 real-world CVE vulnerability entries, the majority
of which have been con�rmed, and the detection takes as little as 0.09
seconds per function on average.

1 Introduction

Intelligent electronic devices (IEDs) play an important role in typical smart
grids by supporting SCADA communications, condition-based monitoring, and
polling for event-speci�c data in the substations. The �rmware (software) run-
ning on IEDs is subject to a wide range of software vulnerabilities, and con-
sequently security attacks exploiting such vulnerabilities may have debilitating
repercussions on national economic security and national safety [1]. In fact, a



startling increase in the number of attacks against Industrial Control System
(ICS) equipment has been observed (e.g., a 110% increase when comparing 2016
to 2015 [15]). A prime example of such an attack is Industroyer [3] targetting
Ukraine's power grid, which is capable of directly controlling electricity substa-
tion switches and circuit breakers. As other examples, the Black Energy [46]
APT took control of operators' control stations, and utilized them to cause a
blackout; and Stuxnet [29, 42] targeted Siemens ICS equipment in order to in�l-
trate Iranian nuclear facilities. In addition to those real-world attacks, industrial
analysis demonstrate similar threats in other countries, e.g., with 50 power gen-
erators taken over by attackers, as many as 93 million US residents may be left
without power [53]. These real-world attacks or hypothetical scenarios indicate
a clear potential and serious consequences for future attacks against electrical
infrastructures including smart grids.

Identifying security-critical vulnerabilities in �rmware images running on
IEDs is essential to assess the security of a smart grid. However, this task is
especially challenging since the source code of �rmware is usually not available.
In the literature, general purpose techniques have been developed to automat-
ically identify vulnerabilities in embedded �rmware based on dynamic analysis
(e.g., [19, 24, 55, 61]) or static analysis (e.g., [22, 28, 30, 50, 60]). To the best of our
knowledge, none of the existing approaches focuses on the smart grid context.
Although such general purpose techniques are also applicable to the �rmware of
smart grid IEDs, they share some common limitations as follows. (i) Applica-
bility : They lack su�cient domain knowledge speci�c to smart grids and IEDs,
such as a database of known vulnerabilities in such devices and that of the IED
�rmware. The general purpose approaches (a)can easily crawl and download
any �rmware from the wild, without requiring any prior knowledge about the
scope, (b) do not put additional e�ort to gather and analyse the relevant IED
�rmware images, (c) do not study the used libraries in the IED �rmware im-
ages; high likely most relevant libraries are not included in their vulnerability
dataset, which might result in more false negative rates. (ii) Scalability : Those
approaches typically rely on expensive operations, such as semantic hashing [50],
and they typically lack e�ective �ltering steps to speed up the function match-
ing. Consequently, those techniques are usually not e�cient enough to handle
the much larger sizes of IED �rmware (e.g., compared to that of network routers)
and not scalable enough for a large scale application to real-world smart grids.
(iii) Adaptability : Handling the presence of a new CVE and e�ciently indexing
it poses another challenge to some existing works (e.g., [60]).

In this paper, we present BinArm, a scalable approach to detecting vulner-
able functions in smart grid IED �rmware mainly based on the ARM architec-
ture. To this end, we �rst build a large-scale vulnerability database consisting
of common vulnerabilities in IED �rmware images. The design of our vulnera-
bility database is highly in�uenced and guided by the prominent libraries used
in the IED �rmware images. To identify these IEDs and obtaining the corre-
sponding �rmware images we dedicate signi�cant e�orts to: (i) identify relevant
manufacturers, (ii) collect and analyze the corresponding IED �rmware images,
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(iii) identify the used libraries in these images, (iv) compile the list of CVE
vulnerabilities, and push them to the vulnerability database. Such e�ort can
be leveraged for future research on smart grid IEDs, and can be bene�cial to
IED vendors as well as utilities to assess the security of elaborate/deployed IED
�rmware.

Second, to ensure BinArm is e�cient and scalable enough to handle IED
�rmware images, we design a detection engine that employs three increasingly
complex stages in order to speed up the process by �ltering out mismatched can-
didates as early as possible. Third, BinArm does not only provide a similarity
score as prior e�orts, such as [28, 60], rather presents in-depth (at instruction,
basic block and function levels) details to justify the results of the matching and
to assist reverse engineers for further investigation. We conduct extensive exper-
iments with a large number of real-world smart grid IED �rmware from various
vendors in order to evaluate the e�ectiveness and performance of BinArm.

Contributions. Our main contributions are as follows:

� To the best of our knowledge, we develop the �rst large scale vulnerability
database speci�cally for IEDs �rmware covering most of the major vendors
(e.g., SEL). In addition, we build the �rst IED �rmware database, which
gives an overview of the state of the industry.

� We propose a multi-stage detection engine to e�ciently identify vulnerable
functions in IED �rmware, while maintaining the accuracy. The experiments
demonstrate this engine is three orders of magnitude faster than the existing
fuzzy matching approach [36].

� Our experimental results ascertain the accuracy of the proposed system, with
an average precision of 0.92 and recall of 0.83. In addition, the real-world
applicability of BinArm is con�rmed in our study, which successfully de-
tects 93 potential CVEs among real-world IED �rmware within 0.09 seconds
per function on average, the majority of which have been con�rmed by our
manual analysis.

2 Approach Overview

Fig. 1: BinArm overview

An overview of our approach
is depicted in Figure 1, which
consists of two major phases:
o�ine preparation and online

search. The o�ine preparation

phase consists in the creation of
two comprehensive databases; one
containing a set of IED �rmware
and the other known vulnerabilities speci�c to IEDs. To this end, we:

� Identify a set of manufacturers that provides equipment for smart grids.
� Collect relevant IED �rmware produced by the identi�ed manufacturers, and
store the images in the Firmware Database.
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Such information further provides insight about which libraries might be utilized
by each manufacturer in their released �rmware, which enables us to build our
vulnerability database. For this purpose, we
� Determine reused libraries in the IED �rmware from manufacturers' websites
or available documentations, e.g, the copyright provided by NI [11].

� Collect the identi�ed open-source and vulnerable libraries, and cross-compile
them for the ARM processor in order to build the Vulnerability Database.
We demonstrate how the aforementioned process works by applying it to a

motivating example in the following. Suppose a �ctitious utility company has
recently deployed several phasor measurement units (PMUs) and is concerned
about potential vulnerabilities inside those units. Following our methodology
depicted in Figure 1, we would �rst identify the manufacturer, e.g., given by
the utility as National Instruments (NI) in this particular example. Second, we
would collect the IED �rmware, which is again given by the utility as the NI
PMU1_0_11 �rmware image [12]. Third, we would identify the reused libraries
in this �rmware, e.g., the libcurl v7.50.2 library. Fourth, we would identify

(a) sub_149BB4 CFG in NI

PMU1_0_11.libws_repl

(b) curl_easy_unescape CFG
in libcurl v7.50.2 with CVE-
2016-7167

Fig. 2: An example of function reuse in IED
�rmware

vulnerable functions inside each
library, e.g., a vulnerable func-
tion inside the libcurl v7.50.2
library as depicted in Figure 2b.
Finally, we employ our detec-
tion engine to �nd matching func-
tions in the provided �rmware
image, e.g., a matching func-
tion is shown in Figure 2a. As
shown, the two functions have
a high degree of similarity; in-
deed, the only di�erence is the
presence of an additional basic
block consisting of two instruc-
tions (highlighted in Figure 2b)
in the curl_easy_unescape func-
tion. This similarity implies that
the function in Figure 2a may have the CVE-2016-7167 vulnerability, which pro-
vides useful information for the utility company to take corresponding actions.

We note that, although this particular example may make it seem relatively
straightforward to detect vulnerable functions in a �rmware, this is usually not
the case in practice due to two main challenges. First, the needed information
about manufacturer, libraries, and vulnerabilities may not be readily available
from the utility company as in this example. For this reason, we will build our
vulnerability and �rmware databases in Section 3. Second, the function matching
process may be too expensive for utility companies, since they may be dealing
with the constant deployment or upgrade of thousands of IEDs from di�erent
manufacturers, and cross checking such a large number of �rmware images4 with

4
Linksys WRT32X with 39kb size contains 47, 025 functions, whereas NI PMU1_0_11 �rmware
comprises 226, 496 functions and is 256kb large.
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an even larger number of library functions (e.g., 5, 103 vulnerable functions) can
take signi�cant e�ort. To address this challenge, we will propose our e�cient
multi-stage detection engine in Section 4.

3 Building IED Firmware and Vulnerability Databases

Identifying the IEDs and obtaining the corresponding �rmware images signi�-
cantly require more e�ort, compared to acquiring �rmware of many consumer
devices that can be easily crawled and downloaded from the wild. To the best of
our knowledge, our database of smart grid and IED-speci�c �rmware vulnerabil-
ities is the �rst such e�ort. It can be leveraged for future research on smart grid
IEDs. In addition, it could help vendors and utilities in assessing the security
of the elaborated or deployed IED �rmware. In this section, we �rst introduce
the smart grid IEDs, and then discuss how the contents of our �rmware and
vulnerability databases have been established.

3.1 Intelligent Electronic Devices (IEDs) in Smart Grid

A power grid is a complex and critical system to provide generated power to
a diverse set of end users, which is composed of three main sectors: genera-
tion, transmission and distribution. The role of a distribution substation is to
transform received high voltage electricity to a lower more suitable voltage for
distribution to customers. The IEC 61850 [2] standard is introduced to leverage
technologies, such as Ethernet, high speed wide area networks (WAN), and pow-
erful but cheap computers to de�ne a modern architecture for communication
within a substation [45]. Consequently, a vast set of devices labelled as intelligent
electronic devices (IEDs) are emerged, which are coupled with traditional ICS
and power equipment to enable their integration into the network.

An IED can belong to three general non-exclusive categories: (i) Control :
send and receive commands to control the system behaviour remotely, such as
bay, load-shedding, circuit breaker, and switch; (ii) Monitoring and relay : con-
vert received analog input (e.g., currents, voltages, power values) from primary
equipment into a digital format that can be used throughout the network, such
as phasor measurement units (PMUs), and phasor data concentrators (PDCs);
and (iii) Protection: detect faults that need to be isolated from the network in a
speci�c and timely manner, such as busbar, generator, line distance and breaker.

3.2 Manufacturer Identi�cation

To identify a set of recognized manufacturers that are relevant to the smart
grid and its components, we �rst study the categorization of smart grid vendor
ecosystem, most relevant vendors, and market dynamics using di�erent sources,
such as GTM Research [33, 38] and Cleantech Group [47] reports. These informa-
tion provide the necessary insight to identify top smart grid manufacturers, as
listed in Table 1. Such knowledge about manufacturers becomes the foundation
to further determine relevant libraries, vulnerabilities and IED �rmware images.
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Table 1: Identi�ed major smart grid manufacturers and their supported components
Relevant
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Automation Hardware • • • • •
Smart Meters • • • • • • •
Automation Software • • •
Communication • • • • •
Demand Response •

(ABB): ABB Schweiz AG. (EI): Electro Industries. (GE): General Electric. (L+G): Landis+Gear.
(NI): National Instruments. (SE): Schneider Electric. (SEL): Schweitzer Engineering Laboratories.

82.70%

ARM

9.20%

PowerPC

6.30%

MIPS

0.60% Stormy16
0.60%

Motorola
0.60 %

PIC10
Ubicom32
MicroBlaze

Fig. 3: Distribution of hardware archi-
tectures among collected IED �rmware

Heterogeneous hardware architectures
are used in �rmware images, however,
many industrial control systems are based
on the ARM architecture [18, 41, 64]. Ad-
ditionally, as reported in Figure 3, most
of the collected IED �rmware images are
identi�ed as targeting ARM architecture
(82%), followed by PowerPC (9%). On the
other hand, Linux is the most encountered
operating system in our �rmware dataset,
with 90% of frequency amongst other op-
erating systems, such as Windows. There-
fore, in this work we focus on the ARM-
based and Linux-based IED �rmware images.

3.3 Vulnerability Database

Our study shows that many of the listed companies reuse existing free open-
source software in their product implementations. This generally entails the
legal obligation of publishing documents containing the licenses of all utilized
open-source software. By investigating several sources of information pertaining
to these manufacturers, such as corporate websites, product documentations,
and FTP search tools, we extract large amounts of open-source usage declara-
tions that are related to the current smart grid scope, such as simple network
management protocol (SNMP), and network time protocol (NTP).

Table 2 illustrates the top 25 relevant, vulnerable, and popular open-source
libraries, which are ordered by their relative signi�cance considering which vul-
nerable libraries are more frequently used in the recognized manufacturers. We
download the source code of reused libraries with di�erent versions, and cross-
compile them for the ARM architecture using the GCC compiler with four op-
timization �ags (O0 − O3). Then we utilize a CVE database [8] to identify the
number of publicly known CVEs for each of these libraries. It is worth mention-
ing that all the functions of each library are stored in our Vulnerability Database,
and the vulnerable functions are labelled by their corresponding identi�ed CVEs.
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Our Vulnerability Database consists of 3, 270, 165 functions, 5, 103 of which are
marked as vulnerable. This results in a total of 235 unique vulnerabilities after
discarding the duplicates that are created due to the use of di�erent compilers
and optimization �ags.

It has not escaped our notice that the �rmware images are composed of var-
ious kinds of binaries, such as kernel, application-level, open-source as well as
proprietary libraries. Consequently, based on the CVE database [7], we have
identi�ed 4344 CVE vulnerabilities in kernel-level, 5581 in application-level, and
2336 in open-source libraries amongst the identi�ed manufacturers, considering
the fact that some of the open-source libraries are reused in applications. Addi-
tionally, we have prepared an initial list of IED-speci�c proprietary libraries (e.g.,
NI). However, our list of such proprietary libraries is not comprehensive yet.
Also, additional e�ort for the veri�cation of vulnerability identi�cation would
be required, since the source code of such proprietary libraries are not publicly
available. This task remains as the subject of our future work.

3.4 Firmware Database

The proposed methodology is not necessarily speci�c to smart grid IEDs and
therefore could be applied to any ARM-based �rmware, such as IoT devices,
routers, and IEDs. However, since the goal of this work is to assess the security
of IEDs in the smart grid, we focus on �rmware images that are directly relevant
to IEDs. We �rst utilize popular FTP search engines to leverage accessible public
corporate FTP servers. We then create a simple website scraper [14] and apply
it to speci�c parts of each manufacturers' website. Finally, we perform a manual
inspection for dynamically generated websites, which mostly applies to each
manufacturers' download centre. All retrieved images are then �ltered based
on the relevance to smart grid context. In the end, we extract 2, 628 �rmware
packages from the mentioned vendors.

Firmware Analysis Challenges Performing �rmware analyses with the objec-
tive of complete disassembly is a challenging task [22]. This is partially due to a
large requirement of time, domain speci�c knowledge and research [40]. Further-
more, binaries are often stored in proprietary formats, obfuscated or encrypted
for protection. These processes e�ectively make it extremely di�cult (e.g. obfus-
cation [40]), or even impossible (e.g. uncrackable encryption [57], indecipherable
formats [43]) to directly access the contents of a given blob. Encrypted binaries
can sometimes be identi�ed by their use of speci�c headers. For instance, the
�le encrypted with openssl start with the �rst 8-byte signature of "Salted__".
Additionally, a given binary blob can contain several entry points [55], and it
may not be possible for tools such as IDA Pro to automatically identify them.
In these cases entry point discovery should be performed [55, 40]. This is one of
the most challenging parts of this entire procedure and required leveraging var-
ious techniques (e.g., [64]). In order to process all acquired �rmware, we follow
well-known procedures that are presented in [62, 57]. This process has several
main steps: (i) unpacking and extraction, which consists of removing all �les
from another compressed �le; (ii) �rmware identi�cation, that can be located
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amongst or within the extracted �les; (iii) hardware architecture identi�cation
and scanning for op-code signatures to be identi�ed as ARM; (iv) image base
identi�cation in order to know where the binary should be loaded ; and (v) disas-
sembling using IDA Pro disassembler [10], where using the properly identi�ed
architecture and entry point is required.

Table 2: Vulnerable open-source libraries

Library No. CVEs Manufacturers

php 601 Cisco, Honeywell, Siemens
imagemagick 402 Cisco, GE, Honeywell
openssl 189 ABB, Cisco, GE, Honeywell, Schneider Electric, Siemens
mysql 564 Cisco
tcpdump 162 Cisco, GE, Siemens
openssh 87 ABB, Cisco, GE, Honeywell, Siemens
ntp 79 Cisco, GE, Honeywell, Schneider Electric, Siemens
libti� 149 Cisco, GE
postgresql 98 Cisco, Honeywell, Siemens
�mpeg 274 Siemens
pcre 49 ABB, Cisco, GE, Honeywell, Siemens
python 81 Cisco, Honeywell, Siemens
glibc 81 Cisco, Honeywell, Siemens
qemu 225 Cisco
libxml2 44 ABB, Cisco, GE, Honeywell, Siemens
bind 102 Cisco, Siemens
binutils 97 Cisco, Siemens
libcurl 34 ABB, Cisco, Honeywell, Schneider Electric, Siemens
freetype 83 Cisco, Siemens
libpng 47 Cisco, Honeywell, Siemens
samba 124 Honeywell
utillinux 15 ABB, Cisco, GE, Honeywell, Schneider Electric, Siemens
cups 88 Cisco
lighttpd 28 ABB, Cisco, Honeywell
netsnmp 21 Cisco, GE, Schneider Electric, Siemens

4 Multi-stage Detection Engine

We propose a multi-stage detection engine to more e�ciently identify vulnerable
functions in �rmware images, which starts with a coarse detection and moves
towards more granular detection stages composed of: (i) function shape-based
detection; (ii) branch-based detection; and (iii) fuzzy matching-based detection,
The key idea of our multi-stage detection engine is to start with light-weight
feature extraction and function matching operations, and to perform the most
expensive operations (e.g., graph matching) in the end for selected candidates.

To this end, during the �rst stage, BinArm extracts the simplest and more
distinguishable features that quickly eliminates dissimilar candidates with a very
less computational overhead. As a result, the potential candidates can be ini-
tially shortlisted based on distances of their basic features. During the second
stage, BinArm performs more expensive matching operations, however, still
not as expensive as graph matching or neighbourhood exploration. To avoid
complex matching comparison, BinArm speci�cally extracts execution paths
including the instruction-set and turns them into hash values, and simply em-
ploys a binary search. In the �nal stage, BinArm performs the most expensive
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operations, which mainly includes careful examination of instruction-level fea-
tures, the neighbours, and graph matching for a selected number of candidates
to minimize the overhead. The details of each stage is explained in the following.

4.1 Function Shape-based Detection

Inspired by [54], the shape of a function could be determined by extracting
heterogeneous features at di�erent levels. To capture the topology of a function,
we employ a set of graph metric. However, some functions may have the same
structural shape, while semantically they are di�erent. As a result, we consider
instruction and statistical features in order to include semantic information as
well. Consequently, the function shape-based detection is performed based on
a collection of heterogeneous features extracted from a function, namely, the
function shape as explained in the following.

Feature Extraction. The �rst category of features, instruction-level features,
carries the syntax and semantic information of a function. For instance, the
frequencies of strings have been used to classify malware based on their be-
haviour [52]. The structural features category, includes elements of a function
shape derived from its graph metrics [32], which mainly represent the structural
properties of a function. Finally, statistical features are used in order to capture
the semantics of a function [51]; for instance, the skewness and kurtosis [4] are

extracted as Sk = (

√
N(N−1)
N−1 )(

∑N
i=1(Yi−Y )3/N

s3 ),Kz =
∑N

i=1(Yi−Y )4/N

s4 − 3, where

N is the number of data points, Yi is the frequency of each instruction, and Y
and s represents the mean and standard deviation, respectively. An excerpt of
the extracted features is listed in Table 3. For the sake of space, the details of
other features are omitted and can be found in [54].

Table 3: An excerpt of function shape features

Feature Category Examples

Instruction-level #instructions, #arguments, #strings, #mnemonics, #callees, #constants
Structural #nodes, #edges, cyclomatic complexity, average_path_length, graph_energy, link_density
Statistical skewness, kurtosis, Z-score, standard deviation, mean, variance

Normalization. In the ARM instruction set, each assembly instruction consists
of a mnemonic and a sequence of up to �ve operands. We may have two frag-
ments of code that are identical both structurally and syntactically, but di�er in
terms of memory references or registers. Hence, it is essential to normalize the
instruction sets prior to comparison. For this purpose, we normalize the operands
according to the mapping sets provided by IDA Pro. We further categorize the
`general' registers based on their types.

Feature Selection. In order to identify the most di�erentiable features, mutual
information (MI) [49] is leveraged to measure the dependency degree between
the aforementioned features and the functions in the Vulnerability Database.
Based on the results, we choose three top-ranked features, graph_energy,
skewness (sk), and kurtosis (kz), as a 3-tuple feature for each function. It
is worth mentioning that we could consider next two top-ranked features (e.g.,
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rich_club_metric and link_density) as well. However, based on our exper-
iments, there is a dependency between these two features and graph_energy.
Additionally, since our goal is to perform coarse detection at this stage, and
extracting more features would a�ect the time complexity, we choose the �rst
three top-ranked features, which the �rst two are from the statistical category
and the latter is part of the structural category. Our experiments con�rm the
e�ectiveness of these three feature (Section 5.6).

Function Matching. All functions that surpass a predetermined threshold dis-
tance, λ, from a given target function are deemed dissimilar in shape-based detec-
tion stage. Euclidean distance of d(p, q) =

√∑n
i=1(qi − pi)2 is used to calculate

the similarity between two functions, where p = (p1, p2, p3) and q = (q1, q2, q3)
are 3-tuple associated with each function consisting of graph_energy, sk, and kz

features. In order to calculate the threshold distance, we employ K-Means clus-
tering on the extracted features and, based on the distance between the clusters,
the �nal threshold value of λ = 26.45 is obtained as the following.

Threshold Selection. We acquire the threshold value empirically by lever-
aging K-Means clustering. K-Means clustering algorithm partitions n obser-
vations into k clusters, C1, . . . , Ck, such that the total within-cluster sum of
square WSS =

∑k
i=1

∑
p∈Ci

dist(p, ci)
2 [34] is minimized, where p is repre-

senting a given observation; ci is the centroid of cluster Ci, and dist is the
Euclidean distance. To identify the optimal number of clusters, we employ the
elbow method [25], where the goal is to get a small WSS while minimizing k.
The K-means clustering is applied to our data points for each value of k starting
from one to 100, and the WSS is calculated as depicted in Figure 4a. The opti-
mal value for k is at the location of the knee which is equal to 11. The results of
eleven clusters are shown in Figure 4b. To achieve the threshold value of λ, �rst
we calculate the average Euclidean distances of all 3-tuple points in each cluster
separately to measure how far the similar functions are. Then, the average of
eleven obtained distances is calculated and, according to Vulnerability Database,
the threshold value of λ = 26.45 is returned.

(a) Elbow results: K=11 (b) K-Means results
Fig. 4: Determining the optimal value of K, and K-Means results
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4.2 Branch-based Detection

In the next stage, BinArm incorporates a branch-based detection to reduce
the graph comparison e�ort during the �nal detection stage. The idea behind
branch-based detector is that similar functions have similar execution paths.
In addition, analyzing the execution paths has been used to identify function
vulnerabilities as well as stealthy program attacks [56, 59].

Species 1

Species 2

Species 3

Species 4

Species 5

Species 1

Species 2

Species 3

Species 4

Species 5

Tree A

Tree B

Fig. 5: An example of two trees with the
same topology

Weighted Normalized Tree Distance
(WNTD). The normalized tree dis-
tance (NTD) [63] is proposed for com-
paring phylogenetic trees with the same
topology and same set of N taxonomic
groups, as depicted in Figure 5. Con-
sider two trees A and B with the same
topology and same set of taxa denoted
by A = {a1, a2, . . . , aN} and B =
{b1, b2, . . . , bN}, where N is equal to path
lengths. In order to compare trees A and
B, the distance is measured as NTD =
1
2 (
∑N
i=1 |

ai∑N
j=1 aj

− bi∑N
j=1 bj

|) [63], where

ai and bi are the lengths of path i from
trees A and B, respectively. Such a dissimilarity metric scales from 0 (identical
trees) to 1 (distinct trees). However, NTD is originally designed for two trees
with the same topology (the same number of paths). Additionally, NTD does
not consider the contents of nodes.

Therefore, we propose a weighted normalized tree distance (WNTD) metric
to measure dissimilarity between two functions W and V . First, we represent
the CFGs as a directed acyclic graph, and then all possible paths are extracted
from the two CFGs using breadth �rst search. Based on the contents of basic
blocks along the path and their neighbours, a weight is calculated (which will
be discussed later) and assigned to each path. The dissimilarity between W =
{w1, w2, . . . , wN} and V = {v1, v2, . . . , vM} functions, containingN andM (N ≤
M) number of weights representative of each path (which is called �weighted
paths�), is measured as the following:

WNTD =
1

2
(

N∑
i=1

| wi∑N
j=1(wj)

− vBM∑M
j=1(vj)

|)

where wi and vi are the weighted paths in functions W and V , respectively; and
vBM is the best match for weighted path wi amongst the other weighted paths
in function V as the following:

vBM =

 excatMatch(wi,V ) , if there is any exact match
inexactMatch(wi,V , δ) , if there is any inexact match 6 δ
0 , else

(1)

WNTD considers a weight for each node (basic block) and �nally a single
weight for each path of a function. Moreover, even if the two CFGs do not have
the same number of paths, it can still �nd a match for that path as either the best
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match or zero. Once the WNTD comparison is performed, the functions with a
distance less than γ are preserved for the �nal detection step. Our experiments
suggest 50% cut o� is the best.

Mnemonic Instructions Grouping. Instruction mnemonics carry informa-
tion about the semantics of a function, for instance, cryptographic functions
perform more logical and mathematical operations compared to a function which
opens a �le. However, due to di�erent factors, such as compiler e�ects, various
mnemonics might be used interchangeably. Therefore, we identify the list of
ARM instruction sets [5], and group them based on their functionality, e.g.,
arithmetic instructions. As a result, we obtain seventeen groups of mnemonics
and then the mutual information (MI) is leveraged to measure the dependency
degree between mnemonic group frequencies and functions in our Vulnerability
dataset. Accordingly, we choose the 7-top-ranked mnemonic groups as the �nal
features to be extracted from each basic block in a path.

Algorithm 1: Weight Assignment
Input: Patha : A path extracted from the CFG.
Output: w : Branch weight.
Initialization

1 f []← 0; \\ PDF of top-ranked instruction groups;
2 weights[]← 0; \\ Feature vector of the weights;
3 w ← 0; \\ Initialize the path weight to zero;
begin

4 foreach node[i] ∈ Patha do

5 f ← node[i].getPDF (); U []← 0;
J[]← f ;

6 while (node[i].hasParents()) do
7 J ← J ∩

node[i][].getParent().getPDF ();
8 end

9 while (node[i].hasChildren()) do
10 U ←

U ∪ node[i][].getChild().getPDF ();
11 end

12 f ← J + U ; weights[i]← TLSH(f);

13 end

14 foreach wt[i] ∈ weights do
15 w ← w + wt[i];
16 end

17 return w;

18 end

Algorithm 2: WNTD
Input: W []: Branch weights of function W stored

in a linked list.
Input: BTreeV : Branch weights of function V

stored in a B+tree.
Output: WNTD: Dissimilary score between

functions W and V .
1 Function WNTD(W ,BTreeV )
2 sum← 0 ; sumW ←

∑N
j=1(w[j]);

3 sumV ←
∑M

j=1(v[j]);

4 foreach w[i] ∈ W do

5 vBM = exactMatch(BTreeV , wi) ;
6 if vBM != -1 then

7 sum+ = | w[i]
sumW

− vBM
sumV

|; ;
8 W.remove(w[i]);

9 end

10 end

11 vBM ← 0 ;
12 foreach w[i] ∈ W do

13 vBM = inexactMatch(BTreeV , wi, δ); ;

14 sum+ = | w[i]
sumW

− vBM
sumV

|
15 end

16 return WNTD = sum/2;

17 end

Weight Assignments. To condense all the information of a node and its neigh-
bours into a single hash value, a graph kernel with linear time complexity is
proposed in [31, 35]. Inspired by this approach, we calculate the accumulated
weights of each node along the path and assign a single hash value to each
path. The weight assigned to each node is calculated based on the top-ranked
instruction groups of the node itself and its neighbours (parents and children)
that could be out of the current path. For this purpose, we �rst extract the
top-ranked instruction groups and create a feature vector of their probability
density function (PDF) for each node and its neighbours. We further distinguish
between the in-degrees (parents) and out-degrees (children) by calculating the
joint and the union of the PDFs, respectively. Finally, TLSH [48] is applied on
the obtained feature vector and a weight is assigned to each node. This process
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is performed on all the nodes in a given path, and the �nal weighted path is
obtained by the summation of all hash values along the path. The details are
presented in Algorithm 1.

Finding the Best Match. In order to �nd the best match for each path, we
pre-calculate all the weights of all paths for both reference and target functions
foremost, and then store the obtained weighted paths of the larger function V in
a B+tree. Afterwards, we perform exact and inexact matching to acquire the best
match for weighted paths. First, we search in the B+tree to �nd the exact match
for each weight in function W , and then remove it from the B+tree. Second, we
perform inexact matching by considering backward and forward sibling pointers
to each leaf node, which points to the previous and next leaf nodes, respectively.
The number of neighbours is obtained by a user-de�ned distance δ (Equation
1). If there is not any match for a given path, the best match would be zero.
The details of calculating the WNTD is presented in Algorithm 2. The time
complexity to �nd the best match is O(n logm).

4.3 Fuzzy Matching-based Detection

The results of the branch-based detection stage, which are a relatively small
set of candidate functions, are passed to the �nal detection stage. In order to
compare a given target function with the reference functions in the candidate set,
inspired by [36], we perform fuzzy matching on each pair of functions and obtain
the similarity score. Functions with the highest similarity scores are returned as
the �nal matching pairs. The details are described in the following.

Path and Neighbourhood Exploration. The fuzzy matching approach is
composed of three main phases: (i) longest path extraction; (ii) path exploration;
and (iii) neighbourhood exploration, which is illustrated with an example in
Figure 6. First, we unroll all the loops and employ depth �rst search on the
CFG of target function to extract the longest path (as depicted in Figure 6 part
a). A path represents one complete particular execution, where its functionality
is the result of executing all its basic blocks. Therefore, retrieving two equivalent
paths is an initiation to further match their nodes. The longer the path is, the
more matching pairs would be acquired.

Path Exploration
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Fig. 6: Fuzzy matching
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Second, the reference function is explored to �nd the best match for the
longest path in the target function. Inspired by [36, 44], a breadth-�rst search
combined with longest common subsequence (LCS) method of dynamic program-
ming [21] is executed. In order to satisfy the requirements of the LCS algorithm,
since any path is a sequence of basic blocks, each basic block is treated as a let-
ter. Two basic blocks are compared based on their instructions, and a similarity
score (which will be discussed later) is returned. Therefore, all the possible paths
in the reference function are explored and the one with the highest similarity
score is returned as the best matched path (including basic blocks pairs) [36].
Additionally, we put all the obtained matching basic blocks pairs in a priority
queue. As an example, the best match for the given longest path with a reference
function is highlighted in Figure 6 part b.

Finally, we further perform neighbourhood exploration and leverage Hungar-
ian algorithm in both the target and reference functions to improve and extend
the mapping. Since all the mapping basic block pairs are obtained as the result of
path exploration, we explore the neighbours of the most similar basic block pairs
(priority queue shown in Figure 6 part c) to initiate the search and �nd more
matched pairs for their successors and predecessors by considering the in-degrees
and out-degrees and leveraging Hungarian algorithm. If there is a new match, we
put the paired match in the priority queue to explore their neighbours later on.
We continue the same algorithm for the rest of nodes until the priority queue is
empty. The outcome of neighbourhood exploration is the basic block matching
pairs in the control �ow graph (Figure 6 part d) and the corresponding similarity
scores. To obtain the �nal similarity score between the fT and fr functions with
nT and nr number of basic blocks, respectively, we apply the following formula:

similarity (fT , fr) =
2×

∑k
i=1WJ(S, T )

nT + nr
(2)

where k is the number of matched basic blocks between functions fT and fr,
and WJ(S, T ) returns the similarity score between the matching basic block
pairs. Moreover, BinArm provides all the di�erences between two functions at
instruction level, basic blocks level and function level.

Basic Block Matching. For basic block matching, we could adopt the LCS
method of dynamic programming on the instructions of two basic blocks as
in [36]. However, the accuracy of this approach might be a�ected by instruction

reordering and instruction substitutions [36]. Moreover, the time complexity of
the LCS algorithm isO(mn), wherem and n represent the number of instructions
in the two basic blocks. Consequently, to accurately and e�ciently perform basic
block matching, we use the weighted Jaccard similarity [37] between the two basic
blocks. Let two sets of S and T contain the mnemonic frequencies of the two
basic blocks, with n and m number of elements in each blocks. The weighted
Jaccard similarity (WJ) between the two vectors is calculated as follows:

WJ(S, T ) =

∑N
k=1 min(Sk ∩ Tk)∑N
k=1 max(Sk ∪ Tk)

, N = max{m,n}
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The usage of WJ similarity together with instruction grouping could over-
come instruction reordering and some instruction substitutions. Moreover, the
time complexity of the WJ similarity is of order O(N).

5 Evaluation

This section details our experiments and analysis.

5.1 Experimental Setup

All of our experiments are conducted on machines running Windows 7 and
Ubuntu 15.04 with Intel Xenon E5 2.4 GHz CPU and 16GB RAM. BinArm is
written in C++ and utilizes a Cassandra database [6] to store all the functions
along with their features. Vagrant [16] is used to create a specialized environ-
ment used for �rmware reverse engineering as well as library cross compilation
for the ARM architecture. The utilized cross compiler is gcc-arm-linux-gnueabi
version 4.7.3 using the debug �ag (-g), the static �ag (-static), and all compat-
ible optimization �ags (-O0, -O1, -O2, -O3 ). The symbol names are preserved
during the compilation process for metric validation. A custom Python script
is used in tandem with IDA Pro [10] to extract function CFGs in the desired
JSON format. Docker [9] is used to create a containerized version of the CVE
database and its associated search tools [8].

Dataset. The experiments are performed on di�erent datasets, which are ex-
plicitly indicated in each section. In order to evaluate the scalability of BinArm,
a large quantity of �rmware images (IED and non-IED �rmware images) are col-
lected from the wild, 5, 756 of which were successfully disassembled to construct
our General Dataset.

Evaluation Metrics. To evaluate the accuracy of BinArm, we use the F 1 = 2×
P×R
P+R measure, where P = TP

TP+FP is the precision, and R = TP
TP+FN is the recall.

In addition, TP is the number of relevant functions that are correctly retrieved;
FP represents the number of irrelevant functions that are incorrectly detected;
and FN indicates the number of relevant functions that are not detected, and
TN represents the number of irrelevant functions that are not detected. Total
accuracy (TA) is measured as TA = TP+TN

TP+TN+FP+FN .

Time Measurement. The execution time for function indexing is measured by
adding the time required for each step, including feature extraction and func-
tion indexing. The search time includes time required for feature extraction and
function discovery. The time taken to disassemble the binaries using IDA Pro

is excluded, where it takes on the order of seconds on average to disassemble a
binary �le and can be distributed over all functions in a binary �le.

5.2 Function Identi�cation Accuracy

We evaluate the accuracy of BinArm by examining a randomly selected set of
binaries from our Vulnerability Database, where the source code and the sym-
bol names are provided in order to validate the results. We randomly select
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10% of libraries from Vulnerability Database as target libraries, and match them
against 90% remaining libraries in our repository. The average accuracy results
are summarized in Table 4. As can be seen, the average of total accuracy is 0.92.
According to our experiments, the results are a�ected due to di�erent versions
and the degree of changes in the new versions. Since the libraries are randomly
selected, in some cases the di�erences between versions are relatively high that
cause a drop in the accuracy.

Table 4: Average accuracy results

Project glibc libcurl libxml2 lighttpd ntp openssh openssl postgresql zlib Average

Total Accuracy 0.96 0.93 0.89 0.92 0.87 0.89 0.93 0.98 0.89 0.92

5.3 E�ciency
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In this section, we conduct experiments to
measure the e�ciency of BinArm for func-
tion matching. To this end, we test the 5, 103
vulnerable functions against all functions in
our Vulnerability Database and Netgear Rea-
dyNAS v6.1.6 �rmware separately, and mea-
sure the search time for each function. The ob-
tained results are reported in Figure 7, where
the x-axis represents the percentage of num-
ber of functions, and the y-axis shows the cumulative distribution function
(CDFs) of search time. The average searching times per function for each sce-
nario are 0.01 seconds and 0.008 seconds, respectively. It is worth noting that
the search time of BinArm is �rmly related to the CFG complexity of target
function. If the target function has a large value of graph_energy, the search
time would be higher. However, search time of a small function against a very
complex CFG would not be costly, since the complex functions are deemed dis-
similar in the shape-based detection stage and �ltered out, and no heavy graph
matching would be performed in the next detection stages.

5.4 Comparison

Indexing Time Comparison. In order to compare the indexing time of Bin-
Arm with the state-of-the-art discovRE [28], Genius [30], andMulti-MH [50]
approaches, we choose the Netgear ReadyNAS v6.1.6 [13] �rmware image. The
reasons of this choice are threefold: (i) the �rmware is publicly available and
is based on the ARM architecture; (ii) all the aforesaid works have measured
the indexing time of Netgear ReadyNAS based on their techniques; and (iii) the
hardware speci�cations of the machines of conducted experiments are provided.
Altogether these facilitate comparison. We index ReadyNAS in our database and
record the indexing time. Table 5 illustrates the preparation time along with the
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Table 5: Baseline comparison on indexing time of ReadyNAS v6.1.6

Multi-MH [50] Genius [30] BinArm discovRE [28]

Time (Minutes) 5, 475 89.7 78.65 54.1a

Hardware Intel Core i7− 2640M 24 Cores Intel Xenon E5− 2630v3 Intel Core i7− 2720QM
Speci�cation at 2.8GHz at 2.8 GHz at 2.4 GHz at 2.20 GHz

8GB DDR3-RAM 65GB RAM 16GB RAM 8GB DDR3 RAM

a

discovRE only considers the CFG extraction time, while BinArm extracts additional features,
such as the weighted paths.

hardware speci�cations that are reported by the aforementioned approaches, as
well as those of BinArm. As taking machines computational capacity into ac-
count, BinArm is more e�cient with respect to indexing time when compared to
aforesaid approaches with the exception of discovRE. The reason is that dis-
covRE only considers CFG extraction time, while BinArm extracts additional
features, such as the weighted paths. Nevertheless, the evaluation performed
by [30] demonstrate discovRE's inaccuracy in large scale setup.

Fig. 8: Baseline comparison on search
time (seconds) per function

zlib Version BinArm BinSequence [36]

1.2.5 0.00057 0.897
1.2.6 0.00016 0.913
1.2.7 0.00009 0.918
Average 0.00027 0.909

Search Time Comparison. We further
compare the search time of our prototype
system with that of BinSequence [36].
The reason for this comparison is to ver-
ify the e�ciency of the �rst two stages
of detection prior to the third stage of
fuzzy matching, as BinSequence em-
ploys fuzzy matching approach after a
pre-�ltering process. In this experiment, we compare three di�erent versions
of zlib library (v1.2.5, v1.2.6, v1.2.7) with their next version using BinArm
with the same setup performed in BinSequence. For example, we test zlib

v1.2.5 against its successive version zlib v1.2.6 together with two million noise
functions in the database. We collect the search time for each scenario, and ob-
tain the average time of 0.0002 seconds per function as reported in Table 8. On
the other hand, the average of optimal search times for these three scenarios pro-
vided by BinSequence [36] is 0.909 seconds per function. These results con�rm
that BinArm is three orders of magnitude faster than BinSequence.

Qualitative Comparison with Gemini. Gemini [60] is one of the latest iter-
ations in code similarity detection in binaries, which extracts attributed control
�ow graphs and feeds them into a siamese neural network. Since the tool is not
publicly available in order to perform a direct comparison, a qualitative compar-
ison is performed as follows. (i) The required training time of Gemini, which is
performed on a powerful server with two CPUs and one GPU card, is signi�cant
compared to BinArm. (ii) The time required to constantly retrain the neural
network and re-generate the embeddings is a major disadvantage in a real-world
scenario. As such, BinArm greatly outperforms Gemini with respect to the in-
dexing of new vulnerable functions into the system. (iii) Gemini has a total of
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154 vulnerable functions and presents a use case that employs two of them. In
contrast, BinArm Vulnerability Database contains 235 vulnerable functions, all
of which are used for vulnerability identi�cation. (iv) Gemini solely relies on
a few basic features and the use of a siamese neural network to perform the
comparison. Such feature choices are re�ected through the reported vulnerabil-
ity identi�cation accuracy of about 82% [60], whereas BinArm's much richer
collection of features and the rigorous feature selection process help to obtain a
92% accuracy. This is partially due to the fact that BinArm takes into account a
much broader scope of information relative to a given function. For example, by
only counting the number of arithmetic instructions, Gemini barely takes into
account function semantics. In contrast, BinArm extracts far more semantics
from a function through its branch-based detection, which each basic block in-
struction probability densities are leveraged, and its fuzzy matching, which the
features at di�erent levels are taken into account.

5.5 Detecting Vulnerabilities in Real Firmware

In this section, we demonstrate BinArm's capability to facilitate the vulner-
ability identi�cation process in real-world IED �rmware. We randomly select
�ve �rmware images from our Firmware Database and compare them to all vul-
nerable functions in our Vulnerability Database. Each resulting function pair is
ranked by similarity scores. We consider a candidate as a potential match, if the
matching score is higher than 80%. We successfully identify 93 potential CVEs
in the randomly selected �rmware images, 75 of which are con�rmed by our
manual analysis.

Table 6: Identifying CVEs in real-world �rmware images
Firmware CVE Score Firmware CVE Score
NI PMU1_0_11 CVE-2016-6303 1.00 Schneider Link150 CVE-2015-0208 0.68

CVE-2014-8176 1.00 Schneider M251 CVE-2014-2669 0.65
CVE-2014-6040 0.92 ReadyNAS v6.1.6 CVE-2015-7497 0.98
CVE-2016-7167 0.91 CVE-2014-2669 0.97
CVE-2015-0288 0.91 CVE-2015-7941 0.95

Honeywell.RTUR150 CVE-2016-0701 1.00 CVE-2014-6040 0.93
CVE-2016-2105 0.99 CVE-2010-1633 0.93
CVE-2010-1633 0.94 CVE-2014-0160 0.92
CVE-2016-6303 0.94 CVE-2015-0288 0.91
CVE-2015-0287 0.92 CVE-2014-0160 0.86

Due to lack of space, a subset of obtained results has been presented in Table
6. As can be seen, BinArm is able to successfully identify di�erent vulnerabilities
in the NI PMU1_0_11, Honeywell.RTUR150, and ReadyNAS v6.1.6 �rmware
images. For instance, it is able to identify CVE-2016-7167 (critical heap-based
bu�er over�ow vulnerability [7]) in the NI PMU1_0_11 �rmware as the �rst
rank with 0.91 similarity score. The obtained matching results of vulnerable
function X509_to_X509_REQ and the matched one in NI PMU1_0_11 �rmware
are depicted in Figures 9. This output veri�es the results, and illustrates Bi-
nARM's capability that provides in-depth mapping results for the veri�cation
purpose. Additionally, our experiments demonstrate that BinArm can identify
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the CVE-2014-0160 (Heartbleed vulnerability) and CVE-2014-3566 (POODLE
vulnerability) in ReadyNAS �rmware (as demonstrated in the state-of-the-art
approaches [28, 30]) in less than 0.5 ms. The results con�rm the capability of
BinArm to be applied in real-world scenarios to perform vulnerability analysis
on the IED �rmware embedded in the smart grid.

Fig. 9: Results of bug Search in NI PMU1_0_11 �rmware

5.6 Impact of Multiple Detection Stages

In order to study the impact of proposed multi-stage detection engine, we employ
four experiments by enabling and disabling shape-based and branch-based detec-
tors (we always keep the fuzzy matching-based detector enabled), and measure
both the accuracy and e�ciency of BinArm on Vulnerability database. To this
end, we perform the test on a randomly selected projects with di�erent versions
and optimization settings. As can be seen in Table 7, the total accuracy remains
the same as it is not a�ected by any of the prior detection stages. On the other
hand, the proposed multi-stage detection improves the e�ciency of BinArm.

Table 7: Impact of Multiple Detection Stages

Shape-based Branch-based Accuracy Time(s)

True True 0.929 626.72

True False 0.928 3649.80

False True 0.925 44823.34

False False 0.924 50671.66

Note: The Fuzzy-based detector is always enabled.

5.7 Impact of Parameters

In this subsection, we provide the impact of λ and γ on BinArm accuracy. We
perform experiments by (i) disabling the branch-based detector, and increment-
ing the value of λ by 5 starting from 5; (ii) disabling the shape-based detector
and incrementing the value of γ by 5 each time, starting from 30%. We randomly
select 10% of libraries from our Vulnerability Dataset as the test set, and perform
the matching against remaining libraries in our dataset and record the accuracy.
The experimental results illustrated in Figure 10 and Figure 11 demonstrate
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that the obtained values of λ = 26.45 and γ = 50% return the highest accuracy
among other values.

Fig. 10: Impact of λ Fig. 11: Impact of γ

5.8 Scalability Study

We further investigate the time required for both indexing and retrieving
matched functions to demonstrate BinArm capability to handle �rmware anal-
ysis at a large scale. To this end, we randomly index one million functions from
General Dataset, and collect the indexing time per function. Figure 12 depicts
the CDF of the preparation time for the randomly selected functions. As shown,
most of the functions are indexed in less than 0.1 second, where the median
indexing time is 0.008 seconds, and it takes 0.02 seconds on average to index a
function.

Fig. 12: CDF of indexing time for 1 million
functions

Fig. 13: CDF of search time against incre-
menting reference functions

Moreover, we perform several scalability benchmarks, each utilizes a randomly
selected set of 10, 000 target functions. For each evaluation, we employ a ran-
domly selected set of reference functions, where its size increases in increments
of 0.5 up to 2 million, as plotted in Figure 13.

6 Related Work

We brie�y describe most recent existing works to identify known vulnerable func-
tions in program binaries. BinDiff [26] performs graph isomorphism on function
pairs of two binaries in the cross architecture setting. However, it is not designed
to be applied on large scale datasets.Rendezvous [39] performs function match-
ing based on the mnemonics, n-grams, CFGs and data constants extracted from
functions. Nevertheless, this approach is sensitive to structural changes and in-
struction reordering. TRACY [23] employs longest common subsequence algo-
rithm to align two tracelets obtained from decomposed CFGs. However, it is
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suitable for functions with more than 100 basic blocks [23]. BinSequence [36]
compares two functions using longest common subsequence and neighbourhood
exploration. However, its accuracy drops due to the e�ects of code transforma-
tion [36]. Moreover, the proposed MinHash-based �ltering is not e�cient for
large and complex functions.

Some cross-architecture bug search approaches have been proposed. For in-
stance, Multi-MH [50] �nds similar code by capturing the input and output
variables at basic block level. However, �nding semantic similarities is performed
by MinHash, which is slow to be applicable to large code base. discovRE [28]
applies maximum common subgraph isomorphism on the CFGs to �nd similar
functions, whereas the utilized pre-�ltering to speed up the subgraph isomor-
phism causes signi�cant reduction in accuracy [30]. Genius [30] generates at-
tributed control �ow graphs, where each basic block is labelled with statistical
and structural features, and then converts them into embeddings using locality
sensitive hashing (LSH). However, graph embedding and distance matrix is ex-
pensive [60], and changes in the CFG structure a�ect its accuracy [30]. Most
recently, a neural network-based approach called Gemini [60] computes numeric
vectors based on the CFGs and addresses the e�ciency issue of Genius. We
compare BinArm with the aforementioned proposals in Table 8.

Table 8: Comparing existing solutions with BinArm

PROPOSALS

Feature Feature Level Architecture Compiler
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BinDiff [26] • • • • • • •
Rendezvous [39] • • • • • • •
TRACY [23] • • • • • •
BinSequence [36] • • • • • • • •
Multi-MH [50] • • • • • • •
discovRE [28] • • • • • • • •
Genius [30] • • • • • • • • •
BinShape [54] • • • • • • • •
Gemini [60] • • • • • • • • •
BinArm • • • • • • • • •

Note: Symbol (•) indicates that system supports the corresponding feature, otherwise it is empty.

All of the aforesaid approaches employ static analysis, while some dynamic
analysis techniques have been proposed. For instance, BLEX [27] executes func-
tions for several calling contexts and deems functions with the same side e�ects
as similar. However, dynamic analysis approaches are often computationally ex-
pensive, and are di�cult for �rmware images [28].

7 Conclusion

The heavy use of intelligent electronic devices (IEDs) in industrial control sys-
tems for critical infrastructures, such as smart grid, increases its importance
criticality. Recent studies highlight the security evaluation of �rmware images
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as the foremost step to ensure security and functionality in those critical infras-
tructures. In this paper, we presented BinArm, a scalable and e�cient vulner-
ability detection technique for the IED �rmware. To this end, we proposed two
substantial databases of smart grid �rmware, and relevant vulnerabilities. We
then introduced a multi-stage detection engine that could leverage this data to
identify vulnerable functions in IED �rmware pertaining to the smart grid. Ex-
tensive experiments demonstrated that BinArm could accurately and e�ciently
perform the vulnerability identi�cation process. This was further rami�ed by
its evaluation on real-world IED �rmware images and its success in identifying
93 potentially vulnerable functions and having con�rmed 75 of them. However,
BinArm has the following limitations: (i) Function Inlining. We do not cur-
rently support function inlining. However, this problem can be circumvented by
leveraging data �ow analysis. (ii) Multiple Architecture. Our system deals with
only ARM hardware architecture, since most of IEDs embedded in ICSs are
based on ARM processors. An intermediate representation could be leveraged
to support multiple architectures. (iii) Type Inference. We do not consider type
inference in our features. However, type information is important to mitigate
some sort of vulnerabilities [17, 58]. (iv) Runtime Vulnerability Detection. The
proposed detection approach fails to detect runtime data-oriented exploits, due
to the lack of runtime execution semantics checking [20]. Therefore, proposing a
hybrid approach including dynamic analysis could overcomes this limitation.
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