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This paper studies the inference control of multi-dimensional range (MDR) sum queries. We show that
existing inference control methods are usually inefficient for MDR queries. We then consider parity-based
inference control that restricts users to queries involving an even number of sensitive values. Such a re-
striction renders inferences significantly more difficult, because an even number is closed under addition
and subtraction, whereas inferences target at one value. However, more sophisticated inferences are still
possible with only even MDR queries. We show that the collection of all even MDR queries causes infer-
ences if and only if a special collection of sum-two queries (that is, the summation of exactly two values)
does so. The result leads to an inference control method with an improved computational complexity
O(mmn) (over the previous result of O(mzn)) for m MDR queries over n values. We show that no odd
MDR queries can be answered without causing inferences. We show how to check non-MDR queries for
inferences in linear time. We also show how to find large inference-free subsets of even MDR queries
when they do cause inferences.
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1. Introduction

The multi-dimensional range (MDR) sum query is an important class of decision
support queries in OLAP (On-Line Analytical Processing) systems [23]. A popular
data model of OLAP systems, the data cube [22], can be regarded as a special col-
lection of MDR queries. MDR queries are intended for analysts to generalize large
amounts of data stored in data warehouses and to discover statistical trends and pat-
terns. Contrary to this initial objective, MDR queries may be used to infer protected
sensitive values, leading to the breach of an individual’s privacy.
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Access control can prevent unauthorized access to sensitive data, but it is unaware
of indirect inferences caused by seemingly innocent queries. Inference control of ad
hoc queries has been investigated since the 1970’s in statistical databases and census
data. However, most of the proposed methods suffer from high computational com-
plexity. For example, the audit expert can effectively control inferences for SUM-
only queries with a complexity of O(m?>n) for m queries over n sensitive values [12],
and auditing both SUM and MAX queries is NP-complete [9]. Chin pointed out that
one obvious approach to bring the complexity to a practical level is to include re-
strictions on user’s queries, such that only statistically meaningful queries can be
specified. Our study represents such an effort in finding efficient inference control
methods for statistically meaningful MDR queries.

The contributions of this paper are as follows. First, we propose the concept of
parity-based inference control. Intuitively, an even number is closed under addition
and subtraction, whereas inferences target at exactly one value (in this paper we
will only consider inferences of an exact value) and one is an odd number. Hence,
restricting users to even MDR queries (that is, MDR queries that sum an even number
of sensitive values) can make inferences significantly more difficult. However, more
sophisticated inferences are still possible with only even MDR queries. Second, we
show that the collection of all even MDR queries is free of inferences, if and only if a
special collection of sum-two queries (that is, the summation of exactly two values) is
so. Finding such a collection of sum-two queries takes time O(mn), and determining
whether it causes inferences takes time O(m + n) for m MDR queries over n values.
This result thus leads to an inference control method with computational complexity
O(mn), which is an improvement to the best known result of O(m?n) [12].

Third, we show that in addition to answering even MDR queries, no MDR query
involving an odd number of values can be answered without causing inferences.
However, for any such odd MDR queries, we can always find a small number of
even MDR queries whose union differs from the odd MDR query by exactly one
value. The odd MDR query can thus be approximately answered. We study how
to detect inferences for non-MDR queries in linear time in the number of values
involved by the queries. We also study the case where the collection of all even MDR
queries does cause inferences. We show how to find large inference-free subsets of
the collection. Finally, we show that the proposed methods can be integrated on the
basis of a three-tier inference control model previously proposed. The preliminary
results that appeared in [38] are further elaborated in the current paper.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 discusses examples to motivate our study. Section 4 formalizes concepts
needed for further discussions. Section 5 shows that directly applying existing in-
ference control methods to MDR queries is inefficient. Section 6 studies the parity-
based inference control method. of even MDR queries causes inferences. Section 7
discusses how to integrate the results in a three-tiered inference control model. Sec-
tion 8 concludes the paper.
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2. Related work

Inference control has been extensively studied in statistical databases [1,15,17]
and the proposed methods are usually classified into two categories: restriction-
based techniques and perturbation-based techniques. Restriction-based techniques
include restricting the size of query sets (i.e., the values involved in a query) [21],
restricting the size of overlaps between query sets [18], detecting inferences through
auditing queries [6,10,12,24], suppressing tabular data to prevent inferences [14],
partitioning values, and restricting queries to complete blocks in the partition
[11,30]. Perturbation-based techniques add random noises to source data, outputs, or
the structure of databases [5,34,35]. Other aspects of the inference problem include
the inferences in multi-level databases [7] and the inferences targeting approximated
values [26-29]. Directly applying the inference control methods in statistical data-
bases is not desired, because these methods are intended for arbitrary queries and
they typically ignore the unique structures of MDR queries. We will discuss some of
those methods in more detail in Section 5.

Controlling inferences of a special class of MDR queries, namely, data cube
queries, have been studied in [25,37,39,40]. First, the study in [39,40] shows that
a SUM-only data cube is free of inferences if the number of previously known val-
ues is below a tight upper bound (the bound is tight in the sense that no better bound
exists). However, the converse is not necessarily true, and an inference-free data cube
may be mistakenly taken as causing inferences by the method proposed in [39,40].
Second, the study in [37] first restricts queries such that the adversary cannot com-
bine multiple queries for an inference. This approach greatly eases inference control
and applies to any aggregation functions as long as certain algebraic properties are
satisfied. Third, the study in [25] addresses the approximate inferences in terms of
lower and upper bounds of the actual values. However, these methods do not directly
apply to our case, because data cube queries are only a subset of all MDR queries
based on explicit dimension hierarchies.

The inference problem of one-dimensional range queries has been studied before,
and the author considers the multi-dimensional case as difficult [10]. The usability
(i.e., the highest possible ratio of the number of inference-free queries to that of
all queries) of MDR queries in the absence of previously known values has been
studied [6]. The restriction of even MDR queries is mentioned but not fully explored,
and the more general case with arbitrary known values is regarded as challenging.
Chin et al. give necessary and sufficient condition for the sum-two queries to be
inference-free, and they show that finding the maximal inference-free subsets of sum-
two queries is NP-hard [8,12]. However, in practice queries are rarely limited to
sum-two queries. In this paper, we generalize the results on sum-two queries to even
MDR queries.

Perturbation-based methods have been proposed for preserving privacy in data
mining applications [2]. Random noises are added to destroy the sensitive informa-
tion while the statistical distribution is approximately reconstructed from the per-
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turbed data to facilitate data mining tasks. The methods proposed in [3] can approx-
imately reconstruct COUNTSs from perturbed data with statistically bound errors,
so OLAP tasks like classification can be fulfilled. However, in general protecting
sensitive data in OLAP is different from that in data mining, because OLAP tasks
may demand small details, such as outliers, that cannot be obtained from distribution
models alone. Potential errors in individual values may be significant, preventing
OLAP users from gaining trustful insights. The methods we study are based on re-
strictions and hence do not introduce any noises. Secure multi-party data mining
allows multiple distrusted parties to cooperatively compute data mining results with
minimal disclosures of their own data [19,36]. This problem is different from infer-
ence control, because the threat of inferences comes from what users know, not from
the way they know it.

The k-anonymity model releases sensitive values but renders them anonymous
such that they do not threaten privacy [13,32,33,41]. In the released table, each record
is indistinguishable from at least k — 1 others due to the same combinations of identi-
fying attribute values. An adversary can thus link an individual in the physical world
to at best k records, which is considered a tolerable privacy threat. Inference control
and the k-anonymity model can be considered as dual approaches, and they are suit-
able for different applications. The information theoretic approach in [31] formally
characterizes insecure queries as those that give a user more confidence in guessing
possible database instances [31]. However, such a perfect-secrecy metric will not
tolerate any partial disclosure, including those caused by aggregated values.

The preliminary results of the current paper have appeared in [38]. The current
paper elaborates on and provides full proofs to these results. Moreover, Section 7
discusses in detail how the results can be applied to OLAP systems based on the pre-
viously proposed three-tiered inference control model, and it also describes several
limitations and discusses possible extensions to the proposed approach.

3. Motivating example

We discuss a running example to motivate further study. Table 1 depicts a ficti-
tious data set of salary adjustments for four employees in two consecutive years.
Assume the salary adjustments are sensitive and should be kept secret. In the exam-
ple, the empty cells denote values that are already known to users through outbound
channels. Using empty cells indicates the fact that these values can no longer be pro-
tected and will be ignored in our discussions. However, such a value is different from
a zero adjustment, because the latter may not be known to users and needs to be pro-
tected. Suppose a third-party analyst Mallory is invited to analyze the above data set.
Considering that Mallory may later misuse the information about individuals and
causes privacy issues, she is not supposed to know each employee’s salary adjust-
ment. Access control mechanisms will thus deny any queries about an employee’s
salary adjustment in a year.
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Table 1

An example of sensitive data set and inferences

Alice Bob Mary Jim
2002 1000 500 —2000
2003 1500 -500 1000

However, Mallory’s analyzing tasks may require her to know the summation of
a range of values with similar characteristics, such as each employee’s total salary
adjustments in the two years (each column in Table 1) or the total salary adjustments
in a year (each row). Intuitively, those values are inside a box, which can be rep-
resented by any of its longest diagonals. For example, [(Alice, 2002), (Alice, 2003)]
stands for the first column of the table and [(Alice,2002), (Bob,2003)] for the first
two columns. We will only consider a query asking for the summation of values in a
continuous range, namely, a multi-dimensional range SUM query (or simply MDR
query). For example, a request for the summation of values in the first and the fourth
columns is not an MDR query since the values are not inside any continuous range.

Although access control will prohibit queries asking for a salary adjustment, Mal-
lory can get around the restriction by asking MDR queries. For example, the MDR
query [(Alice,2002), (Alice,2003)] gives Alice’s adjustment in 2002, because the
query sums a single value. As another example, the difference between the answers
to [(Bob,2002), (Mary,2002)] and [(Alice, 2002), (Mary,2002)] yields the same re-
sult. Mallory can potentially combine any answered MDR queries for an inference,
whereas inference control must prevent all such possibilities.

The key observation from the above example is that one of the queries asks for
the summation of an odd number of values. Considering the fact that even number is
closed under addition and subtraction, it would be more difficult to infer one (which
is an odd number) value if only even MDR queries are to be allowed. For example, in
Table 1, inferences may no longer be straightforward if only even MDR queries are
to be asked. We will call the restriction a parity-based inference control henceforth.

Nonetheless, more sophisticated inferences are still possible with MDR queries.
Table 2 depicts five even MDR queries and their answers. The first query sums all
six values and the remaining four queries each sums two values. Mallory then adds
the answers to the last four queries (2500) and subtracts from the result the answer
to the first query (1500). Dividing the result (1000) by two gives Bob’s adjustment
in 2002 (500).

The rest of the paper answers following questions naturally motivated by the above
example. 1. How can we efficiently determine whether the collection of all even MDR
queries causes inferences? 2. In addition to even MDR queries, what else can be
answered without causing inferences? 3. How can we find large subsets of even MDR
queries that are inference free?
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Table 2
An example of even MDR queries and answers
Queries Answers
[(Alice, 2002), (Jim,2003)] 1500
[(Alice, 2002), (Bob, 2002)] 1500
[(Bob, 2002), (Mary, 2002)] -1500
[(Bob, 2002), (Bob,2003)] 2000
[(Mary, 2003), (Jim,2003)] 500

4. The model

We use [, R, ]Ik, Rk, R™*"™ to denote the set of integers, reals, k-dimensional in-
teger vectors, k-dimensional real vectors, and m by n real matrices, respectively.
For any u,v,t € Rk, we write © < v and t € [u,v] to mean that u[¢] < v[7] and
min{ulz], v[i]} < t[¢] < max{u[¢],v[¢]} hold for all 1 < ¢ < k, respectively. We
use ¢ for the singleton set {t} whenever it is clear from the context.

Definition 1 formalizes domain, data set, and tuple. The domain is the Cartesian
product of closed integer intervals. A data set is any subset of the domain. A tuple
is any vector in the domain. With respect to Table 1 in Section 3, we use a tuple to
interchangebly refer to a cell and the sensitive value in that cell (notice that Table 1
is a cross-tabular instead of a flat relational table, and hence our notion of a tuple is
different from a relational tuple). A tuple missing from the data set is any vector in the
complement of the data set with respect to the domain. In our study, missing tuples
represent sensitive values that adversaries have learned through outbound channels
(that is, empty cells in Table 1).

Definition 1 (Data Set). For any d € ¥, use F(d) to denote the Cartesian product
1'[5-“:l [1,d[i]]. We say F' = F(d) is the domain, any C' C F adataset,anyt € F'a
tuple, and any t € I\ C a tuple missing from C.

Example 1. Table 3 rephrases the example in Table 2 using notations given in Defi-
nition 1. The six tuples in the data set correspond to the six sensitive values unknown
to users, and the missing tuples represent previously known values (the subscripts
are needed later in this section for the correspondence between tuples and columns
of the incidence matrix).

Definition 2 formalizes arbitrary query, MDR query and sum-two query. An arbi-
trary query is any non-empty subset of the given data set. An MDR query ¢*(u, v) is
a non-empty subset of the data set that includes all and only those tuples bounded by
two given tuples. Intuitively, an MDR query can be viewed as an axis-parallel box.
A sum-two query is a collection of pairs of tuples. We use Q; and Q; for the set of
all MDR queries and all sum-two queries, respectively.
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Table 3
Modeling data set
1 2 3 4

@Dy 1.2y (1.3)
2 (224  23)s (246

Table 4
Modeling MDR queries

(LD, 2,4y {(1L1),(1,2),(1,3),(2,2),(2,3),(2.4)})
(L D,(L2) (1L 1D.(1,2)}
(1,2, (1,3)  {(1,2),(1,3)}
¢*((1L,2,(2,2)  {(1,2),(2,2)}
(23,24 {23,249}

Definition 2 (Arbitrary Query, MDR Query, and Sum-two Query). Given any do-
main F" and dataset C C I,

1. Define functions

(@ ¢*(): FxF—2%asq*(u,v) = {t: t € C,t € [u,v]}.
(b) ¢():CxC — 2€ as ¢*(u,v) = {u, v} if u # v, and ¢ otherwise.

2. Use Q4(C) and Q4(C) (or simply Q4 and Q; when C' is clear from context)
for {g*(u,v) : ¢*(u,v) # ¢} and {¢*(u,v) : ¢*(u,v) #+ ¢}, respectively.

3. We call any non-empty subset of C' an arbitrary query, any ¢*(u,v) € Qg4 an
MDR query (or simply a query), and any ¢*(u,v) € Q; a sum-two query.

Example 2. Table 4 rephrases the five MDR queries in Table 1 using our notations.
The left side of the table specifies each query and the right side gives the set of tuples
included in that query.

Definition 3 formalizes the concept of compromiseability. Because an arbitrary
query is a set of tuples, any given collection of arbitrary queries can be characterized
by the incidence matrix of the set system formed by the data set C' and the collec-
tion of arbitrary queries S (that is, a matrix M satisfying that M(S)[i, j] = 1 if
the ith arbitrary query in S contains the jth tuple in C, and M(S)[4, j] = 0 other-
wise). Given two collections of arbitrary queries Sj, Sy, and the incidence matrices
M(S1), M(S,), we say S| is derivable from S; if the row vectors of M(S;) can be
represented as the linear combination of those of M(S;). Intuitively, this means the
former can be computed from the latter and hence discloses less information than the
latter does. We say S| compromises a tuple ¢ in the data set, if the singleton set of
queries {{t}} (notice {t} is an arbitrary query) is derivable from Sj, and S is safe if
it compromises no tuple in the data set. We say any two sets of arbitrary queries are
equivalent if they are mutually derivable. Example 3 illustrates the concepts we just
defined.
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Fig. 1. Modeling compromiseability.

Definition 3 (Compromiseability). Given any domain F', data set C' C F', and set of
arbitrary queries S, use M(S) for the incidence matrix of the set system formed by
C and S, we say that

1. &) is derivable from &,, denoted as S| <5 &>, if there exists M € RIS %S|
such that M(S;) = M - M(S;) holds, where S| and S, are sets of arbitrary
queries.

2. S; compromises ¢ € C' if t <5 S; (we write ¢ for {{t}}), and S| is safe if it
compromises no ¢t € C.

3. S is equivalent to S;, denoted as S| =4 S, if S| <3 S, and S <4 Sy

Example 3. Following Example 1 and Example 2, Fig. 1 gives an example of the
compromiseability. The equation shows that the five queries in Example 2 compro-
mise a tuple (1,2). The left side of the equation is the incidence matrix of the query
{(1,2)}, and the right side is a linear combination of the row vectors in the incidence
matrix of the five MDR queries in Example 2.

The relation = of Definition 3 is an equivalence relation on the family of all sets
of arbitrary queries, because it is clearly reflexive, symmetric and transitive. Hence,
if any two sets of arbitrary queries are equivalent, then one is safe iff the other is.
This observation is the basis for our discussions in Section 6 about reducing the
compromiseability of even MDR queries to that of sum-two queries.

5. Applying existing inference control method to MDR queries

This section studies the feasibility of applying existing restriction-based inference
control methods to MDR queries. First, Section 5.1 considers three methods, namely,
Query set size control, overlap size control and Audit Expert. Second, Section 5.2
studies the problem of finding maximal safe subsets of MDR queries.

5.1. Query set size control, overlap size control and audit expert

Query set size control. This method prohibits users from asking small queries,
which ask for the summation of less than n; values where n; is a pre-determined
threshold. For example, the inference of exact values is trivial if users can ask for
the summation of one value (that is, n; must be at least two). However, the query
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set size control is necessary but not sufficient for controlling inferences. For arbi-
trary queries, query set size control can be easily subverted by asking two legitimate
queries whose difference yields a prohibited one, a mechanism known as tracker in
statistical databases [16]. It is shown that finding a tracker for arbitrary queries is
possible even when n; is about half of the cardinality of the data set.

At first glance, trackers may seem to be more difficult to find when users are
restricted to MDR queries, because they can now ask less queries than in the case of
arbitrary queries. In another word, the query set size control is expected to be more
effective when applied to MDR queries. Unfortunately, this is not true. The query
set size control can still be easily subverted using trackers, even when MDR queries
are the only kind of queries users may ask. Proposition 1 shows that in most cases
a tracker consisted of MDR queries can be found to derive any given small MDR
query (such as an MDR query that includes only one tuple).

Specifically, Proposition 1 shows that even when n; is set to be comparable to the
size of the data set (3* is a constant compared to |C]), any MDR query including
less than n; tuples (and hence should not be answered) can be derived from those
queries including ny or more tuples. The proof of the proposition constructs trackers
for deriving a given query. Intuitively, the targeted MDR query is surrounded by 3%
other MDR queries, and one of them must include more than n; tuples, and hence is
legitimate to answer. The targeted query can then be derived by padding it with this
legitimate query. Example 4 illustrates the idea in the one-dimensional case.

Proposition 1. Given d € R F = F(d) and C C F, let ny = L'%J For any
q*(ug,vg) € Qg satisfying |q*(ug, va)| < ny, we have that ¢*(uq, ve) 3g {¢*(u,v) :
lg*(u, v)| > n¢}.

Proof. We first show that the data set can be partitioned into 3¥ blocks including
G (ug,vg). Let S = {¢*(u,v) : Vi € [1,k], (u[i] = 1,v[i] = ugli]l — 1)V (u[i] =
ugi], v[e] = valil) V (uli] = valil + 1,v[i] = d[i])}. We have that C' = Uvqes q,
and ¢*(u,v) N ¢*(ug,vg) = ¢ holds for any ¢*(u,v) € S\ ¢*(uq,vq). Because
IC]

|S| = 3%, there must exist q* (up, vp) € S such that |¢*(up, vp)| = g

Next we define the tracker as
1. ue, ve satisfying that ue[i] = min{wug[e], uplil, vpli]}, and ve[i] = max{ug[7],
vgli], vpli]} forall 1 < i < k.
2. For all 1 <7 < k, u; satisfying that u;[i] = ug[?], v;[i] = vg[7], and for each
fixed 4, u;[j] = ucli] and v;[j] = vc[i] for any j # 4.
Now we show how to derive ¢*(ug, vg) using the tracker, and that all queries in
the tracker are legitimate. We have that

k
0" (ta;va) = q*(ue, ve) \ (U q* (ug, v) \ q*(ub»vb)> \ ¢ (up, vp)

i=1
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Letr =(1,—1,—1,...,—1,k — 1) € R**2  then

M(q*(ua, Ua)) =rT- (M(q*(uCa UC)? M(q*(uls Ul )9 M(q*(uz, U2), ceey
M(q*(uk,vk),M(q*(ub,vb))T
Moreover, ¢*(up, vp) € q*(ue,ve) and ¢*(up, vp) C ¢ (ug,v;) forall 1 < ¢ < k

hold. Hence, we have that |¢*(uc,ve)| = nt and |¢*(u;,v;)] > ny holds for all
1<i<k O

Example 4. When k£ = 1 the data set contains n integers between one and n. Given
any ¢*(u, v) satisfying 0 < v —u < (n/3), we have that either |¢*(0,u—1)| = (n/3)
or |¢*(v + 1,d)| = (n/3) holds. Without loss of generality, if |¢*(0,u — 1)| = (n/3)
then we have that ¢*(u, v) = ¢*(0,v) \ ¢*(0, uw — 1) holds, and |¢*(0,v)| > (n/3) and
|g*(0,u—1)| = (n/3) are both true. That is, we can infer ¢*(u, v) with two legitimate
queries.

Overlap size control. This method prevents users from asking queries with large
intersections [18]. The intuition behind the method is that trackers rely on intersec-
tions between queries to isolate the targeted tuple, so prohibiting large intersections
between queries will make inferences using trackers harder if at all possible. Specif-
ically, the method assumes any answerable query must have a cardinality of at least
n, and the intersection of any two queries is required to be no larger than . In order
to compromise any tuple ¢, one must first ask one query satisfying ¢ € ¢ and sub-
sequently (n — 1)/r or more queries whose union forms the complement of ¢ with
respect to ¢. Hence, no inference will be possible if less than (n — 1)/r + 1 queries
are answered. However, the converse is not true. That is, answering (n — 1)/r + 1 or
more queries does not necessarily cause inferences.

One may expect that the bound (n — 1)/r + 1 will be improved if users are re-
stricted to MDR queries, because this restriction makes inferences more difficult and
likely an inference will demand more queries than in the case of arbitrary queries. In
another word, the overlap size control would be more effective when applied to MDR
queries, because it now allows more queries to be answered. However, Proposition 2
shows that this is not the case. The bound (n — 1)/7 + 1 is not improved (increased)
by restricting users to MDR queries. Therefore, the overlap size control can answer
only a small number of MDR queries, rendering most queries unanswerable.

Specifically, Proposition 2 shows the following fact. After asking an MDR query
q*(u,v), which includes the targeted tuple ¢ and n — 1 other tuples, it is always pos-
sible to find |¢*(u, v)| — 1 other MDR queries satisfying the follows. First, the union
of these queries forms the complement of ¢ with respect to ¢*(u, v). Second, the in-
tersection between each of these queries and ¢*(u, v) includes exactly one tuple. The
existence of these queries shows that the bound (n — 1)/r + 1 remains the same
when applying the overlap size control to MDR queries. Example 5 illustrates the
idea using the running example.
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Proposition 2. Givenany d € R¥, F = F(d)and C' C F, for any q*(u, v) satisfying
[{i : uli] # v[il}| < k and any t € ¢*(u,v), there exists an S C Qg such that t =
q*(u,v)\ quS qNq*(u,v). Moreover, for all ¢ € S we have that |q N\ ¢*(u,v)| = 1.

Proof. Suppose tuples in ¢*(u, v) are in dictionary order and use ¢; for the ith tuple.
Without loss of generality suppose ¢ = ¢; and u[1] = v[1]. Now we define a set .S
of queries as follows. For all 1 < ¢ < |¢*(u,v)| — 1 let u;[1] = 1, v;[1] = d[1],
and for each fixed i, u;[j] = v;[j] = t;[j] for all j > 1. Let S = {q¢*(u;,v;)}.
Because ¢*(u;, v;) N ¢*(u,v) = t; we have t = ¢*(u,v) \ (qus q N ¢*(u,v)). That
is, the union of queries in S form the complement of ¢ with respect to the given query
q*(u,v). O

Example 5. Consider the data set given in Table 3. To compromise (1, 1), one first
asks ¢*((1, 1), (1, 3)) that contains (1, 1). Then to form the complement of (1, 1) with
respect to ¢*((1, 1), (1, 3)), queries ¢*((1,2),(2,2)) and ¢*((1,3),(2,3)) are asked.
Asking one more query ¢*((2,2), (2,3)) would be sufficient for the intended com-
promise.

Audit expert. Chin et al. give a necessary and sufficient condition for safe arbitrary
queries, namely, Audit Expert [12]. By regarding tuples and queries as a set system,
the queries are safe iff the incidence matrix of the set system contains no unit row
vector in its reduced row echelon form (RREF). The elementary row transformation
used to obtain the RREF of an m by n matrix has the complexity O(m?>n). Using
this condition on-line (after queries arrive) may incur unacceptable delay in answer-
ing queries, because m and n can be very large in practice. Moreover, the method
requires tracking the entire history of queries asked by each user. Another way to
employ the condition is to determine the compromiseability of queries off-line [6].
Although this condition applies to MDR queries, it is not efficient because it does not
take into consideration the inherent redundancy among MDR queries, as illustrated
by Example 6 (Section 6 further discusses this issue).

Example 6. Consider all MDR queries that can be formed on the data set in Ta-
ble 3 (including those queries not shown in Table 4). There clearly exists redun-
dancy among the MDR queries. For example, ¢*((1, 1),(2,2)) is derivable from
q*((1,1),(2,1)) and ¢*((1,2), (2,2)). Hence, if ¢*((1,1),(2, 1)) and ¢*((1,2),(2,2))
are both safe then ¢*((1, 1), (2,2)) must be safe. The converse is not true, that is,
q*((1,1),(2,2)) is safe but ¢*((1, 1), (2, 1)) = {(1, 1)} is not.

5.2. Finding maximal safe subsets of MDR queries

In addition to determining whether a collection of queries causes inferences, find-
ing the maximum safe subset of an unsafe collection of queries is also an interesting
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problem in inference control. Asking multiple queries in a batch, the user may pre-
fer partial answers over a complete denial to all the queries. However, finding the
maximum safe subset of arbitrary queries (the MQ problem) or sum-two queries (the
RMQ problem) have both been shown as computationally infeasible [12].

A natural question is whether restricting users to MDR queries makes the above
problem computationally feasible. Unfortunately, Theorem 1 shows this is not the
case, because finding a maximum safe subset of MDR queries, namely, the MDQ
problem is also NP-hard. The result is based on the fact that given any set of sum-
two queries, we can always find a set of MDR queries such that the maximum safe
subset of the former gives the maximum safe subset of the latter in polynomial time.

Theorem 1. The MDQ problem is NP-hard.

Proof. Chin et al. show the NP hardness of the RMQ problem [12]. We show that
every instance of the RMQ problem is polynomially reducible to an instance of the
MDQ problem.

Suppose an instance of the RMQ problem is given as

1. A data set of totally n tuples Cy = {t,t2,...,tn}.
2. A set of sum-two queries Sy = {qz(til,tjl), q2(ti2,tj2), cen, qz(tim,tjm)} de-
fined on Cj.

We construct an instance of the MDQ problem as

1. d=(2,2,...,2) e R™.
2. A data set C| with totally n tuples sy, sy, . . ., Sy, satisfying that

@ s4,[1]=s5[1]1 = 1, s5,[2] = s,[2] = 1, ..., 85, [m] = s5,,[m] = 1 (the
subscripts i;’s and j;’s are given in the above RMQ problem).
(b) For each fixed 2 € [1,m] and for all y # iz Ay # jz, sy[z] = 2 holds.

3. The set of MDR queries S| = {q*(u1,v1), ¢*(u2,v2), - . ., ¢* (U, V) }, where
forall 1 <@ < m, w;[i] = v;[¢] = 1, and for each fixed 7, u;[z] = 1, v;[i] = 2
for all j # 1.

We have that ¢*(ug,vy) = {Siz,sz} for all 1 < x < m. Hence, for any
I C [1,m] we have that {q2(t¢x,tjz) :x € I} is safe iff {¢*(ug,vz) : ¢ € I}
is safe. Consequently, the maximum safe subset of S| gives the maximum safe sub-
setof Sp. O

Knowing that the MDQ problem is NP-hard, we may want to reduce the complex-
ity with further restrictions on queries. We consider restricting users to an important
class of MDR queries, namely, data cubes [22]. Notice that this restriction will only
affect the MDR queries that users are allowed to ask, the data set and other assump-
tions (such as considering only SUMs and inferences of exact values) remain the
same. Indeed, Definition 4 shows that we can rephrase concepts of a data cube using
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MDR queries. That is, despite the different terminologies used by data cubes, we
only consider them as special MDR queries. We demonstrate the concepts in Ex-
ample 7. Corollary 1 then shows that the MDQ problem remains NP-hard for such
special MDR queries.

Definition 4 (Data Cube). Givend € R¥, F = F(d)and C C F,

1. A skeleton query is any ¢*(u, v) satisfying the condition that u[7] # v[] im-
plies u[i] = 1 and v[i] = d[¢] for all 1 < 7 < k. A skeleton query ¢*(u, v) is
called a j-star query (1 < j < k) if |{i : ¢ € [1, k], uli] # v[il}| = j.

2. For any non-empty J C [1,k], let j = |J|. The set @ of j-star queries satisfy-
ing that ¢*(u,v) € Q iff {7 : i € [1,k],u[i] # v[i]} = J is called a (j-star)
cuboid.

3. The data cube is the union of all cuboids (or equivalently all skeleton queries).

Example 7. Table 3 includes 1-star cuboids {¢*((1, 1), (1,4)), ¢*((2, 1),(2,4))} and
{g*((1, 1,2, 1)), ¢*((1,2), (2,2)),¢*((1,3),(2,3)),¢*((1,4),(2,4))}. There is only
one 2-star cuboid, which is a singleton set {¢*((1,1),(2,4))}. The data cube is the
union of the three cuboids, which also includes all skeleton queries.

Corollary 1. The problem MDQ remains NP-hard under the restriction that the
given set of MDR queries must be:

1. A set of skeleton queries.
2. The union of some cuboids.
3. A data cube.

Proof. Because the set of MDR queries constructed in the proof of Theorem 1 are
actually skeleton queries, we only need to show MDQ is NP-hard under the second
and third restrictions. Suppose the instance of the RMQ problem is given same as in
the proof of Theorem 1. We first construct an instance of the MDQ problem under
the restriction that the set of MDR queries is the union of some cuboids. The data set
C) and the set of MDR queries S| are given as follows.

l.d=(n-1,n—-1,...,n—1) € R™,

2. A data set C| with totally m tuples sy, S2, ..., Sm, Where for all 1 < z < m,
sip[x]l = sj [zl = Tand 1 < sy[i] < sg[i] for any y < z and y,z €
[1L,n]\ {iz, iy}

3.8 = {q*(u1,v1), ¢ (uz,v2),...,¢" (Um,vm)}, where for all 1 < 7 < m,
u;[1] = wv;[i] = 1, and for each fixed 4, u;[i] = 1,v;[z] = n — 1 for all
J # i

4. S1 =%, Q;, where each Q; is the cuboid containing ¢*(u;, v;).

For any ¢ € |/, Q; \ St we have that |¢q| = 1. Hence, trivially the maximal

safe subset of Sy is a subset of St. For any 1 < 2 < m we have that ¢*(uy, v) =
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{si,>5j, }- Hence, for any I C [1,m], {qz(tiz, ti.) s x € I} is safe iff {q*(ug,vg) :
x € I} is safe. Consequently, the maximal safe subset of .S gives the maximal safe
subset of Sp.

Next we modify this instance of the MDQ problem to the third restriction as fol-
lows.

l.d=n+1,n+1,...,n+1) € R™

2. C1 = {51,82,...,5n, Sn+1,Sn+2}, where s, = (n,n,...,n) and sp42 =
nmn+1,n+1,...,n+1).
3. 8t = {q"(u1,v1), ¢*(uz,v2), . . ., (U, v)}, where for all 1 < i < m,

u;[1] = wvi[i] = 1 and for each fixed 7, u;[i] = 1,v;[7] = n + 1 for all
j# i

4. @Q); is the cuboid containing ¢*(u;,v;) forall I < ¢ < m.

5. S| is the data cube.

Suppose Sy,qz1 1S the maximal safe subset of 5. Then similarly S, 4,1 does not
contain any ¢ € [Ji, Q;\Si. Moreover, Sy,q.1 does not contain any j-star query for
all 7 < m — 1. As we will show shortly, S;,41 contains the m-star query ¢* (tx, vs),
where u, = (1,1,...,1)and vy = (n+ 1,n + 1,...,n + 1). Hence, we have that
Smazl C St U {q*(ux, vx)} and ¢*(ux, V5) € Simaz1- For all 1 < z < m, we have
that ¢*(ug,vz) = {si,,5;,}. Hence, for any I C [1,m], {qz(tiz,tjz) cx € I}is
safe iff {q*(ug,vy) : @ € I} is safe. Consequently, finding Sy, gives the maximal
safe subset of .Sy.

It remains to show that ¢*(ux, vx) € Sinaz1- We do so by contradiction. Suppose
G (U, V5) & Sinaz1 and Sppaz1 U {¢*(ux, vx)} compromises some ¢ € C;. Then we
have that Sy, 41 C St. Suppose that |Sy,qz1| = I. Then there exists r € R such
that r - M({q*(tx, v3)} U Smaz1)L = M(t) holds. Let ' = (r[2],7[3],...,r[l]).
Then

1] - M(q*(us, v )T 47" - M(Spaz1)? = M(t)

We have that s,41,Spt2 ¢ qusmml q because Spqz1 € St. Moreover
M(G*(x, v3)) = M(sp41) + M(sp42) + D7 M(s;). We have that

r[1]- Msng )" + 711 M(sng)" + D wi - M(s)" = M)

i=1

holds for some x; € R, ¢ =1,2,...,n.

There are two cases. First suppose ¢t € {si,s2,...,5,}. Then we have that
r[1] = 0. Consequently, we have that 7’ - M(Sy,az1)] = M(t), which contradicts
the assumption that Sy, is safe. Secondly, suppose ¢ € {s,+1, Sp+2}. Without
loss of generality, assume ¢ = s, 1, which leads to the contradiction that r[1] = 1
and r[1] = 0. Hence, we have proved that ¢*(tix, Ux) € Smaz1. O
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6. Parity-based inference control

Section 6.1 shows how to determine whether even MDR queries are safe. Sec-
tion 6.2 studies what other queries can be answered without causing inferences. Sec-
tion 6.3 then discusses how to find large safe subsets of even MDR queries.

6.1. Even MDR queries

Following the model introduced in Section 4, we denote the collection of all even
MDR queries defined on a given data set as Q. In order to efficiently determine
whether Q. causes inferences, we show that there exists a special subset of Q; (the
collection of all sum-two queries), denoted as Q 4, satisfying Qg =4 Qe (=4 de-
notes the equivalence relation formalized in Definition 3). By Definition 3, we can
then determine whether Q. is safe by checking if Q, is safe. Intuitively, the latter
incurs less complexity because Q4 contains less redundant queries than Q. does.

First, two natural but untrue conjectures are Q. =4 Q¢ and Q, =4 Q. N Q¢. The
first says that the collection of all even MDR queries is equivalent to the collection
of all sum-two queries, and the second says the collection of all even MDR queries is
equivalent to those even MDR queries that are at the same time sum-two queries. To
see why the former is untrue, consider the counter-example with the one-dimensional
data set C = {1,2,3}. We have that ¢>(1,3) € Q; is not derivable from Q, =
{¢*(1,2),¢*(2,3)}. Example 8 gives a counter-example to Q, =4 Qe N Q.

Example 8. Figure 2 shows Q. ﬁd Q. N Q¢ because ¢*((1,1),(2,4)) € Q¢ is not
derivable from Q. N Q.

The key observation from Example 8 is that Q. ﬁd Q. N 9y due to even
queries like ¢*((1, 1), (2,4)). Such an even query is the union of odd queries like
q*((1,1),(1,3)) and ¢*((2, 2), (2,4)). Intuitively, no matter how we begin to pair the

The Data Set C
1 2 3 4

1 (L) (L2 (1,3)

2 22 23 24
Qe g*((1,1),(1,2)),¢*((1,2),(1,3)),¢*((2,2),(2,3)), ¢*((2,3),(2,4))
q*((1,2),(2,2)),¢*((1,3),(2,3)), ¢*((1,2),(2,3)), ¢*((1, 1), (2,4))
Qe Nt Qe \ {¢*((1,2),(2,3)} U {¢*((1, 1),(2,4))}

q*((l’ 1)’ (2a 4)) ,Zéd Qe NGy

Fig. 2. An example showing Qe not equivalent to Qe N Q4.
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tuples in these odd queries as MDR queries (and at the same time sum-two queries),
we end up with some tuples that cannot be paired as MDR queries, such as (1, 3) and
(2,4). This shows that the intersection between Q. and Q; is not enough for deriving
every query in Q.

On the other hand, suppose that from Q. N Oy we can derive each odd query
up to the last tuple (for example, (1,3) and (2,4)). Then we can pair the adjacent
last tuples of all the odd queries by adding additional sum-two queries to Q. N Oy
(for example, ¢2((1,3),(2,4))). Hence, we can now derive the even query with these
additional sum-two queries. Conversely, these additional sum-two queries can be
derived from Q. by reversing the process. We demonstrate this in Example 9 and
generalize the result in Theorem 2.

Example 9. In Example 8, we can let Qg = Q. N Q; U {¢*((1,3),(2,4))}. Conse-
quently, we derive ¢*((1,1),(2,4)) as the union of qz((l, 1),(1,2)), qz((2, 2),(2,3))
and ¢%((1,3), (2,4)). Conversely, we can derive ¢>((1,3), (2,4)) as ¢*((1, 1), (2,4)) \
(¢*((1,1),(1,2) U ¢*((2,2),(2,3))). Hence, now we have Q. =4 Qq;.

Theorem 2. For any data set C, there exists Qg C Oy such that Q. =4 Qg holds.

Proof. To justify the existence of a Qg ; satisfying Q. =, Qg;, we first construct
it using a procedure shown in Fig. 3. Roughly speaking, the procedure calls a sub-
routine Sub_QDT with each even MDR query as input. The subroutine adopts a
divides-and-conquer approach in pairing all tuples included in the query. The sub-
routine recursively divides the input query along each dimension into sub-queries
until each sub-query includes only a single tuple. The subroutine then conquers by
adding pairs of tuples returned by adjacent sub-queries into the result Q4;, and re-
turns the remaining tuple (if there is any) to an upper-level call. The final result Q 4
is a special subset of sum-two queries.

We then show that the result Q4 does satisfy the property Q. =4 Qg;- In the
following discussion we assume that d € Rk, F=F(d),CC F,andany S C C
is sorted in dictionary order. For i = 1,2,...,|S|, we use S[¢] for the ith tuple in S.
For any u,v € F satisfying u < v and ¢*(u,v) € Qe, use Sy, to denote the set of
sum-two queries added to Q4 by calling the subroutine Sub_QDT in Fig. 3.

In order to prove Q. < Qg;, we show that for any v < v and ¢*(u,v) € Qe,
q*(u,v) = Syy holds. Specially, we show that ¢*(u, v) = qusuv q. Because ¢; N
¢> = ¢ holds for any ¢, g» € Sy, it then follows that M(¢*(u,v)) = r - M(Su)T,
where r = (1,1,...,1) € RISuwl, We do so by mathematical induction on |I|, where
I={i:iel[l,k],uli] <vl[i}.

The Inductive Hypothesis: For [I| =0, 1,...,k, if ¢*(u,v) € Q,, then ¢*(u,v) =
qusw q. Otherwise, ¢*(u, v) = (qusw q) U {Sub_QODT(C, u,v, Qg)}.

The Base Case: For |I| = 0, we have that u = v, and ¢*(u,v) = {u}. Because
I = ¢, the subroutine Sub_QDT in Fig. 3 returns u at the second step, with Sy, = ¢.
Hence, q*(u,v) = ¢ U {u}, validating the base case of our inductive hypothesis.
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Procedure QDT
Input: A data set C'
Output: A set of sum-two queries Q j;
Method:
1. Let th = ¢;
2. For any ¢*(u,v) € Qe, where u < v
Let < t g4, Qqt >=Sub_QODT(C,u,v, Qg4¢);
3. Return Q j;;

Subroutine Sub_QDT
Input: The data set C, tuples v and v (u < v), and Q g4
Output: A pair < t,qq, Qqr >

Method:
1.Let I = {i:1 € [1,k],ul?] < v[i]} and m = max(]);
2.1 =¢ //Stop when u = v
Return < u, Q j; >;
3. For i = u[m] to v[m] //Divide
Let u;[j] = u[j] and v;[j] = v[jl forall 5 € I \ {m}, and u;[m] = v;[m] = i;
If ¢ (uj.v;) # ¢
Let < t;, Qg >= Sub_QDT(C, u;,v;, Qg ); //Recursion
4. For i = u[m] to v[m] //Conquer
If t; # null
Let j = min{j : j > i,t; #nullV j > v[m]};
If j > v[m]
Return < t;, Q¢ >;
Else

Let Qj = Qg U {¢*(t;.tj)} and i = j:
Return < null, Q¢ >;
5. Return < null, Qg4 >;

Fig. 3. Procedure QDT.

The Inductive Case: Suppose the inductive hypothesis holds for |I| = 0,1,...,j <
k, we show that it holds for |I| = j+1. Let u and v satisfy thatu < vand |I| = j+1,
where I = {i : 7 € [1, k], u[i] < v[i]}.

For all u[m] < ¢ < v[m], where m = max(]), the pair(u;, v;) defined in the sub-
routine Sub_QDT satisfy |{i : i € [1, k], u;[¢] < v;[¢]}| = j. Hence, when the sub-
routine Sub_QDT recursively calls itself with the input (C, u;, v;, Qg4¢), the inductive
hypothesis holds inside the recursion. Let J = {i : ¢ € [u[m], v[m]], ¢*(u;, v;) ¢
Qc) and J' = [u[m], v[m]] \ J. Because of the inductive hypothesis, ¢*(u;, v;) =
UqES“ivi g holds for all i € J’, and conversely ¢*(u;,v;) = (qusum QU {t;}
for all ¢+ € J, where t; = Sub_QDT(C, u;, v;, Q).

If ¢*(u,v) € Qe, we have that |J| is even. Fori = 1,2,..., %, GPtri_1, 1) €
Suv holds because of Step 4 of Sub_QDT. Hence, we have that
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v[m]
)= |J ¢
1=u[m]
171
v[m] 2
:< U ( U Q>>U(U{q2(t2¢1,t2i)>= U q
i=u[m] * q€Su,;v, i=1 qESuv
Conversely, if ¢*(u, v) € g\ Qe, we have that |.J| is odd. Fori = 1,2,..., Z=1 we

have that ¢>(t2;_1,t2;) € Suy. Furthermore, we have that Sub_QDT(C, u,v, Qg) =
t| ¢ Suv- Hence, the following holds:

v[m]
)= | ¢ @ivi) = Suw U{Sub_QDT(C.u,v, Qqy))

1=u[m]

This proves the inductive case of our inductive hypothesis.

In order to prove Qg4 = Q., we show that for any ¢ € Qg, ¢ < Q¢ holds.
Suppose in the subroutine Sub_QDT in Fig. 3 a sum-two query ¢*(;, t4) is added to
Qgt, Where u[m] < i < j < v[m].

We only need to show that ¢*(u;, v;) \ {t;} = UqGSi q and similarly ¢*(uj,v;) \
{t;} = quS]- q, where S;, Sj C Q¢ and u;, v;, uj,v; are defined in Fig. 3. Because
then we have

j—1
Ctinty) = g (ug,v5) \ (( U q*(ul,vl)> U < U q))
l=i+1 qeS;US;

This implies that qz(ti,tj) =< Qe, because ¢*(u;,vj) € Qe and ¢*(uj,vy) € Qe for
any ¢ < [ < j. We do so by induction on |I|.

The Inductive Hypothesis: For any i € [u[m], v[m]], if t; # null then ¢*(u;, v;) \
{t;} = Uvqui s(q), for some S; C Q., where u[m], v[m], t; are defined in Fig. 3.
The Base Case: For |I| = 0, we have that u = v, ¢ = u[m], and ¢t; = u. Hence,
q*(u,u) \ {u} = ¢. The base case of the inductive hypothesis trivially holds with
S; = ¢.

The Inductive Case: Suppose the inductive hypothesis holds for all |I| =0, 1,...,j
for some 0 < j < k, we show that it holds for j + 1. Because the subroutine
Sub_QDT recursively calls itself, inside the recursion we have that |I| = j. Suppose
the inputs to the recursive call are C, u, v and ¢*(u, v) ¢ Q.. We have that ¢*(u,v) =
¢ (u, v UG (ugg 1, VUG (g, vp) if 1 < v[m], or ¢*(u, v) = ¢*(u, vi_1)Ug* (uy, vp)
if I = v[m]. Moreover, because of the inductive hypothesis we have that ¢*(ug, v;) \
{t1} = ¢*(u, o)\ {t;} = Uvqul s(q) holds for some S; C Q.. Hence, we have

¢+, )\ {8} = Uyges 5@, where S = SU{q*(w, 0p—1), ¢* (g1, 0)} it L < v[m],
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or @ = Q; U {¢g*(u,vj_1)} if | = v[m]. Because ¢*(u,v) ¢ Qe, we have that |{i :
i € [u[m], v[m]],t; # null}| is odd. Hence, we have ¢*(u, vj_1), ¢*(uj41,v) € Qe.
Consequently, S C Q. holds. Because t; =Sub_QODT(C,u,v, Q4), this validates
the inductive case of our inductive hypothesis. O

Example 10. To demonstrate how the procedure QDT constructs Q j;, we consider
Example 9 again. Without loss of generality, assume the procedure calls the subrou-
tine Sub_QDT in the following order (the order does not affect the final result). First,
each query in Q. U O is the input. The subroutine Sub_QDT divides each such
input into its two tuples (step 3). Upon conquering, the subroutine adds the query
itself into Qg4 (step 4). Second, the procedure calls the subroutine Sub_QDT with
q*((1,2),(2,3)) as the input and adds ¢2((1,2),(1,3)) and ¢%((2,2),(2,3)) to Qut
(which are already there). Finally, when ¢*((1, 1), (2,4)) is the input, the subroutine
divides the query into ¢*((1, 1), (1, 3)) and ¢*((2, 2), (2,4)), and upon conquering the
subroutine adds ¢2((1,1),(1,2)), ¢*((2,2),(2,3)), and ¢*((1,3),(2,4)) to Qg (the
first two are already in Q). The final result of Q4 will be exactly as described in
Example 9.

The time complexity of building Q; using Sub_QDT is O(mn), where m = |Q;|
and n = |C|. Because |Qg;| < [Q¢] < (|§|) and m = O(('g')), we have |Qg| =
O(m). Hence, no more storage is required by Q; than by Q.

Definition 5. Forany S C Q, use G(C, S) for the undirected simple graph having
C as the vertex set, S as the edge set and each edge q2(t1 , 1) incident the vertices t;
and t,. We call G(C, Qg4;) the QDT Graph.

Figure 4 illustrates the QDT graph for our running example. It has been shown
that a set of sum-two queries is safe iff the corresponding graph is a bipartite graph
(that is, a graph with no cycle containing odd number of edges) [8]. In Fig. 4 it is
easy to observe that an odd cycle exists, so the graph is not a bipartite graph. Whether
a graph is bipartite can be decided with a breadth-first search (BFS) on G(C, Qg4;),
taking time O(n + |Qg|) = O(m + n). Hence, the complexity of determining the
compromiseability of Q. is dominated by the construction of Q;, which is O(mn).
Notice that from Section 5 we know that directly applying the condition of Audit
Expert has the complexity of O(m?n) [12]. Therefore, our solution is more efficient
than Audit Expert with respect to MDR queries.

(1,1) (1,2) 1.3)

2,2) 2.3) 24)

Fig. 4. An example of QDT graph.
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6.2. Beyond even MDR queries

Characterizing the QDT Graph. Lemma 1 gives some properties of the QDT graph
that are useful for the rest of this section. The first property is straightforward. The
second property is based on the intuition that if any two tuples ¢, ¢, in the data set
are not close enough (that is, ¢*(¢1,t2) ¢ Qgs), then we can find another tuple 3 €
q*(t1,tp), such that ¢*(¢1,t3) € Qg and t3 is closer to ¢ than ¢, is. If ¢*(¢1,t3) ¢
Q- We repeat this process. This process can be repeated less than | ¢*(t1,%2) |
times, and upon termination we have a tuple that is close enough to ¢;. The third
claim is a natural extension of the first two.

Lemma 1.

1. QN Qi C Q.

2. For any ty,ty € C satisfying that |q*(t1,t2)| > 2, there exists t3 € ¢*(t,t2)
such that ¢*(t1,t3) € Q.

3. G(C, Qq) is connected.

Proof. The first claim holds as Sub_QDT(C, ug, vy, Qg;) Will be called for all ug, vg
satisfying q* (ug, vg) = {ug, v}

For the second claim, suppose t3 # ti, t3 # tp and |¢*(t1,t3)| > 2. Then ¢, ¢
q*(t1, t3) holds. For otherwise, for any 7 € [1, k] we have min{¢;[],,[i]} < #3[7] <
max{t[¢],t2[2]} and min{t;[:],t3[i]} < tp[i] < max{t¢;[:],%3[¢]}, and hence
to = t3 contradicting our assumption. Consequently, we have that |¢*(¢1,3)] <
lg*(t1,t2)|- Let tg € q*(t1,t3) satisfying t4 # ¢, and t4 # t3. We can repeat the
same argument by replacing t3 with ¢4 and so on, until |¢*(¢;,t)] = 2 for some
t € q*(t1,t2). This together with the first claim of Lemma 1 justifies the second
claim.

We prove the third claim by contradiction. Suppose G and G, are any two con-
nected components of any G(C, Qg4;), and let t; € V(G)) (the vertex set of G),
t, € V(G,). By the first claim of Lemma 1 we have that |¢*(¢1,%2)| > 2. By the
second claim there exists t3 € g*(¢1, ) such that ¢*(¢1,t3) € Qg and hence t3 €
V(Gy). Similarly as stated above, t; ¢ ¢*(t3,t>) and hence |g*(¢1,t2)| > |q*(t3, t2)].
Repeat above reasoning with ¢; replaced by ¢3 and so on, until that for some ¢ we
have |¢*(¢,t2)| = 2, and hence ¢*(¢,t2) € Qg by the first claim. But then G| and
G, are connected because ¢t € V(G1), contradicting our assumption. O

Properties of Qg Although we have shown that Qg =4 Qe, Qg may be nei-
ther the smallest nor the largest subset of Q; equivalent to Q.. The smallest subset
can be obtained by removing all the cycles containing even number of edges from
G(C, Qg). If Q. is safe we then have a spanning tree of G(C, Q4;), which corre-
sponds to a set of linearly independent row vectors in the incidence matrix. On the
other hand, we are more interested in the maximal subset of Q; that is equivalent to
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Q¢, because this reveals the extent of knowledge users may ever learn from query
results. According to Lemma 2, a safe Q. essentially allows users to sum any two tu-
ples from difference color classes of G(C', Q), and to subtract any two tuples of the
same color. The maximal subset of Q; equivalent to Q. is hence the complete bipar-
tite graph with the same bipartition as that of G(C, Q). These results are formally
stated in Lemma 2.

Lemma 2. Given that Q. is safe, let (Cy,Cy) be the bipartition of G(C, Q4) and
= {?(u,v) s u e C,v € Cy). We have that

1. Qgt Ed th.

2. Forany S C Q, if S =4 Qg then S C Q’:lt.

3. Foranyty,ty € Cy (orty,ty € Cy), there exists r € RICdt| such that M(ty) —
M(ty) =1 - M(Qa).

Proof. Qg =< Q7, is trivial because Q4 C Q;,. We only need to show Q7, =< Qg.
By Lemma 1, G(C, Qg;) is a connected bipartite. Hence, there exists a path con-
taining odd number of edges between any ¢; € () and t, € C,. Let it be
S = {1 t). >t t3), . ... (tan. tant 1), @*(tant1. t0)}, where n > 0. We
have that M(¢%(t1,t0) = (—DO (=D (=D3,...,(=1)?™) - M(S)T. Hence,
P(tr.to) = Qar.

Because Q7 corresponds to the complete bipartite graph (that is, a bipartite graph
whose edge set includes all the edges that incident two vertices from different color
classes) with bipartition (C1, C3), any proper superset S of Q% is not a bipartite.
Hence, S cannot be safe, and consequently S A Q.

For any t,t1; € S, because G(C, Qg;) is connected there must exists ¢, € Sy
such that ¢>(t1,t2) € Q. Taken together with ¢*(t2,t11) < Qg;, we have that the
third claim holds. O

Odd MDR Queries. Now that we can determine the compromiseability of Q., we
would like to know if anything else can be answered safely. First we consider odd
MDR queries that form the complement of Q. with respect to all MDR queries Q.
Intuitively, feeding any odd MDR query ¢*(ug, vo) into Sub_QDT as the input gives
us a single tuple ¢ in the returned pair. Suppose ¢*(ug, vg) is a j-dimensional box.
It can be divided into two 7 dimensional boxes excluding ¢, together with a (j — 1)-
dimensional box containing ¢. We can recursively divide the (5 — 1)-dimensional box
in the same way. Hence, ¢*(ug, vp) is the union of a few disjoint even MDR queries
together with a singleton set {¢}. This is formally stated in Corollary 2 and illustrated
in Example 11.

Corollary 2. Given d € RF, F = F(d), C C F and any ¢*(u,v) € Qg \ Qe
satisfying |{i : u[i] # v[i]l}| = j, there exists ¢*(u;,v;) € Qe forall 1 <i < 2j—1,
such that |q*(u,v) \ Ufi_ll q*(ug,v9)| = 1 and q*(u;, v;) N g*(ug,v) = ¢ for all
1<i<l<2j—1.
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Proof. Suppose we call subroutine Sub_QDT in Fig. 3 with input (¢* (u, v), u, v, Qg)
and let the output be t,44. Fori = 1,2, ...,k and [ = 1,2, 3,4, define tuples u;; as:

1. uylj] = togqlj]l forall j >iandl =1,2,3,4.
2. uji il = ulil, uipli] = ueqqlil — 1, uialil = togqlil + 1 and uiyli] = v[é].
3. witlj] = wislj] = uljl and wpp[j] = wialj] = v[j] forall j <.

We then have that ¢*(u,v) = Ui-“:l(q*(uﬂ ,uin) U @ (13, u4)) U {togqq ) and all
the ¢*(u;, u;;)’s are disjointed. Because ¢*(u13,u14) = ¢, we have totally 2k—1
disjointed even MDR queries. O

Example 11. In Table 2, use ¢*((1,1),(2,3)) as the input of Sub_QDT gives
(1,3). ¢*((1,1),(2,3)) can be divided into ¢*((1,1),(1,3)) and ¢*((2,2),(2,3)).
q*((1, 1), (1, 3)) can be further divided into ¢*((1,1),(1,2)) and {(1,3)}. Hence, we
have g*((1, 1),(2,3)) = ¢*((1, 1), (1,2)) U ¢*((2,2),(2,3)) U {(1,3)}.

Corollary 2 has two immediate consequences. First, no odd MDR query is safe in
addition to Q.. Equivalently, any subset of Q; with Q. as its proper subset is unsafe.
Second, any odd MDR query is different from the union of a few even MDR queries
by only one tuple. This difference is usually tolerable because most users of MDR
queries are interested in patterns and trends instead of individual values. The odd
query can thus be approximately answered using the even ones.

Arbitrary Queries. We know the implication of Q. in terms of sum-two queries
from Lemma 2. Hence, we can decide which arbitrary queries can be answered in
addition to Q.. Corollary 3 shows that any arbitrary query can be answered iff it
contains the same number of tuples from the two color classes of G(C, Qg4;). This
can be decided in linear time in the size of the query by counting the tuples it con-
tains. The compromiseability of odd MDR queries hence becomes a special case of
Corollary 3, because no odd MDR query can satisfy this condition.

Corollary 3. Given that Q. is safe, forany ¢ C C, q =4 Qe iff [N C1| = |[gNCs
where (C, C») is the bipartition of G(C, Q).

>

Proof. If |cNCy| = |cN (|, then c = qus q for some S C Q7,. Hence, ¢ = Q3,
and consequently ¢ =< Qe.

We prove the only if part by contradiction. Without loss of generality suppose
|eNCy| > |eNCs| and ¢ < Q. Then ¢ = cyUcy, where ¢y, ¢; satisfy that coNep = ¢,
|coNCy| = |eoNC,| and ¢; C C. Then we have that ¢y < Q. and hence V(¢q) < Q.
follows. Suppose ¢; = {tg,t1,...,tn} where n > 1. Then by the third claim of
Lemma 2 we have that M(to) — M(t;) = r; - M(Qg;)T holds for all 1 < i < n,
where each r; € RI<atl By adding the two sides of all the n equation we have that
n-M(tg) = S0 M) +S0 ri- M(Qgp) T Let M(cy) = - M(Qqp)T, where
r e RISl Because 31, M(t;) = M(cy) — M(tg) = 7 - M(Qg)" — M(to)
we have that (n + DM(to) = S 7y - M(Qg)T + 7 - M(Qgp)T. Hence, ty is
compromised by Q; contradicting our assumption that ¢ < Q.. O
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6.3. Unsafe even MDR queries

When the collection of even MDR queries O is not safe, we may want to find
its safe subsets. Section 5.2 shows that finding maximum safe subsets of queries is
infeasible even for queries of restricted forms, such as sum-two queries and data
cubes. Hence, we turn to large but not necessarily maximum safe subsets. Recall
that Section 6.1 determines the compromiseability of Q. by finding an equivalent
collection of sum-two queries Q. If we could establish the equivalence between
their subsets, we would be able to extend the results in Section 6.1 to those subsets.
However, for arbitrary subsets of Q. or Qg, such equivalence may not exist, as
illustrated by Example 12.

Example 12. Consider Qg; in Example 9, Let Sz, = Qg \ {¢*((1,1),(1,2))}.
Suppose Sy =4 Se for some S C Q.. Because ¢3((1,3),(2,4)) =d Ses Se
must contain ¢*((1, 1), (1,2)), but then ¢*((1,1),(1,2)) A4 Sg: leads to a contra-
diction. Hence, S,; cannot be equivalent to any subset of Q.. Similarly, we have that

Q¢ \ {¢*((1,1),(1,2))} is not equivalent to any subset of Q ;.

If we regard an MDR query as a smaller data set C’, then the equivalence given
in Theorem 2 must also hold in this new data set as follows. First, we say an even
MDR query is defined on C" if it is a subset of C’. The collection of all even MDR
queries defined on C” is then equivalent to the set of sum-two queries produced by
the procedure Sub_QDT with those even MDR queries as the inputs. This result can
be extended to any subset of the data set, because we can always regard the subset
as the union of multiple disjoint MDR queries. Given any S C Q., we first find a
subset C of the data set such that all the queries defined on C’ are included in S.
This allows us to regard C’ as a new data set and to apply the above discussion to
establish the equivalence. Similar result holds for any S C Q. Those are formally
stated in Proposition 3 and illustrated in Example 13.

Proposition 3.

1. Givenany S C Qe, let Se = S\ {¢*(u,v) : Ig*(ug,vg) € Qe \ S, ¢*(u,v) N
q*(ug,v9) # ¢} and Sy = {¢*(w.v) : I¢*(up.vo) € Se.q*(u,v) €
Qg due to q¢*(ug,vg)}. Then Se =4 Syt

2. Given any S C Qgy, let Se = Qe \ {q*(u,v) : Iug,vo), ¢*(ug,vo) € S A
q*(u,v) N q*(uo, v0) # ¢}, and Sg = {¢*(u, v) : Ig*(ug, vo) € Se, ¢*(u,v) €
Qg due to ¢*(ug,vg)}. Then Sgp =4 Se.

Proof. We only need to justify the first claim. For any ¢(ug,vo) € Sg;, suppose
q*(ug, vg) € Qg because we know that ¢*(u,v;) € Se. Then {¢*(u,v) : ¢*(u,v) €
Qe Ag*(u,v) € ¢*(u1,v1)} C Se holds. Hence, ¢%(ug, vg) < Se. Conversely, for any
q*(ug, vo) € Se, we have {¢*(u,v) : ¢*(u,v) € Qg because of ¢*(ug,v9)} C Sy.
Therefore, ¢*(ug,vg) < Sg. O
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Example 13. Following Example 12, from S = Qg \ {¢*((1,1),(1,2))} we ob-
tain Se as {¢*((1,3),(2,3)), ¢*((2,2), (2,3)), ¢*((2,3),(2,4))} and Sy as {¢*((1,3),
(2,3)), ¢*((2,2),(2,3)), ¢*((2,3),(2,4))}. Notice that S, includes all and only the
queries defined on the new data set C/ = {(1,3),(2,2),(2,3), (2,4)}.

Proposition 3 guarantees the equivalence at the cost of smaller subsets. In some
situations we may be satisfied with weaker results, such as Sz = Se, because then
we know that if Sy, is safe then S must also be safe even though the converse is
not necessarily true. The result in Proposition 4 is similar to Corollary 3 but gives
only the sufficient condition. In Proposition 4, Se can be found by examining each
query in Q. against the bipartition (C, C,), taking time O(mn), where m = |Q¢|
and n = |C.

Proposition 4. For any Sg; C Qg let (Cy,Ch) be the bipartition of G(C, Sgy).
Then Sg; > Se holds, where Se C Qp satisfies that for any q*(u,v) € Se, |q*(u, v)N

Ci| = |g*(u,v) N Ca| = |q*(u, v)|/2 holds.

Proof. Let S C O satisfy that G(C, S) is the complete bipartite graph with biparti-
tion (C', Cy). Clearly Se < S = Sg. O

By Proposition 3 and Proposition 4, we can find a safe subset Se of Qp if a safe
subset Sg; of Qg is given. The ideal choice of Sy should maximize |Se|. This is
equivalent to computing the combinatorial discrepancy of the set system formed by
C and Q. [4]. The alternative approach is to maximize |Sg|, which is equivalent to
finding the maximum bipartite subgraph of G(C, Q4;). Unfortunately, both solutions
incur high computational complexity.

We can instead apply a simple procedure given in [20], as illustrated in Fig. 5.
It takes the graph G(C, Q) as the input and outputs a bipartite subgraph. It starts
from an empty vertex set and empty edge set and processes one vertex at each step.
The unprocessed vertex is colored blue if at least half of the processed vertices to
which it connects are red. It is colored red, otherwise. Any edge in the original graph
is included in the output bipartite subgraph if it connects two vertices in different
colors. The procedure terminates with a bipartite graph G(C, Q) satisfying that
|Qas| = [Qatl/2-

7. Implementation issues

We first show how the proposed techniques can be implemented based on a three-
tiered inference control model [39], we then discuss various issues in such an im-
plementation. The parity-based inference control method introduced in the current
paper can be applied to OLAP systems based upon this three-tiered inference con-
trol model. The objective of the three-tiered inference control model is to minimize
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Procedure Bipartize_QDT
Input: The data set C', Qg
Output: the safe subset Q
Method:
1. Let Q45 = ¢, So1q = ¢;
2. For each tpey € C'\ Spg
Let Cpq = {t: t € Syyg.tis red, and ¢*(t, tnew) € Qgt)
and Cye = {t : t € S,q,tis blue, and ¢*(t, tnew) € Qur )
If| Cred |>| Chiue |
Color t,¢,, blue;
For each t,;q € Cpeq
Let Q45 = Qg5 U {qz(told’ tnew)}s
Else
Color tyeq red;
For each t,;q € Chye
Let Qg5 = Qs U {¢*(toid» tnew) s
3. Return Q;;

Fig. 5. A procedure for finding large safe subsets of Q j;.

the performance penalty of inference control methods. This is achieved through in-
troducing a new tier, aggregation tier A, to the traditional two tiered view (i.e., data
tier D and query tier Q) of inference control. The three tiers are related by three
relations Ryp € A x D, Rga € Q x A, and Rgp = Ryp o Rga. The ag-
gregation tier A satisfies three conditions. Firstly, | A| is comparable to | D|. Second,
there exists partition 7 on A such that the composition of R 4 p and the equivalence
relation given by P gives a partition on D. Finally, inferences are eliminated in the
aggregation tier A.

The three-tiered model owes its advantages to the three conditions mentioned
above. First, because |A| is relatively small (in most cases |Q| > |D| is true), con-
trolling inferences caused by A is easier than controlling inferences caused by
because of the smaller input to inference control methods. Second, because A and D
can both be partitioned, inference control can be localized to the R 4 p-related blocks
of A and D, which further reduces the complexity. Moreover, the consequences of
any undetected external knowledge are confined to blocks, making inference control
more robust. Finally, as the most expensive task of three-tiered inference control, the
construction of A can be processed off-line (i.e., before any query arrives). Decom-
posing queries into pre-computed aggregations is a built-in capability in most OLAP
systems, and hence the online performance overhead of the three-tiered inference
control is usually acceptable in these systems.

To apply the parity-based techniques, we first partition a given collection of
data based on its inherent dimension hierarchies. Each block in the partition is re-
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garded as a separate data set. The safe Qg ; (or its safe subsets Sy if Qg is un-
safe) composes each block of the aggregation tier. The query tier includes any ar-
bitrary query derivable from the aggregation tier. If we characterize Q. using the
row vectors in M(Q,), then the query tier is the linear space they span. The rela-
tions R 4p and R 4 are both the derivability relation <4 given in Definition 3, and
Rgop = Rap o Rga is a subset of <, because = is transitive. In Section 6 we
have shown that |Qg| = O(n?), where n = |C/, satisfying the first condition of
the three-tiered model (that is, | A| is comparable to |C|). Because Qg is separately
defined on each data set, the aggregation tier has a natural partition corresponding to
the partition of the data tier, satisfying the second condition (that is, A and D can be
partitioned). The last condition (that is, A is free of inferences) is satisfied because
we use the safe subsets of Q4; when it is unsafe.

By integrating our results on the basis of the three-tiered model, we inherit all the
advantages of the model, such as the capability of shifting computational overhead
to off-line processing. At the same time, we also inherit limitations of the model,
such as the impact on availability of queries. For example, even MDR queries that
span more than one block in the partition may be rejected if any of their intersec-
tions with these blocks are not answerable. One important reason to apply only the
parity-based method to blocks in a partition of the data set but not to the entire data
set is as follows. By Lemma 1, every QDT graph is connected, and hence compro-
mising one tuple can lead to the inference of all tuples in the data set. This situation
should be avoided considering that there might be undetected external knowledge.
Applying the parity-based method to each block in a partition of the data set can con-
fine the damage caused by undetected external knowledge to a single block. How-
ever, as mentioned above, doing so may also render some queries spanning multiple
blocks unanswerable. This reflects a fundamental tradeoff between the availability of
queries and the security of data. We could always improve the security by making a
more conservative assumption about external knowledge and having smaller blocks
in the partition of the data set, but at the same time we sacrifice the availability, and
vice versa.

As in statistical databases, the damage caused by undetected external knowledge
can be alleviated by not allowing inferences of k (k > 1) tuples. For this purpose,
one may suspect a generalized parity-based approach that prohibits any MDR query
whose cardinality is not divisible by k, where k can be any number greater than
one. By removing inferences of £ — 1 or less values, such an approach could then
tolerate undetected knowledge about no more than k — 2 values. It can be shown that
the Procedure QDT in Fig. 3 can be easily extended to construct a set of k tuples
(similar to the @ in the case of £k = 2). An extension to the proof of Theorem 2
will then show that this set of & tuples and the collection of all MDR queries whose
cardinalities are divisible by k are mutually derivable. However, unlike the case of
k =2,asetof k (k > 2) tuples forms a hyper graph, and it remains an open problem
to determine efficiently whether such a set causes inferences to &k — 1 or less values
(here, efficient refers to having a lower complexity than that of Audit Expert).
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As discussed earlier, the proposed parity-based method has a complexity of
O(mn) for m queries over n tuples. The performance overhead implied by this com-
plexity is certainly not negligible. However, the construction is done off-line before
any query arrives at the system. The complexity O(mn) thus has little impact on
the online performance. This is a reasonable approach in OLAP systems since they
typically rely on extensive off-line processing to reduce online delays in interacting
with users. Partitioning the data set and applying the parity-based method to each
block in the partition will also reduce the overall complexity (because the number of
queries m is smaller in each block), although this is achieved at the price of reduced
availability of queries. Data in OLAP systems are typically updated less frequently
than they are in transactional databases, so it is usually acceptable to re-compute
periodically the result of inference control on blocks of data that have been updated.

8. Conclusions

In this paper we have shown that directly applying existing inference control meth-
ods to MDR queries is usually inefficient because these methods ignore the inherent
redundancy in MDR queries. We then proved the equivalence between the collec-
tion of all even MDR queries and a special collection of sum-two queries. On the
basis of this equivalence, we showed how to determine the compromisability of even
MDR queries with improved performance. We showed that odd MDR queries must
be restricted but can be closely approximated by the even ones. We showed that
safe arbitrary queries can be efficiently determined. We have also established the
equivalence between subsets of even MDR queries and sum-two queries and given
sufficient conditions for finding safe subsets of MDR queries.
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