Journal of Computer Security 16 (2008) 419-437 419
DOI 10.3233/JCS-2008-0327
I0S Press

Implementing interactive analysis of attack graphs
using relational databases

Lingyu Wang **, Chao Yao®, Anoop Singhal ¢ and Sushil Jajodia ¢

& Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC,
H3G IMS8, Canada

E-mail: wang @ciise.concordia.ca

b Center for Secure Information Systems, George Mason University, Fairfax, VA 22030-4444, USA
E-mail: cyao@gmu.edu

¢ Computer Security Division, National Institute of Standards and Technology, Gaithersburg, MD 20899,
USA

E-mail: anoop.singhal @nist.gov

d Center for Secure Information Systems, George Mason University, Fairfax, VA 22030-4444, USA
E-mail: jajodia @ gmu.edu

An attack graph models the causal relationships between vulnerabilities. Attack graphs have important
applications in protecting critical resources in networks against sophisticated multi-step intrusions. Cur-
rently, analyses of attack graphs largely depend on proprietary implementations of specialized algorithms.
However, developing and implementing algorithms causes a delay to the availability of new analyses. The
delay is usually unacceptable due to rapidly-changing needs in defending against network intrusions. An
administrator may want to revise an analysis as soon as its outcome is observed. Such an interactive analy-
sis, similar to that in decision support systems, is desirable but difficult with current approaches based on
proprietary implementations of algorithms. This paper addresses the above issue through a relational ap-
proach. Specifically, we devise a relational model for representing necessary inputs, such as network con-
figurations and domain knowledge, and we generate attack graphs from these inputs as relational views.
‘We show that typical analyses can be supported through different type of searches in an attack graph, and
these searches can be realized as relational queries. Our approach eliminates the needs for implementing
algorithms, because an analysis is now simply a relational query. The interactive analysis of attack graphs
becomes possible, since relational queries can be dynamically constructed and revised at run time. As a
side effect, experimental results show that the mature optimization techniques in relational databases can
transparently improve the performance of the analysis.

1. Introduction

Attack graph is an important concept in defending against attackers who employ
multiple attack steps to gain privileges while evading detection. An attack graph
enumerates sequences of attack steps that may allow attackers to compromise critical
resources. By providing the confext of attacks, an attack graph can reveal threats in

*Corresponding author: Tel.: +1 514 848 2424 5662, Fax: +1 514 848 3171.

0926-227X/08/$17.00 © 2008 — I0OS Press and the authors. All rights reserved

420 L. Wang et al. / Interactive analysis of attack graphs

a more meaningful way compared to isolated vulnerabilities. Attack graphs can help
to harden a network at the least cost through finding critical vulnerabilities whose
removal can prevent potential attacks [9,18]. Attack graphs are used to monitor and
predict intrusions for real-time attack responses [16,17]. Attack graphs may also be
used as a basis for designing network security metrics [19].

Presently, the analysis of attack graphs typically depends on proprietary imple-
mentations of specialized algorithms. Standard graph-related algorithms are not
directly applicable due to unique characteristics of attack graphs. An algorithm
must be developed and implemented before the corresponding analysis become
available. However, such a delay is usually unacceptable in defending against net-
work intrusions because the needs for analyzing attack graphs can change rapidly
due to constantly changing threats and network configurations. An administrator
may want to modify an analysis immediately after the analysis result is observed.
Such an interactive analysis, similar to that in decision support systems, is diffi-
cult if at all possible with current approaches of implementing specialized algo-
rithms.

This paper describes a relational approach to attack graph analysis. First, we model
necessary inputs including network configurations and domain knowledge as rela-
tional tables. We then generate attack graphs using relational queries, which can
either be materialized as relations or left as view definitions. The latter case is es-
pecially suitable for large networks where materializing the complete attack graph
is prohibitive. Second, we show through examples that typical analyses of attack
graphs can be supported through different type of searches in the attack graph, and
these searches can be realized as relational queries.

Our approach eliminates the needs for implementing specialized algorithms, be-
cause the analysis of attack graphs is now simply relational queries. The approach
enables the interactive analysis of attack graphs, since administrators can dynam-
ically construct or revise queries based on the outcome of previous analyses. As
a generalization of typical analyses, the searches in attack graphs studied in this
paper provide templates for writing queries for a broader range of analyses. As a
side-benefit, our experimental results show that the performance of an analysis can
usually be transparently improved by the mature optimization techniques found in
most relational databases.

1.1. Related work

Attack graph is a model of knowledge about the inter-dependency between vul-
nerabilities and the connectivity in network. By regarding a collection of security-
related conditions as a state and each exploit as a transition between these states, an
attack graph can be generated by searching forwards from the initial state or back-
wards from a given goal state. Model checking was first used to decide whether a
goal state is reachable from the initial state [10,11] and later used to enumerate all

L. Wang et al. / Interactive analysis of attack graphs 421

possible sequences of attacks connecting the two states [6,12]. The number of at-
tack sequences is potentially exponential, leading to prohibitive complexity. Hence,
a more compact representation was proposed based on the monotonicity assumption
(that is, an attacker never relinquishes an obtained capability) [2]. The new represen-
tation keeps exactly one vertex for each exploit or condition, leading to attack graphs
of polynomial size.

The analysis of attack graphs has played important roles in various aspects of
defending against network intrusions [6,8,9,12,16,19]. In contrast to data mining-
based approaches [13-15], attack graph-based analysis can usually provide results
with more certainty due to the domain knowledge encoded in an attack graph. The
minimal critical attack set analysis finds a minimal cut set in the attack graph whose
removal prevents any attacker from reaching the goal state [6,12]. However, the at-
tacks in a minimal critical attack set are not necessarily independent, and a conse-
quence cannot be removed without first removing its causes. This observation leads
to the minimum-cost hardening analysis, which finds a minimal set of security con-
ditions that can be disabled at will [9].

Finding the minimum set of attacks leading to a given goal is computationally
infeasible, whereas a minimal set can be found in polynomial time [2,6,12]. All
attacks involved in at least one such minimal set of attacks, namely, relevant attacks,
can also be enumerated [2]. The minimal number of attacks required for reaching
given goals can be found in polynomial time (although the exact set of attacks cannot
be) [2]. Finally, in exploit-centric alert correlation [8,16], an attack graph is used to
correlate isolated intrusion alerts into attack scenario and to predict possible future
attacks.

The afore-mentioned analysis of attack graphs is largely based on proprietary al-
gorithms. However, as mentioned earlier, this may delay a new analysis and make
interactive analysis impossible. To our best knowledge, our study is the first effort to-
wards removing this limitation and enabling interactive analysis of attack graphs. On
the other hand, decision support systems have long been used for interactive analysis
of business data. However, an analyst using decision support systems is usually inter-
ested in generalized data and statistical patterns, which is different from the analysis
of attack graphs. Recently, Agrawal et al. explore database technologies for imple-
menting the P3P standard [1], which shares a similar motivation with our work.

The preliminary results of this paper have appeared in [20]. The examples dis-
cussed there are generalized in this paper as different type of searches in an attack
graph, and queries written for these searches can thus be used as templates in writing
queries for other analyses. The rest of the paper is organized as follows. Section 2
proposes a relational model for representing the attack graph. Section 3 then dis-
cusses how typical analyses can be generalized as different searches in attack graphs
and how these searches can be written as relational queries. Section 5 describes our
implementation of the proposed methods. Finally, Section 6 concludes the paper.

422 L. Wang et al. / Interactive analysis of attack graphs
2. A relational model for representing attack graphs

We study the representation of attack graphs in relational model. First, Section 2.1
reviews basic concepts of attack graphs. Section 2.2 then proposes a relational model
for representing attack graphs.

2.1. Attack graph

We define attack graph as a directed graph having two type of vertices, exploits
and security conditions (or simply conditions). An exploit is a triple (hs, hq, v), Wwhere
hg and hq represent two connected hosts and v a vulnerability on the destination host
hq. A security condition is a pair (h, c), indicating the host h satisfies a condition ¢
relevant to one or more exploits. Notice that hg, hg and v are abstract notations (for
example, hgs and hq can be host names, IP addresses, and so on, and v can be the
name of a vulnerability). Moreover, both exploits and conditions may occasionally
involve more or less hosts. For example, an exploit may require an intermediate host
as stepping stone between the source and destination hosts, and a condition may
apply to a pair of hosts. It is our belief that the methods proposed in this paper can
be extended to such cases.

Corresponding to the inter-dependency between exploits and conditions, there are
two types of edges in an attack graph. First, the require relation is a directed edge
pointing from a condition to an exploit, which means the exploit cannot be executed
unless the condition is satisfied. For example, an exploit (hs, hq, v) requires following
two conditions, that is the existence of the vulnerability v on hq and the connectivity
between hg and hq. Second, the imply relation pointing from an exploit to a condition
means executing the exploit will satisfy the condition. Notice that there is no edge
directly connecting two exploits (or two conditions). These concepts are illustrated
in Example 1 and formally characterized in Definition 1.

Example 1. The left-hand side of Fig. 1 shows a simple attack graph as our running
example. The attack graph indicates that by exploiting a buffer overflow vulnerability
in the Sadmind service (Nessus ID 11841), an attacker can gain the privilege of using
a remote machine. The right-hand side shows a simplified version where = denotes
the existence of the vulnerability, y the user privilege, and A the exploitation of that
vulnerability. The attack graph shows an attacker having user privilege on host 3
can exploit the vulnerability on hosts 1 and 2 and obtain user privilege on the hosts.
Notice that after an attacker has obtained user privilege on host 1, he/she can then
exploit host 2 from either host 3 or host 1.

Definition 1. Given a set of exploits E, a set of conditions C, a require relation
R, C C x E, and an imply relation Ry C E x C, an attack graph G is the directed
graph G(E U C, R, U R;) (E U C'is the vertex set and R, U R; the edge set).

L. Wang et al. / Interactive analysis of attack graphs 423

Attack Graph (Exploits As Ovals) Simplified Version (Exploits As Triplets)

(hl,sadmind_service) (h3,user_privilege)

<35

(hl,user_privilege) (h2,sadmind_service)
P N

@ @ 1L.A) (3.1.A) (3.2.A) (1,2,A)

0.y @y
(h2.user_privilege)

Fig. 1. An example of attack graph.

(1, x) 3.y 2. %)

The two types of edges in an attack graph have different semantics. The require
relation is regarded as conjunctive, whereas the imply relation is disjunctive. More
specifically, an exploit cannot be realized until all of its required conditions have
been satisfied (different variations of an exploit that require different sets of condi-
tions should be regarded as different exploits), but a condition can be satisfied by
one of the realized exploits that imply that condition. Another important perspec-
tive is that conditions can be divided into initial conditions (those not implied by
any exploit) and intermediate conditions. The main reason for such a distinction is
that initial conditions can be independently disabled to harden a network, whereas
intermediate conditions cannot be without first removing the exploits implying them.

2.2. A relational model for attack graphs

Instead of modeling an attack graph, we model necessary inputs required for gen-
erating the attack graph. The attack graph then becomes the result of relational
queries over these inputs. Such a result may be materialized or simply kept as the
definition of relational views. This flexibility is important in cases where materializ-
ing the complete attack graph is prohibitive. The inputs we model include network
configuration and domain knowledge. Here network configuration refers to the net-
work connectivity, and that which host has which vulnerabilities. Domain knowledge
refers to the interdependency between different type of vulnerabilities and condi-
tions. These are illustrated in Example 2.

Example 2. To generate the attack graph in Example 1, we need the network con-
figuration and domain knowledge shown in Fig. 2. The left-hand side shows the
connectivity between three hosts. Initially, hosts 1 and 2 satisfy the condition = and
host 3 satisfies y. The right-hand side says that an attacker can exploit the vulnera-
bility A on the destination (denoted by the symbol D) host, if it satisfies = and the

424 L. Wang et al. / Interactive analysis of attack graphs

Network Configuration <——> Domain Knowledge

(x,D) (V)

v

Fig. 2. An example of network configuration and domain knowledge.

source host satisfies y at the same time. This exploitation will then satisfy y on the
destination host.

We assume the domain knowledge required for generating attack graphs is avail-
able from tools like the Topological Vulnerability Analysis (TVA) system, which
covers more than 37,000 vulnerabilities taken from 24 information sources includ-
ing X-Force, Bugtraq, CVE, CERT, Nessus and Snort [5]. On the other hand, we
assume the configuration information including vulnerabilities and connectivity can
be obtained using available tools, such as the Nessus scanner [4].

The schemata of our model are given in Definition 2. The connectivity relation
represents the connectivity from the source host Hy to the destination host Hy. The
condition relation indicates that a host H has an initial condition C'. The condition-
vulnerability dependency relation indicates that a condition C'is required for exploit-
ing a vulnerability V' on the destination host. The attribute F' indicates whether the
condition C' belongs to the source (,S) or the destination (D) host. The vulnerability—
condition dependency relation indicates a condition C' is satisfied by exploiting a
vulnerability V.

The next three relations and the condition relation together represent the complete
attack graph. Those relations may or may not need to be materialized. The vertices
are conditions (that is, the relation HC') and exploits (that is, the relation £ X), and
the edges interconnecting them are represented by relations C'E and EC'. Each rela-
tion has a composite key composed of all attributes in that relation. Example 3 shows
the relational model of Example 2. We do not show an example for the complete at-
tack graph but shall provide partial examples in later sections.

Definition 2. Define the following relational schemata:

Connectivity HH = (Hg, Hy),

Condition HC = (H, (),

Condition—vulnerability dependency CV = (C, F,V),
Vulnerability—condition dependency VC = (V,C),
Exploit EX = (Hg, Hy, V),

L. Wang et al. / Interactive analysis of attack graphs 425

Table 1

Representing network configuration and domain knowledge in relational model

hh(HH) hc(HC) cu(CV) ve(VO)
H; Hy H C C F \% \%4 C
1 2 3 y x D A A Y
2 1 1 x y S A
3 1 2 x
3 2

e Condition—exploit CE = (H,C, Hg, Hg, V),
o Exploit-condition EC = (Hg, Hy, V, H, C).

Example 3. To represent the network configuration and domain knowledge in Ex-
ample 2, Table 1 shows a set of relational schemata according to Definition 2.

The design of those schemata will be justified in later sections when we discuss
the generation and analysis of attack graphs using relational queries. Notice that for
clarity purposes we deliberately keep redundancy in the schema. In practice, one
may want to normalize the relations to avoid redundancy, such as adding an addi-
tional primary key to both HC and E X, and replacing C E and EC' with these keys.
Also, the schema needs to be extended by adding more attributes, when exploits or
conditions involve more than two hosts. However, we leave out these straightforward
extensions for simplicity of discussions.

3. Searching attack graphs

Instead of only providing examples to a few analyses, this section first general-
izes typical analyses into generic searches in attack graphs (notice that such searches
are intended for any attack graphs, instead of being peculiar to special cases dis-
cussed before). The next section will then discuss how to write relational queries for
these searches. This approach allows the proposed queries to be used as templates
in writing queries for a broader range of analyses. First, based on the study of sev-
eral analyses that have previously appeared in the literature, Definition 3 classifies
searches in attack graphs along four diagonal dimensions.

Definition 3. We say a search in an attack graph is:

e forward if it follows the directed edges in an attack graph; conversely, it is
backward if it follows the edges in their reversed direction,

e Jogical if it takes into accounts the conjunctive nature of the require relation;
conversely, it is casual if it ignores that property,

426 L. Wang et al. / Interactive analysis of attack graphs

e positive if it starts from satisfied conditions; conversely, it is negative if it starts
from disabled conditions,

o duplicate-eliminating if it visits each vertex at most once; conversely, it is
duplicate-preserving if it visits vertices multiple times.

First, Example 4 illustrates the generation of an attack graph. This attack graph
is an example of a forward, logical, positive and duplicate-eliminating search. First,
it is forward since it follows the directed edges in their original direction. Second,
it is a logical search because it visits an exploit (for example, (3, 1, A)) only if the
required conditions are all satisfied (for example, (1, x) and (3, y)). Third, it is a posi-
tive search since it starts from the satisfied initial conditions (that is, (1, x), (3, y) and
(2, x)). Finally, it eliminates duplicates. For example, although the exploit (2, 1, A)
implies the condition (1, y), no duplicate copy of that condition is inserted (as de-
scribed earlier, the attack graph has no duplicate vertices as a result of the monotonic
assumption).

Example 4. Given the network configuration and domain knowledge in Example 2,
the attack graph in Fig. 1 can be generated by an iterative procedure as follows. Ini-
tially, the attack graph only includes the three initial conditions (1, x), (3, y), (2, x) as
vertices. First, domain knowledge implies that the conditions (1, z) and (3, y) jointly
imply the exploit (3, 1, A), and (2, z) and (3, y) jointly imply (3,2, A). Second, the
two conditions (1,y) and (2,y) are satisfied. Next, we repeat the above two steps
with the two new conditions and insert four more edges between (1, y), (2, y) and the
two exploits. The process then terminates because no new conditions are inserted in
the second iteration.

Example 5 illustrates the vulnerability-centric alert correlation and prediction
method (before analyzing the attack graph, an alert actually needs to be mapped
to the corresponding exploit, which is omitted here for simplicity) [16]. Unlike the
generation of an attack graph, this analysis will ignore the conjunctive nature of the
require relation. The reason lies in that the relationship between alerts is usually
regarded as casual instead of logical [3,7]. Such a conservative approach is more ap-
propriate here, because alerts are often missed by intrusion detection systems. This
analysis is thus an example of a casual, positive and duplicate-eliminating search.
It is backward in alert correlation since the objective of correlation is to find those
alerts that prepare for the current one; it is forward in alert prediction, as the objective
is to enumerate attacks as possible consequences of the current one.

Example 5. In Fig. 1, suppose the current alert maps to the exploit (2, 1, A). The
backward search will first reach conditions (1, x) and (2, y) and then follows (2, i) to
(3,2, A) and (1,2, A) to find a previous correlated alert if there is any, or to make a
hypothesis for a missing alert, otherwise. The search continues from (1,2, A) to (1, y)
and (2, x), then from (1,y) to (3,1, A) (the branch to (2, 1, A) is a loop and hence

L. Wang et al. / Interactive analysis of attack graphs 427

ignored) and consequently to (1, x) and (3, y). The search stops when it reaches only
initial conditions or if a loop is encountered.

Examples 6 and 7 illustrate two different analyses, namely, enumerating sequences
of relevant exploits (that is, exploits appearing in at least one sequence of attacks
leading to given goal conditions [2]) and finding a network hardening solution (that
is, given goal conditions represented as a logic formula of initial conditions [9]),
respectively. The two analyses, however, share a similar backward, logical, positive
and duplicate-preserving search in the attack graph. The key difference of this search
from previous ones is that it may need to visit a vertex for multiple times. The reason
lies in that duplicate appearances of exploits and conditions must be kept in both
analyses. Preserving duplicates is necessary in enumerating sequences of relevant
exploits, because different sequences may share common exploits or conditions. For
network hardening, the resultant logic formula produced by the analysis clearly con-
tains duplicates.

An additional issue caused by preserving duplicates is the avoidance of loops
in the analysis. Loops in the attack graph are naturally avoided in a duplicate-
eliminating analysis, since such an analysis never needs to revisit a vertex. However,
for duplicate-preserving searches, loops must avoided through maintaining a prede-
cessor list for each vertex [18], as in a standard breadth-first search (BFS) (note that
none of these searches is a standard BFS).

Example 6. In Fig. 1, we start from a given goal condition (1, y) and search back-
wards in the attack graph. First, the two exploits (3, 1, A) and (2, 1, A) are reached.
The former branch ends at initial conditions, and the latter leads to one initial con-
dition (1, z) and an intermediate condition (2, y). The condition (2, i) then leads to
(3,2, A) and (1,2, A). The former ends at initial conditions, and the latter leads to
a loop back to (1, y). The relevant exploits with respect to the goal condition (1, y)
are thus (2,1, A), (3,1, A) and (3,2, A) (the exploit (1,2, A) is not relevant because
it can never be realized before satisfying the goal (1, y) itself).

Example 7. With a similar search, we can transform the goal condition (1, y) into a
logic formula of initial conditions as follows (by regarding the exploits and condi-
tions as Boolean variables). In the fourth line, the value FALSE replaces the second
appearance of the goal condition (1, i), because it is a predecessor of (1,2, A), indi-
cating a loop. The final result says that if any of the two conditions (1, z) and (3, y)
is disabled, then the goal can no longer be satisfied.

Ly=@3, 1,4 V(21,4
=Lo)AGy VLz)AQRy)
=1L, o)ANGyVLz)A3,2,4V(,2,4))
=1L,o)ANGy VL) AGYAQR,2)V(2,x2) AN FALSE)
=(1Lx)NQG,y).

428 L. Wang et al. / Interactive analysis of attack graphs

Example 8 illustrates how to compute the effect of disabling a given collection of
initial conditions. This analysis is useful in many applications. For example, it can
be used to determine the potential effect of introducing a new security measure (ef-
fectively some initial conditions will be disabled). It can be used to decided whether
the goal condition is reachable with only stealthy attacks [12]. It can also be used
to update the attack graph when the network configuration has changed and some
initial conditions are no longer satisfied (on other hand, adding a new initial condi-
tion can be easily handled with more iterations in the generation of attack graphs).
Notice that in these applications we can certainly recompute the attack graph from
scratches with the disabled initial conditions removed. However, this is not desired
if the attack graph is much larger than the collection of conditions to be disabled.
Instead, we should incrementally update the attack graph by computing the effect of
disabled conditions.

Example 8 is a forward, logical, negative, duplicate-eliminating search. The ex-
ample shows that such a negative search is quite different from the previous positive
ones. The previous searches are all unidirectional in the sense that the edges are
only followed in one direction (either forwards or backwards). However, the above
forward search actually needs special backward steps. For example, after it reaches
the condition (1, y) from the exploit (2, 1, A), it must go back to see whether other
exploits also imply the condition (1, %) (in this case, the exploit (3,1, A) does so),
since the imply relation is disjunctive.

Example 8. In Fig. 1, suppose the condition (2, z) is disabled. Then the exploits
(1,2, A) and (3,2, A) can no longer be realized. Then the condition (2,) becomes
unsatisfiable, because it can only be implied by the above two exploits. Finally, the
exploit (2, 1, A) cannot not longer be realized. However, the condition (1, y) is still
satisfiable, due to another exploit (3, 1, A).

More searches are possible by combining the four dimensions stated in Defini-
tion 3. These searches may also need to be combined in an analysis. For example,
deriving a minimal collection of exploits leading to given goal conditions is based on
a backward, logical, positive and duplicate-eliminating search. However, to decide
whether a set of exploits is minimal with respect to satisfying a condition, we must
test whether deleting an exploit from the set can still satisfy the condition [2]. Such
an algorithm thus requires one iteration of a forward, logical, negative and duplicate-
eliminating search. It is our belief that the different type of searches discussed here
can cover many useful analyses of attack graphs.

4. Analyzing attack graphs with relational queries

The previous section has illustrated how typical analyses may be supported us-
ing different searches in an attack graph. This section shows how to realize the

L. Wang et al. / Interactive analysis of attack graphs 429

searches in attack graphs as relational queries based on the relational model given
in Section 2.2. Using these queries as templates will greatly ease writing queries for
new analyses, since the search is the core component of each analysis. Realizing the
search usually comprises a major part of efforts in realizing the analysis. Additional
steps required by an analysis are usually straightforward compared to the search. For
example, for the network hardening analysis described earlier, we only need to add
logic connectives AND and OR to concatenate the partial results collected during the
search [9,18].

4.1. The generation of attack graphs

We start with the generation of attack graphs, which can be regarded as a spe-
cial analysis. As described in the previous section, this analysis is an example of a
forward, logical, positive and duplicate-eliminating search. The key challenge in re-
alizing this search using relational queries lies in its logical aspect. It must take into
account the conjunctive nature of the require relation, that is an exploit cannot be
realized unless all of its required conditions are satisfied. In contrast, the disjunctive
imply relation can be more easily realized using a join operation, since a condition
can be satisfied by any one of the realized exploits. This is illustrated in Example 9.

Example 9. Considering the two relations vc and cv in Table 1. Suppose an exploit
(1,2, A) is realized, then an equijoin between this tuple and vc followed by a pro-
jection on attributes Hy and c yields the condition (2, y). That is, the realized exploit
(1,2, A) causes the condition (2,) to be satisfied. On the other hand, a similar join
between a satisfied condition (1, z) with the relation cv yields a wrong result, that is
the exploit A can be realized on the host 1 (this also requires the condition ¥ to be
satisfied on the source host).

We deal with this issue with two set-difference operations as follows (similar to
the division operation in relational algebra). Intuitively, we first subtract (that is,
set difference) the satisfied conditions from the conditions required by all possible
exploits. The result includes all the unsatisfied but required conditions, from which
we can derive the exploits that cannot be realized. Then we subtract the unrealizable
exploits from all possible exploits to derive those that can indeed be realized. In
Example 9, the first set difference will give the unsatisfied condition (3, y) and (2, y),
which tells us that none of the exploits (3,1, A) and (2, 1, A) can be realized. The
second set difference then yields the final result as an empty set.

For simplicity of presentation, we shall use relational algebra and psuedo codes.
The queries can be easily implemented using standard SQL, whereas the looping
statements are supported in most procedural extensions, such as PL/SQL. Figure 3
gives a procedure for generating attack graphs in a way similar to that in Example 4.
In the procedure, (1 and () are temporary relations (we shall use subscripts in num-
bers to denote temporary relations). In Line 3, the Cartesian product hh x Iy (vc)

430 L. Wang et al. / Interactive analysis of attack graphs

Procedure Generating_Attack_Graph
Input: Relations hh(H H), he(HC), co(CV), ve(VC)
Output: Attack graph represented by Qe(EX), Q:(HC), Qce(CE), Qec(EC)
Method:
1. Let Q. = hc and Qc(EX), Qce(CE), Qec(EC) be empty relations
2. Do
3. LetQ) =op=pvH=m(hh x Iy (vc) X Qc)
4. Let Q> =1y p, v Hyc(hh X op=p(cv)) Ully g, v m,c(hhx
op=5(cv)) — Q1

5. LetQe= Iy, g, v(hh x cv) — g, g, v(Q2)U Qe

6. LetQce =y, c H, 1, v(Qe X op=p(cv)) Ullg, o g, 1y v (Qe ¥
op=5(cv)) U Qce

7. Let Qec =y, g, v, Hy,C(0Q.V=ve.v(Qe X v0) U Qec

8. Let Q. = nH,C(Qec) U Qe

9. While | Q.| is increased in Line 8

Fig. 3. Queries for generating attack graphs.

includes all possible exploits, and its join with the satisfied conditions in (). describes
how these conditions may contribute to the realization of exploits.

In Line 4, the left-hand side of the set difference operator includes all possible
exploits and the conditions they require, from which subtracting ()| yields the un-
realizable exploits in ()». Line 5 adds to). the exploits realized in this iteration
through subtracting the unrealizable exploits in (), from all possible exploits. Lines
6 and 7 collect the edges from conditions required by a realized exploit to that ex-
ploit, and those from an exploit to its implied conditions, respectively. Finally, Line 8
adds to Q). the conditions satisfied in this iteration.

The correctness of the Procedure Generating_Attack_Graph can be easily justified
through mathematical induction on the number of required iterations, and is omitted
here. The set union operation in the procedure does not keep duplicates, and hence
at some point the size of). must stop increasing. The procedure thus always termi-
nates. The total number of iterations is bound by the smallest between the number of
all possible exploits and the number of all possible conditions (in the worst case, the
exploits form a chain). Example 10 illustrates how this procedure works.

Example 10. Table 2 shows how the Procedure Generating_Attack_Graph gener-
ates the attack graph in Example 1. For simplicity, we only show the first iteration.
The relation @ are the satisfied conditions and their related (but not necessarily
realizable) vulnerabilities. Subtracting those from the conditions required by all pos-
sible exploits yields the two unsatisfied conditions and the unrealizable exploits in
(2. Then, subtracting the unrealizable exploits from all possible exploits gives the
two realizable exploits in (). The exploits then imply the two conditions in). The
edges in Q¢e and Q¢ interconnect the conditions and exploits.

L. Wang et al. / Interactive analysis of attack graphs 431

Table 2
An example of one iteration in deriving the complete attack graph
Q1 Q2 Qe

Hg Hy 1% H C Hi Hy \%4 H C Hg Hy 14
1 2 A 1 x 1 2 A 1 y 3 A
1 2 A 2 x 2 1 A 2 y 3 2 A
2 1 A 1 x

2 1 A 2 x

3 1 A 1 x

3 1 A 3 y

3 2 A 2 x

3 2 A 3 Y

QCC QCC QC

H C Hy Hy \%4 H; Hy \%4 H C H C
1 T 3 1 A 1 A 1 Y 1 Y
2 T 3 2 A 2 A 2 Yy 2 Y
3 y 3 1 A

3 Y 3 2 A

4.2. Alert correlation and prediction

In contrast to a logical search, realizing a casual search in relational queries is
more straightforward. Figure 4 states a procedure corresponding to the backward,
casual, positive and duplicate-eliminating search in alert correlation in Example 5.
The forward search for alert prediction can be realized in a similar way and hence is
omitted. First, the relation (3 includes the conditions reachable from the current ex-
ploits while ignoring the conjunctive relationship between those conditions. Second,
subtracting from ()3 the initial conditions in hc and the previously visited conditions
in Qs (to avoid loops) yields the reachable conditions and consequently the exploits
in Q4. The above two steps are repeated until no more conditions are left (that is,
all the conditions are in hc or in Js). The exploits encountered in this process are
collected in @ 4 as the final result. Loops are avoided in this process because the set
union operation does not keep duplicates and the relation ()5 ensures each condition
to be visited at most once.

Example 11. Table 3 shows the three iterations corresponding to the backward
search in Example 5. The first iteration starts from the given exploit (2,1, A) and
reaches two exploits (1,2, A) and (3,2, A) through the condition (2,). The sec-
ond iteration reaches (3, 1, A) and (2, 1, A) through (1, y). The exploit (2, 1, A) leads
to two previously visited conditions (that is, a loop) and the other exploit (3,1, A)
reaches only initial conditions. Consequently, no new exploit appears in (4 in this
iteration and the search terminates.

432 L. Wang et al. / Interactive analysis of attack graphs

Procedure Alert_Correlation
Input: Relations hh(H H), hc(HC), cuo(CV), ve(V C) and a tuple (hg, hq, V)
Output: A collection of exploits Q) 4
Method:
1. Let Q3(HC), Qs and @ 4 be empty relations and Q4(EX) = {(hs, hq,V)}
2. Do
3. LetQ3 =TIy, c(Q4 X op=p(cv)) Ul c(Q4 X op—g(cv))
4. Let Qs =y, 1, v(OH=HAQ;.C=vc.c(hh X (Q3 — he — Qs) X ve))
5. LetQs=QsUQ3
6. LetQq=QaUQ4
9. While @4 is not empty

Fig. 4. Queries for alert correlation.

Table 3
An example of analyzing attack graphs for alert correlation and prediction

First iteration Q3 Q4 Qs Qa
H c H; Hy 1% H c H; Hy 14
1 T 1 2 A 1 T 1 2 A
2 Y 3 2 A 2 y 3 2 A

Second iteration Q3 Q4 Qs Qa
H C H; Hy \%4 H C H; Hy \%
1 Y 1 A 1 x 1 2 A
2 T 1 A 2 Y 3 2 A
3 Y 1 y 3 1 A
2 x 2 1 A

3 y

Third iteration Q3 Qs=1¢ Qs Qa
H c H C Hs Hy 14
1 T 1 T 1 2 A
3 y 2 y 3 2 A
2 y 1 y 3 1 A
2 x 2 1 A

3 Y

4.3. Enumerating relevant attacks and network hardening

Figure 5 states the relational queries for the backward, logical, positive and
duplicate-preserving search used to enumerate relevant exploits or to generate the

L. Wang et al. / Interactive analysis of attack graphs 433

Procedure Relevant_Attack_Network_Hardening
Input: Relations hh(H H), he(HC), co(CV), ve(V C) and a non-empty relation
Q7(HO)
Method:
1. Let Q¢(F X) be empty relations
2. Do
3. LetQ¢ =g, gy v(Qec X (Q7 — ho))

Let Q7 = HH,C(ch X Q6)

4.
9. While Q¢ is not empty

Fig. 5. Queries for enumerating relevant attacks and network hardening.

Table 4

An example of enumerating relevant exploits and network hardening

First iteration Qe Q7
H; Hy \%4 H C
1 A 1 T
1 A 2 Y
1 x
3 Yy

Second iteration Q¢ Q7
H; Hy \%4 H C
3 2 A 3 Y
T

logic formula in network hardening. The two queries at Lines 3 and 4 simply tra-
verse the attack graph. Note that the actual analyses will require additional steps,
such as adding the and and or connectives. Also, a predecessor list should be main-
tained for each visited vertex to avoid loops. These should be realized outside the
procedure. Example 12 illustrates this search.

Example 12. Table 4 shows the iterations corresponding to the procedure in Exam-
ples 6 and 7. Originally, Q7 = {(1,y)}.
4.4. Effect of disabling initial conditions

Figure 6 shows the relational queries for the forward, logical, negative, duplicate-

eliminating search used for computing the effect of disabling initial conditions.
Line 3 derives unrealizable exploits from disabled conditions through a join.

434 L. Wang et al. / Interactive analysis of attack graphs

Procedure Disabled_Conditions
Input: Relations hh(H H), he(HC), co(CV), ve(V C) and a non-empty relation
Q(HC) C he
Output: A collection of conditions). and exploits Q.
Method:
1. Let Qg(EX), Qo(EC), Qo(EC), Qe and Q. be empty relations
2. Do
3. LetQg =TIy, p, v(Q11 X Qce)
4 Let Qg = Qg M Qec
5. Let Qo= Qec X Iz c(Qy) — Q9
6. LetQ =1y c(Qo) — g c(Qio)
7. Let Q. = Q: U Qg
8. Let Q. = Q. UQq
9. While @;; is not empty

Fig. 6. Queries for computing the effect of disabled conditions.

Table 5
An example of incremental updates

First iteration

Qs Qo Qo =2¢ Qi
H Hy V Hy Hy V C c
3 A 3 A 2 Y 2 y
2 A A 2 Y

Second iteration

Qs Q9 Q1o Qu=2¢
H Hy V H, Hy, Vv H ¢ H Hy V H C
2 1 A 2 I A 1 y 3 1 A 1 y

Lines 4-6 use two set difference operations to derive the unsatisfied conditions. Here
the disjunctive nature of the imply relation must be taken into consideration. That is,
a condition will be unsatisfied, if all of the exploits implying it are unrealizable (be-
cause any such exploit will be sufficient to satisfy the condition). Finally, the results
are collected in the two relations). and). Example 13 illustrates this search.

Example 13. Table 5 shows the iterations corresponding to the procedure in Exam-
ple 8 (the results in @) and () are omitted for simplicity). Originally, Q11 = {(2,x)}.

L. Wang et al. / Interactive analysis of attack graphs 435
5. Empirical results

To study the performance of the proposed approach, we implement the analyses
discussed in previous sections. The corresponding queries are written in PL/SQL and
tested in Oracle 9i in its default settings on a Pentium IV 2 GHz PC with 512 MB
RAM. In our preliminary experiments, we test the queries against the attack scenario
originally studied in [2]. The results of analyses match those reported in [2], which
justifies the correctness of our techniques.

We have two main objectives in testing the performance of our techniques. First,
we want to determine whether the running time is practical for interactive analysis
of attack graphs. For most decision support systems, the typical delay to a query that
is considered as tolerable in interactive analyses is usually in a matter of seconds.
Such a short delay is also critical to the analysis of attack graphs, especially when
the analysis is used for real-time detection and prevention of intrusions. The sec-
ond purpose of the experiments is to determine whether the techniques scale well in
the size of attack graphs. Although the attack graph may be very large for a large
network, an analysis and its result usually only involves a small part of the attack
graph. The running time of an analysis thus depend on how efficiently an analysis
searches the attack graph. We expect the mature optimization techniques available
in most databases can transparently improve the performance and make the analyses
more scalable. To test the queries against large attack graphs in a manageable way,
we increase the number of vertices in the original attack graph by randomly inserting
new hosts with random connectivity and vulnerabilities. We then execute the same
set of analyses in the new network and measure the running time of each analysis.

The main results are shown in Fig. 7. All the results have 95% confidence inter-
vals within about 5% of the reported values. The left-hand side shows the running
time of generating the attack graph in the size of that attack graph. The attack graph
with about 20,000 vertices can be generated in less than seven minutes. The result
also shows that our methods scale well in the size of attack graphs. The right-hand

Generating Attack Graph Execution Time of Analysis
4007 0.35 g T ;
—=— Alert Correlation L
350+ 0.3 —e— Relevant Attacks
—=— Incremental Updates
7300 Foas
9 250 2
© 0.2
€ g
£ 200 E
S w015
5150 %
% 0.1
@ 100 <
sor Olos W
0 0
o 05 1 15 5 0 0.5 1 15 2
Graph Size % 10° Graph Size x10°

Fig. 7. The performance of analyzing attack graphs using relational queries.

436 L. Wang et al. / Interactive analysis of attack graphs

side shows the running time of each analysis in the size of the attack graph. The
result shows that all the analyses require less than a second, which clearly meets
the requirement of an interactive analysis. The analyses all scale well with the size
of the attack graph. This proves our conjecture that the optimization techniques in
databases such as indexing can transparently help to keep analyses efficient. A closer
look at the result reveals that the increase in running time is mainly caused by larger
results. This also explains the fact that the incremental update analysis scales differ-
ently from the other two. That is, the effect of disabled initial conditions does not
change much when the size of the attack graph increases.

6. Conclusion

We have proposed a relational model to support interactive analysis of attack
graphs for intrusion detection and prevention. We have shown that the complete
attack graph can be represented as relational views. Any analysis of attack graphs
are thus relational queries against the views. We showed how to write relational
queries for typical analyses previously studied in the literature. This approach made
the analysis of attack graphs an interactive process similar to that in the decision sup-
port systems. As a side effect, the mature optimization techniques existing in most
relational databases also improved the performance of analyses.

Acknowledgements

This material is based upon work supported by National Institute of Standards
and Technology Computer Security Division; by Homeland Security Advanced
Research Projects Agency under the contract FA8750-05-C-0212 administered
by the Air Force Research Laboratory/Rome; by Army Research Office under
grant W911NF-05-1-0374, by Federal Aviation Administration under the con-
tract DTFAWA-04-P-00278/0001, by the National Science Foundation under grants
CT-0627493, 11S-0242237 and 11S-0430402, and by Natural Sciences and Engineer-
ing Research Council of Canada under Discovery Grant NO1035. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsoring organizations.

References

[1] R. Agrawal, J. Kiernan, R. Srikant and Y. Xu, Implementing P3P using database technology, in: Pro-
ceedings of the 19th International Conference on Data Engineering (ICDE’03), Bangalore, India,
2003.

[2] P. Ammann, D. Wijesekera and S. Kaushik, Scalable, graph-based network vulnerability analy-
sis, in: Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS’02), ACM Press, Alexandria, VA, USA, 2002, pp. 217-224.

[3]

[4
[5

= =

[6

[7

—

[8

[t

[9

(10]

[11]

[12]

(13]

[14]

[15

[16]

[17]

[18]

(19]

[20]

L. Wang et al. / Interactive analysis of attack graphs 437

F. Cuppens and A. Miege, Alert correlation in a cooperative intrusion detection framework, in: Pro-
ceedings of the 2002 IEEE Symposium on Security and Privacy (S&P’02), IEEE, Oakland, CA,
USA, 2002, pp. 187-200.

R. Deraison, Nessus scanner, available at http://www.nessus.org, 1999.

S. Jajodia, S. Noel and B. O’Berry, Topological analysis of network attack vulnerability, in: Manag-
ing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava and A. Lazarevic,
eds, Kluwer Academic Publisher, Norwell, MA, USA, 2003.

S. Jha, O. Sheyner and J.M. Wing, Two formal analysis of attack graph, in: Proceedings of the 15th
Computer Security Foundation Workshop (CSFW’02), Washington, DC, USA, 2002.

P. Ning, Y. Cui and D.S. Reeves, Constructing attack scenarios through correlation of intrusion alerts,
in: Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS’02),
ACM Press, Alexandria, VA, USA, 2002, pp. 245-254.

S. Noel and S. Jajodia, Correlating intrusion events and building attack scenarios through attack
graph distance, in: Proceedings of the 20th Annual Computer Security Applications Conference
(ACSAC’04), Tucson, AZ, USA, 2004.

S. Noel, S. Jajodia, B. O’Berry and M. Jacobs, Efficient minimum-cost network hardening via exploit
dependency graphs, in: Proceedings of the 19th Annual Computer Security Applications Conference
(ACSAC’03), Las Vegas, NV, USA, 2003.

C.R. Ramakrishnan and R. Sekar, Model-based analysis of configuration vulnerabilities, Journal of
Computer Security 10(1/2) (2002), 189-209.

R. Ritchey and P. Ammann, Using model checking to analyze network vulnerabilities, in: Proceed-
ings of the 2000 IEEE Symposium on Research on Security and Privacy (S&P’00), IEEE, Oakland,
CA, USA, 2000, pp. 156-165.

O. Sheyner, J. Haines, S. Jha, R. Lippmann and J.M. Wing, Automated generation and analysis of
attack graphs, in: Proceedings of the 2002 IEEE Symposium on Security and Privacy (S&P’02),
IEEE, Oakland, CA, USA, 2002, pp. 273-284.

A. Singhal, Application of Data Warehousing and Data Mining Techniques for Intrusion Detection
Systems, Springer, The Netherlands, 2006.

A. Singhal and S. Jajodia, Data mining for intrusion detection, in: Data Mining and Knowledge
Discovery Handbook, O. Maimon and L. Rokach, eds, Springer, The Netherlands, 2005, pp. 1225—
1237.

A. Singhal and S. Jajodia, Data warehousing and data mining techniques for intrusion detection
systems, Journal of Parallel and Distributed Databases (DAPD) 20(2) (2006), 149—166.

L. Wang, A. Liu and S. Jajodia, An efficient and unified approach to correlating, hypothesizing, and
predicting intrusion alerts, in: Proceedings of the 10th European Symposium on Research in Com-
puter Security (ESORICS 2005), LNCS, Vol. 3679, Springer-Verlag, Milan, Italy, 2005, pp. 247-266.
L. Wang, A. Liu and S. Jajodia, Using attack graphs for correlating, hypothesizing, and predicting
intrusion alerts, Computer Communications 29(15) (2006), 2917-2933.

L. Wang, S. Noel and S. Jajodia, Minimum-cost network hardening using attack graphs, Computer
Communications 29(18) (2006), 3812-3824.

L. Wang, A. Singhal and S. Jajodia, Measuring the overall security of network configurations using
attack graphs, in: Proceedings of the 21th IFIP WG 11.3 Working Conference on Data and Applica-
tions Security (DBSec 2007), Redondo Beach, CA, USA, 2007.

L. Wang, C. Yao, A. Singhal and S. Jajodia, Interactive analysis of attack graphs using relational
queries, in: Proceedings of the 20th IFIP WG 11.3 Working Conference on Data and Applications
Security (DBSec 2006), LNCS, Vol. 4127, Springer-Verlag, Sophia Antipolis, France, 2006, pp. 119—
132.

