
Indistinguishability: the Other Aspect of
Privacy?

Chao Yao1??, Lingyu Wang2, Sean X. Wang3, and Sushil Jajodia1

1 Center for Secure Information Systems
George Mason University
{cyao,jajodia}@gmu.edu

2 CIISE, Concordia University
wang@encs.concordia.ca

3 Department of Computer Science
The University of Vermont

xywang@cs.uvm.edu

Abstract. Uncertainty and indistinguishability are two independent as-
pects of privacy. Uncertainty refers to the property that the attacker can-
not tell which private value, among a group of values, an individual actu-
ally has, and indistinguishability refers to the property that the attacker
cannot see the difference among a group of individuals. While uncertainty
has been well studied and applied to many scenarios, to date, the only
effort in providing indistinguishability has been the well-known notion of
k-anonymity. However, k-anonymity only applies to anonymized tables.
This paper defines indistinguishability for general situations based on the
symmetry among the possible private values associated with individuals.
The paper then discusses computational complexities of and provides
practical algorithms for checking whether a set of database views pro-
vides enough indistinguishability.

1 Introduction

In many data applications, it’s necessary to measure privacy disclosure in re-
leased data to protect individual privacy while satisfying application require-
ments. The measurement metrics used in prior work have mainly been based
on uncertainty of private property values, i.e., the uncertainty what private
value an individual has. These metrics can be classified into two categories:
non-probabilistic and probabilistic. The non-probabilistic metrics are based on
whether the private value of an individual can be uniquely inferred from the
released data [1, 20, 7, 17, 5, 16] or whether the cardinality of the set of possible
private values inferred for an individual is large enough [26, 27]. The probabilis-
tic metrics are based on some characteristics of the probability distribution of

? The work was partially supported by the NSF grants IIS-0430402, IIS-0430165, and
IIS-0242237.

?? Part of work of this author was done while visiting the University of Vermont.

2

the possible private values inferred from the released data [3, 2, 10, 9, 15, 4] (see
Section 4 for more details).

However, uncertainty is only one aspect of privacy and it alone does not
provide adequate protection. For example, we may reveal employee John’s salary
to be in a large interval (say, 100K to 300K annually). There may be enough
uncertainty. However, if we also reveal that the salaries of all other employees
are in ranges that are totally different from John’s range (say, all are subranges
of 50K to 100K), then John’s privacy may still be violated. As another example,
suppose from the released data we can infer that all patients in a hospital may
only have Cold or SARS except that John may have Cold or AIDS. Even
though the uncertainty of John’s sickness has the same “magnitude” as that of
the other patients, John may still feel his privacy is violated, since he is the only
one who possibly has AIDS.

To adequately protect privacy, we need to consider the other aspect, namely,
indistinguishability. Indeed, the privacy breach in the above examples can be
viewed as due to the fact that from the released data, an individual is different
from all other individuals in terms of their possible private values. In other words,
the examples violate a privacy requirement, namely, the “protection from being
brought to the attention of others” [11]. What we need is to have each individual
belong to a group of individuals who are indistinguishable from each other in
terms of their possible private values derived from the released data. In this
way, an individual is hidden in a crowd that consists of individuals who have
similar/same possible private values. For instance, in the above salary example,
to protect John’s privacy, we may want to make sure that attackers can only
derive from the released data that a large group of employees have the same
range as John’s for their possible salaries.

Uncertainty and indistinguishability are two independent aspects for provid-
ing privacy; one does not imply the other. From the above examples, we can see
that uncertainty cannot ensure good indistinguishability. Likewise, good indis-
tinguishability cannot ensure enough uncertainty. For instance, if in the released
data many employees have the same single possible salary value, then these em-
ployees are indistinguishable from each other in terms of their salaries, but there
is not enough uncertainty to protect their privacy (all their salaries are the same
and revealed!).

Our idea of indistinguishability is inspired by the notion of k-anonymization
[24, 25, 21, 14, 18] as it can be viewed as a generalization of anonymization. The
idea of k-anonymization is to recode, mostly by generalization, publicly available
quasi-IDs in a single released table, so that at least k individuals will have the
same recoded quasi-IDs. (Quasi-IDs are values on a combination of attributes
that can be used to identify individuals through external sources [24, 25].) In
our view, this is an effort to provide indistinguishability among k individuals,
since the recoding makes the individuals indistinguishable from each other. (As
noted above, indistinguishability does not guarantee uncertainty. This is also true
for k-anonymization, which is illustrated by the improvement reported in [19].
The authors impose an additional requirement on anonymization, namely, by

3

requiring diverse private values among the tuples with the same recoded quasi-
ID, in order to achieve, in our view, both indistinguishability and uncertainty.)

While k-anonymity is an interesting notion, it only applies to anonymized
tables. In this paper, we define two kinds of indistinguishability, and the corre-
sponding privacy metrics, that can be applied to general situations, including
anonymized tables and relational views. We show that k-anonymization is a
special case of one kind of indistinguishability under a certain assumption (see
Section 2.3).

Both notions of indistinguishability introduced in this paper are based on cer-
tain symmetry between individuals and their private values in the released data.
More specifically, the first definition requires symmetry for all possible private
values while the second definition bases on symmetry referring only to certain
subsets of possible private values. With the two kinds of indistinguishability de-
fined, we turn to study the problem of deciding whether a set of database views
provides enough indistinguishability. We study the computational complexity as
well as practical algorithms. We focus on checking for indistinguishability since
checking for uncertainty has been extensively studied [1, 7, 17, 5, 26, 16, 27].

We summarize the contributions of this paper as follows. (1) We identify
indistinguishability as a requirement for privacy in addition to uncertainty, pro-
vide formal definitions of different kinds of indistinguishability, and study their
properties. (2) We analyze the computational complexity and introduce practical
checking methods for deciding whether a set of database views provides enough
indistinguishability.

The rest of paper is organized as follows. We give formal definitions of in-
distinguishability and privacy metrics in Section 2. We then focus on checking
database views against these privacy metrics in Section 3. In Section 4 we review
the related work. Finally, we conclude with a summary in Section 5.

2 Indistinguishability

2.1 Preliminaries

In this paper, we consider releasing data from a single private table Tbl with
schema D. The attributes in D are partitioned into two sets, B and P . The
set B consists of the public attributes; P consists of the private attributes. For
simplicity and without loss of generality, we assume P only has one attribute.

We assume that the projection on B, ΠB(Tbl), is publicly known. In the
salary example, this means that the list of employees is publicly known. We
believe this assumption is realistic in many situations. In other situations where
this is not true, we may view our approach as providing a conservative privacy
measure.

Given a relation rB on B, we will use IB to denote the set {I|ΠB(I) = rB},
i.e., the set of the relations on D whose B-projection coincides with rB . The
domain of P is denoted by Dom(P). A tuple of an instance in IB is denoted by
t or (b, p), where b is in ΠB(Tbl) and p is in Dom(P). The set IB corresponds
to all possible private table instances by only knowing ΠB(Tbl).

4

Furthermore, we assume B is a key in D, which means that each composite
value on B appears at most once in the private table. We also assume B is
a quasi-ID, and hence, the tuples in Tbl describe associations of the private
attribute values with individuals. (Recall that a quasi-ID is a combination of
attribute values that can be used to identify an individual.) Such associations
are the private information to be protected.

In Figure 1, our running example is shown. The public attributes in B are
Zip, Age, Race, Gender, and Charge. We use t1, ..., t12 to denote the tuples in
the table. By the assumption that B is a quasi-ID, ti[B] identifies a particular
individual for each i. In the sequel, we use ti[B] and the individual identified
by ti[B] interchangeably. The private attribute is Problem. Here, Problem is
drawn from a finite discrete domain. (In general the private attribute also can
be drawn from an infinite or a continuous domain; but it should not be difficult
to extend our study to infinite discrete or continuous domains).

We assume that the data in Tbl are being released with a publicly-known
function M . We also use v to denote the result of M() on the private table, i.e.,
v = M(Tbl). Examples of function M() include an anonymization procedure,
and a set of queries (views) on a single table on D.

Zip Age Race Gender Charge Problem

t1 22030 39 White Male 1K Cold
t2 22030 50 White Male 12K AIDS
t3 22030 38 White Male 5K Obesity
t4 22030 53 Black Male 5K AIDS
t5 22031 28 Black Female 8K Chest Pain
t6 22031 37 White Female 10K Hypertension
t7 22031 49 Black Female 1K Obesity
t8 22031 52 White Male 8K Cold
t9 22032 30 Asian Male 10K Hypertension
t10 22032 40 Asian Male 9K Chest Pain
t11 22033 30 White Male 10K Hypertension
t12 22033 40 White Male 9K Chest Pain

Fig. 1. A patient table (Tbl)

Zip Problem
t9 22032 Hypertension
t10 22032 Chest Pain
t11 22033 Hypertension
t12 22033 Chest Pain

Fig. 2. A released
view ΠZip,P roblem(T bl)
σ

Zip=′22032′or′22033′ (T bl)

provides 2-SIND.

2.2 Symmetric Indistinguishability

As v = M(Tbl) is released, we denote by Iv the subset of possible instances in
IB that yield v. We introduce the definition of indistinguishability based on Iv.

Definition 1. (Symmetric Indistinguishability) Given a released data v
and two tuples bi and bj in ΠB(Tbl), we say bi and bj are symmetrically In-
distinguishable w.r.t. v if the following condition is satisfied: for each instance I
in Iv containing (bi, pi) and (bj , pj), there exists another instance I ′ in Iv such
that I ′ = (I − {(bi, pi), (bj , pj)}) ∪ {(bi, pj), (bj , pi)}.

We abbreviate Symmetric Indistinguishability as SIND. This definition re-
quires that for each possible instance in Iv, if two symmetrically indistinguish-
able B tuples swap their private values while keeping other tuples unchanged,
the resulting new instance can still yield v. In the sequel, we say two B tuples
t1[B] and t2[B] can swap their private values in an instance, or simply t1[B]
swaps with t2[B], if the resulting instance can still yield v.

5

Note that such a swap is required for all the instances yielding v, hence
this definition is in terms of v, not the current table Tbl (although we used
the projection ΠB(Tbl) in the definition, this projection is not Tbl itself and is
assumed publicly known). In other words, to be SIND is to be able to swap their
private values in all the possible instances, including Tbl.

For example, consider the released view v in Figure 2 on the table in Fig-
ure 1. The two B tuples t9[B] and t10[B] are SIND, because they can swap their
Problem values in any instance that yields v while still yielding the same v. Simi-
larly, the two B tuples t11[B] and t12[B] are also SIND. However, t9[B] and t11[B]
are not SIND, even though they have the same Problem value Hypertension
in the current private table. To show this, consider an instance obtained by
swapping the Problem values of t9 and t10 in Tbl (while other tuples remain
unchanged). So now t9 has ChestPain while t10 has Hypertension. Denote
the new instance Tbl′. Clearly, Tbl′ also yields the view v. However, in Tbl′,
if we swap the Problem values of t9 (i.e., ChestPain) with that of t11 (i.e.,
Hypertension), then both t9 and t10 will have Hypertension. Therefore, the
new instance obtained from Tbl′ does not yield v, and hence t9 and t11 are not
SIND.

The definition of SIND requires a complete symmetry between two B tuples
in terms of their private values. The sets of possible private values of the SIND
tuples are the same, because in each possible instance two SIND B tuples can
swap their private values without changing the views. Furthermore, the definition
based on swapping makes SIND between two B tuples independent on other B
tuples. That is, even if attackers can guess the private values of all other B
tuples, they still cannot distinguish between these two B tuples because the two
B tuples still can swap their private values without affecting the views.

We can also use a probability model to illustrate the indistinguishability
by SIND. If we assume each B tuple has the same and independent a priori
distribution over its private values, then we can easily prove that the two B
tuples have the same a posteriori distribution over their private values after
data released, due to complete symmetry in terms of their private values.

The binary relation SIND is reflexive, symmetric and transitive. That is,
SIND is an equivalence relation. It is easy to see that it is reflexive and symmetric.
We prove the transitivity as follows. If a B tuple b1 can swap with another B
tuple b2 and b2 can swap with b3, then b1 can swap with b3 by the following
steps: b1 swaps with b2; b2 swaps with b3; b2 swaps with b1; by the definition of
SIND, the final instance still yields v.

Thus, all the B tuples that are indistinguishable from each other form a
partition of the B tuples. Each set in the partition, which we call a SIND set, is
the “crowd” that provides individual privacy. The sizes of these crowds reflect
how much protection they give to the individuals in the crowd. So we have the
following metric.

Definition 2. (k-SIND) Given a released data v, if each SIND set has a car-
dinality of at least k, we then say v provides k-SIND.

6

2.3 Relationship with k-Anonymity

In this subsection, we discuss the relationship between k-SIND and k-anonymity.
In the k-anonymity literature (e.g., [24, 25, 21, 14, 18]), the released data is an
anonymized table. Anonymization is a function from quasi-IDs to recoded quasi-
IDs, and the anonymization process (the function M in Section 2.1) is to replace
quasi-IDs with recoded quasi-IDs. We assume that the anonymization algorithm
and the input quasi-IDs are known. In fact, we make a stronger assumption,
called “mapping assumption”, which says that (1) each quasi-ID maps to one
recoded quasi-ID and (2) given a recoded quasi-ID, attackers know which set of
quasi-IDs map to it.

As an example, there is a table and an anonymized table as the following,
respectively. The tuples on (Zip,Race) are quasi-IDs. Under the mapping as-
sumption, attackers know which quasi-ID maps to which recoded quasi-ID. For
instance, (22031, White) maps to (2203∗, ∗) but not (220∗∗, White). (In con-
trast, without the mapping assumption, only from the anonymized table, (22031,
White) may map to either (2203∗, ∗) or (220∗∗, White).)

Zip Race Problem

22021WhiteCold

22031WhiteObesity

22032WhiteAIDS

22033Black Headache

Zip Race Problem

220∗∗WhiteCold

220∗∗WhiteObesity

2203∗ ∗ AIDS

2203∗ ∗ Headache

Under the above assumption, we have the following conclusion about the
relationship between k-SIND and k-anonymity. Here the attributes of quasi-IDs
are assumed to be exactly the public attributes B.

Proposition 1. Under the mapping assumption, if an anonymized table v pro-
vides k-anonymity, where k ≥ 2, then v provides k-SIND.

Intuitively, if v provides k-anonymity, then at least k quasi-IDs map to each
recoded quasi-ID in v. In any instance yielding v, suppose two quasi-IDs b1 and
b2 map to the same recoded quasi-ID. Then swapping the private values of b1

and b2 in the original table gives an instance yielding the same v. Therefore, v
provides k-SIND.

By definition, k-anonymity is applicable only to a single anonymized table,
but not to other kinds of released data such as multiple database views.

2.4 Restricted Symmetric Indistinguishability

Since SIND requires symmetry in terms of all possible private values, it is a
rather strict metric. We define another metric based on the symmetry in terms
of not all possible private values but only a subset that includes the actual private
values in the current private table. If B tuples are symmetric in terms of this
subset of private values, even though they are not symmetric in terms of other
values, we may still take them as indistinguishable. The intuition here is that
we intend to provide more protection on the actual private values.

7

We associate each B tuple with a set of private values including its cur-
rent private value. These sets form a collection. More specifically, we call a
collection P of Dom(P) value sets P1, ..., Pn a private value collection, where
n = |ΠB(Tbl)| and ΠB(Tbl) = b1, ..., bn, if for each s, where s = 1, ..., n,
ΠP σB=bs

(Tbl) ∈ Ps.
If two B tuples are symmetric w.r.t. a private value collection, then we take

them as indistinguishable. More formally, we have the following definition. We
abbreviate restricted symmetric indistinguishability as RSIND.

Definition 3. (RSIND) Given a released data v on the current table Tbl and
a private value collection P1, ..., Pn, we say two B tuples bi and bj are RSIND
w.r.t. P1, ..., Pn if the following conditions are satisfied: (1) Pi = Pj and (2)
for each pi in Pi and each pj in Pj, if (bi, pi) and (bj , pj) are in an instance I
in Iv, I ′ is in Iv where I ′ = (I − {(bi, pi), (bj , pj)}) ∪ {(bi, pj), (bj , pi)}.

In this definition, unlike SIND, which swaps all possible private values, RSIND
only swaps private values in a subset including the current private values. RSIND
becomes SIND if Pi = Dom(P) for each i.

For example, consider the two views in Figure 3 (see caption) on the table
in Figure 1. From the view, we can deduce that in the private table Tbl, t1[B]
cannot take Obesity but can take Cold and AIDS, and t2[B] can take all the
three problems. Clearly, t1[B] and t2[B] are not SIND. But there exists a private
value collection P1, ..., P4 with P1 = P2 = {Cold, AIDS} and P3 = P4 =
{Cold, AIDS, Obesity}, we have t1[B] and t2[B] are RSIND w.r.t. this collection.
Indeed, P1 and P2 are identical, and they both include the current private values
of t1[B] and t2[B], Cold and AIDS. In any instance yielding the views, if t1[B]
and t2[B] have Cold and AIDS, or AIDS and Cold, respectively, then swapping
their private values results in an instance yielding the same views.

Problem
t1 Cold
t2 AIDS
t3 Obesity
t4 AIDS

t1[B]

t2[B]
t3[B]
t4[B]

(a)The first view (b)The SIND partition

t1[B] {Cold, AIDS}
t2[B] {Cold, AIDS}
t3[B] {Cold, AIDS, Obesity}
t4[B] {Cold, AIDS, Obesity}

(c) The RSIND partition w.r.t. a collection

Fig. 3. Two released views ΠProblem σZip=′22030′(Tbl) and ΠProblem

σt1 and Problem=′Obesity′(Tbl) = ∅.

Given a private value collection P1, ..., Pn, RSIND is also a binary equivalence
relation, hence induces a partition over the B tuples; and each set in the partition
is called an RSIND set w.r.t. P1, ..., Pn.

8

Definition 4. (k-RSIND) Given a released data v, if there exists a private
value collection P such that each RSIND set in the induced partition has a car-
dinality of at least k, we then say v provides k-RSIND.

Obviously, if v provides k-SIND, we can let P1, ..., Pn be the collection of
all possible private values, i.e., Ps = {p|∃I ∈ Iv (bs, p) ∈ I}, where s = 1, ...,
n. Then each pair of SIND values are RSIND w.r.t. P1, ..., Pn, hence the SIND
partition is the RSIND partition w.r.t. P1, ..., Pn. Clearly, the cardinality of each
set in this RSIND partition is at least k since each set in the SIND partition is
so. Thus, we have the following proposition. In Figure 3, the second view makes
t1 not have Obesity which others may have. The views do not provide 2-SIND,
but do provide 2-RSIND.

Proposition 2. k-SIND implies k-RSIND.

From the definition of RSIND, we have the following conclusion. Given a set
of tuples T in the current table Tbl, each private value collection w.r.t. which the
B tuples in ΠB(T) are RSIND from each other must include all of their current
private values, ΠP (T); ΠB(T) are RSIND from each other w.r.t. ΠP (T), if there
exists a collection such that ΠB(T) are RSIND from each other. More formally,
we have the following proposition.

Proposition 3. Given a private value collection P = P0, P1, ..., Pn, released
data v, and a set T of tuples in the current table, if the tuples in ΠB(T) are
RSIND from each other w.r.t. P, then we have the following two facts. First,
for each bi in ΠB(T), ΠP (T) ⊆ Pi. Second, for each bi in ΠB(T), if we replace
Pi with ΠP (T) to get a new private value collection P ′, then all the B tuples in
ΠB(T) are still RSIND w.r.t. P ′.

Consider the example in Figure 3. t3[B] and t4[B] are RSIND w.r.t. the pri-
vate value collection. Hence, in the collection, the corresponding sets of t3[B]
and t4[B] are identical and have both their current private values, Obesity and
AIDS. If we take their current private values as a collection, which means drop-
ping Cold from their corresponding sets, t3[B] and t4[B] are still RSIND.

Proposition 3 implies the following property of RSIND. If the tuples in ΠB(T)
are RSIND from each other, then by Proposition 3, the tuples in ΠB(T) are
RSIND from each other w.r.t. ΠP (T). By a repeated use of the definition of
RSIND, for each set of tuple T ′ such that ΠB(T ′) = ΠB(T) and the private
values in T ′ is a permutation of the private values (with duplicates preserved)
in T , we know there exists an instance I in Iv with T ⊆ I. This explains why
we say these tuples are indistinguishable in terms of the current private values.

For example, consider the SIND partition of Figure 3(b) as an RSIND par-
tition (note again that there are many RSIND partitions with difference private
value collections and the SIND partition is one of them). We have that t2[B],
t3[B] and t4[B] are RSIND from each other w.r.t. P2 = P3 = P4= {Obesity,
AIDS}. Then for each of the three different (repeated) permutations of t2[B],
t3[B], and t4[B] with Obesity, AIDS and AIDS values (i.e., 〈(t2[B], Obesity),
(t3[B], AIDS), (t4[B], AIDS)〉, 〈(t2[B], AIDS), (t3[B], Obesity), (t4[B], AIDS)〉,

9

and 〈(t2[B], AIDS), (t3[B], AIDS), (t4[B], Obesity)〉), there exists at least one
instance in Iv that contains that permutation.

The size of each set in a private value collection matters in measuring privacy
disclosure, which is not reflected in k-RSIND. Generally, the more P values in the
collection, the better indistinguishability we achieve since we ignore the fewer
P values that may make B tuples distinguishable. Also, more private values
may mean better uncertainty. However, in this paper, we are not pursuing this
direction.

3 Checking Database Views

In this section, we focus on checking released data that are in the form of a
view set for indistinguishability. A view set is a pair (V, v), where V is a list
of selection-projection queries (q1, q2, ..., qn) on Tbl, and v is a list of relations
(r1, r2, ..., rn) that are the results, with duplicates preserved, of the corresponding
queries. We may abbreviate (V, v) to v if V is understood. In this paper, “view”,
“query” and “query result” are used interchangeably when no confusion arises.
Note all query results preserve duplicates, hence, are multisets and all relational
operations in this paper are on multisets.

3.1 Checking for k-SIND

In this subsection, we will show that checking for k-SIND is intractable. Then,
we will present a subcase where checking is tractable, before which the basic
checking mechanism is presented. Finally, we will also present a conservative
checking methods that always catch k-SIND violation, but may make mistakes
when a view set actually provides k-SIND.

Complexity Checking for k-SIND is intractable. This is mainly because it is
intractable to know whether a private value can associate with a particular B
tuple by just looking at the view set.

Theorem 1. Given a view set v containing only selection and projection, it is
NP-hard to decide whether there exists an instance I ∈ Iv such that a tuple (b, p)
is in I.
The proof of the above theorem is by showing a reduction to our problem from
the following NP-hard Complement Boolean Auditing Problem (whose comple-
ment, Boolean auditing problem, has been shown as coNP-hard [17]).

Theorem 2. Given a view set v, whether v provides k-SIND is coNP-hard.
We reduce the complement of the problem in Theorem 1 (that is, determining

if a tuple (b, p) appears in at least one instance in Iv) to the problem of checking
k-SIND. Given any table Tbl and view set v, we construct another table Tbl′

and view set v′, such that v′ violates 2-SIND iff (b, p) appears in at least one
instance in Iv. Because it is NP-hard to determine the latter by Theorem 1, it
is coNP-hard to determine if v′ satisfies 2-SIND.

10

Basic mechanism for checking First, we introduce an important property of
SIND in Proposition 4. This property will be used in the subsequent checking
methods.

Proposition 4. Given a view set v and two tuples b1 and b2 in ΠB(Tbl), b1

and b2 are SIND w.r.t. v, iff for each pair of P values p1 and p2 associated with
b1 and b2, respectively, in an instance in Iv, and each query q in v, we have
q({(b1, p1), (b2, p2)}) = q({(b1, p2), (b2, p1)})

Assume b1 and b2 are SIND. Then for each view q in v, q({(b1, p1), (b2, p2)}∪
Io) = q({(b1, p2), (b2, p1)} ∪Io) (all query results are multisets and relational
operations are multiset operations), where Io is an instance such that {(b1, p1),
(b2, p2)} ∪ Io ∈ Iv. Since q only contains selection and projection, q({(b1, p1),
(b2, p2)} ∪Io) = q({(b1, p1), (b2, p2)} ∪ q(Io) and q({(b1, p2), (b2, p1)} ∪ Io) =
q({(b1, p2), (b2, p1)} ∪ q(Io). Thus, we have q({(b1, p1), (b2, p2)}) = q({(b1, p2),
(b2, p1)}). The other direction holds for the same reason.

We call the equation in this proposition swap equation. This proposition
suggests SIND for selection-projection views has the property of being “local”.
Indeed, to check SIND between given two B tuples, we do not need to see other
B tuples.

More specifically, this proposition says that given v and two SIND B tuples b1

and b2, for each query q in v, if the tuples (b1, p1) and (b2, p2) are in an instance
that yields v, and we swap the private values of (b1, p1) and (b2, p2) to get the
two new tuples, i.e., (b1, p2) and (b2, p1), then we know that {(b1, p2), (b2, p1)}
yields the same result of q as {(b1, p2), (b2, p1)} does. This is a necessary and
sufficient condition.

As a simple example, given two B tuples b1 and b2, if in all the instances
in Iv, we know they associate either with p1 and p2, respectively, or p2 and p3,
respectively. Then b1 and b2 are SIND iff

q

(
(b1, p1)
(b2, p2)

)
= q

(
(b1, p2)
(b2, p1)

)
& q

(
(b1, p2)
(b2, p3)

)
= q

(
(b1, p3)
(b2, p2)

)

To satisfy swap equation

q

(
(b1, p1)
(b2, p2)

)
= q

(
(b1, p2)
(b2, p1)

)

there are only two possibilities: one is

q((b1, p1)) = q((b1, p2)) & q((b2, p2)) = q((b2, p1))

and the other is

q((b1, p1)) = q((b2, p1)) & q((b1, p2)) = q((b2, p2))

If a view has a projection on P and p1 is distinct from p2, we can easily prove
that we only need to check the latter condition. Moreover, if the projection of
q contains P , and b1 and b2 have at least two possible private values, then it is

11

a necessary and sufficient condition for b1 and b2 being SIND that q((b1, p)) =
q((b2, p)) holds for each possible value p.

For example, consider the view q in Figure 2 with the projection on P .
Clearly, q((t9[B],H)) = q((t10[B],H)) and q((t9[B], C)) = q((t10[B], C)), where
H = Hypertension and C = ChestPain. Since H and C are the only possible
values by looking at the view, we know t9[B] and t10[B] are SIND.

In the rest of this subsection, we use Proposition 4 to decide whether a view
set v provides k-SIND.

Selection only on B attributes This subcase is common, especially in sta-
tistical databases, and hence is extensively studied with uncertainty measures[1,
17, 16]. In this subcase, each query in the view set has a selection condition only
on the attributes in B. If so, checking for k-SIND can be done in polynomial
time in the size of the private table and the number of views.

We assume the projection of each view contains P ; otherwise, no private
information is involved since the selection condition also does not have P and
the view may be removed from our consideration. By Proposition 4, we have
following conclusion for checking.

Proposition 5. Given a view set v with selection conditions only on the at-
tributes in B, two B tuples b1 and b2 are SIND if for each query q = ΠXσC(Tbl)
in v, we have ΠX−{P}σC(b1) = ΠX−{P}σC(b2). The inverse (“only if”) holds if
b1 and b2 have at least two distinct possible private values.

For each query q in v, if we have ΠX−{P}σC(b1) = ΠX−{P}σC(b2), then
q(b1, p) = q(b2, p) holds for each p in the domain. Because C does not contain
p, we can apply the conclusion from Proposition 4. Thus, each pair of possible
tuples (b1, p1) and (b2, p2) satisfies swap equation. Otherwise, q(b1, p) = q(b2, p)
can not hold, hence, swap equation can not be satisfied if b1 and b2 have at least
two distinct possible private values (if there is only one possible private value,
the swap results in the same instance, hence swap equation must be satisfied).

We assume that the set of k indistinguishable B tuples must have at least
two distinct possible private values; otherwise, it must not be safe. Thus, the
condition of Proposition 5 is a necessary and sufficient condition. By this propo-
sition, we can present an efficient checking method through partitioning. The
basic idea is that for each view, we can partition tuples such that each set in the
partition are SIND w.r.t. this view, and we then intersect these partitions.

As an example of this procedure, consider the two views
ΠRace,Problem σZip=′22030′ (Tbl) and
ΠGender,Problem σRace=′White′ (Tbl).

We partition the B tuples as Figure 4 (a) by the first view and by the second
view as Figure 4 (b); the final result in Figure 4 (c) is the intersection of the
two partitions shown in (a) and (b). For each view, the selected tuples that have
the same values on the projection are grouped in the same set of the partition,
(Zip, Race) for the first and (Race,Gender) for the second; the tuples that are
not selected are grouped into another set in the partition. If two B tuples are in

12

(22030, White) t1[B], t2[B], t3[B]
(22030, Black) t4[B]

Others not selected t5[B], t6[B], ..., t12[B]

(a) By the first view

(White, Male) t1[B], t2[B], t3[B], t6[B],
t8[B], t11[B], t12[B]

(White, Female) t6[B]
Others not selected t4[B], t5[B], t7[B],

t9[B], t10[B]

(a) By the second view

t1[B], t2[B], t3[B]

t4[B]

t5[B], t7[B], t9[B], t10[B]

t6[B]

t8[B], t11[B], t12[B]

(c) The final partition

Fig. 4. The partition of B tuples by views

the same block of the final partition, they are SIND. In this case, we only have
1-SIND.

Now we analyze the computational complexity of this checking procedure.
The partitioning for each view q in this procedure needs to search for the set of
B tuples yielding the same result of q. Such searching can be done using a hash
data structure, hence is constant time. And each partition needs to scan all the
B tuples in Tbl once. Thus the computing time is O(nS), where S is the size of
Tbl and n is the number of views in the view set.

Conservative checking Because checking a view set for k-SIND is generally
intractable, we may want to perform a conservative-style checking that is poly-
nomial time and suitable for all cases. With a conservative algorithm, we always
catch k-SIND violation, but we may make mistakes when a view set actually
provides k-SIND.

First, we can use a conservative checking method for each single view q. The
basic idea is that if two B tuples have the same characteristics in the selection
condition and have the same value on the B attributes in the projection of q,
then they are SIND for q.

More specifically, if two B tuples b1 and b2 have the same values on the B
attributes in the projection of q, and after substitute B with b1 and b2, respec-
tively, in the selection condition, the two substituted conditions have the same
set of P values making the conditions true, then they are SIND. We can see
that this method does not look for the possible private values. Thus, it has the

13

similar procedure as the checking method for the case where v selects only B
attributes in Subsection 3.1. That is, generate a partition for each view by the
corresponding attribute values of B tuples and intersect these partitions.

For example, consider the view ΠZipσCharge>Salary(Tbl) on the table Tbl.
Each distinct Charge value c has the different set of Salary values making the
selection condition true when you substitute Charge with c in the condition.
Thus, if two B tuples have the same (Zip, Charge) value, then we take them as
SIND; otherwise, we do not.

Clearly, this method for checking each single view is polynomial time. Then
we can use the following conclusion to check a set of views. We have that if two
b tuples are SIND w.r.t. each view in v, then then b1 and b2 are SIND w.r.t.
v. Therefore, we can generate a SIND partition for each view in v, and then
intersection these partitions to get a SIND partition for v. All the B tuples in
the same set of the partition for v must be SIND. Then if the cardinality of each
set of the final partition is at least k, the view set provides k-SIND. Otherwise,
it may not do.

Checking in this way can be done in polynomial time, and is a conservative
method to check the sufficient condition of SIND. We believe this conservative
checking is practical, since we do not check what possible private values each
individual has. In fact, it has the similar idea as k-anonymization methods [24,
25, 21, 14, 18]. Indeed, this checking does not look for the possible private values
but looks at the public values while k-anonymization recodes only the public
values of tuples to achieve k-anonymity.

3.2 Checking for k-RSIND

In this section, we turn to checking whether there exists an RSIND partition such
that the cardinality of each set in the partition is at least k. By Proposition 3,
we can check whether there exists this kind of partition by looking for the B
tuples in each set that are RSIND from each other w.r.t. their current private
values.

To do this, given a set T of tuples in Tbl, we need to check whether for
each pair of B tuples b1 and b2 in ΠB(T), each pair of P values p1 and p2 in
ΠP (T), and each instance I in Iv that contains (b1, p1) and (b2, p2), there exists
an instance I ′ in Iv such that I ′ = (I − {(b1, p1), (b2, p2)}) ∪ {(b1, p2), (b2, p1)}.
Through the similar deduction as in Proposition 4, this swap is equivalent to that
for each query q in v, we must have q({(b1, p1), (b2, p2)}) = q({(b1, p2), (b2, p1)}).

For each pair of B tuples in ΠB(T) and each pair of private values in ΠP (T),
this swap equation needs to be checked. Then, for n tuples, it needs to be checked
O(n4) times (there are O(n2) pairs of B tuples and O(n2) pairs of private values),
where n is the cardinality of T . Obviously, this is costly.

However, in most cases, if each two B tuples in ΠB(T) can swap their current
values, then the two B tuples can swap each two private values in ΠP (T). For
instance, given T = {(b1, p1), {(b2, p2), {(b3, p3)}, if b1 and b2 can swap for p1

and p2, b2 and b3 for p2 and p3, and b3 and b1 for p3 and p1, then any two

14

B tuples, for example, b1 and b2, can swap for all pairs of the current private
values, p1 and p2, p2 and p3, and p3 and p1.

For convenience, we introduce another concept. Given two B tuples b1 and
b2, and (b1, p1) and (b2, p2) in the current table, we say b1 and b2 are CSIND
(currently SIND) if for each query q in v, we have either (1) q contains the
projection on P , and q((b1, p1)) = q((b2, p1)) and q((b1, p2)) = q((b2, p2)), or
(2) q does not contain the projection on P , but q((b1, p1)) = q((b1, p2)) and
q((b2, p1))) = q((b2, p2)). Intuitively, if b1 and b2 are CSIND, we can swap their
private values in the current table without affecting the view set.

Clearly, if each two tuples in ΠB(T) are CSIND, then each two B tuples in
ΠB(T) satisfies swap equation for all the private values in ΠP (T), hence, ΠB(T)
are RSIND from each other. Indeed, if each q contains the projection on P , this
is a necessary and sufficient condition; otherwise, it is a sufficient condition.

Therefore, we apply the following checking method. If we can find a maximal
partition over the B tuples ΠB(Tbl) such that each pair of B tuples in each set
in the partition are CSIND, then this partition is an RSIND partition. Here,
“maximal” means that the union of any two sets in the partition cannot result
in a set in which each pair of B tuples are still CSIND. In this way, we can
find an RSIND partition by checking whether each pair of tuples in the current
table is able to swap their private values. This provides a conservative checking
algorithm for k-RSIND as follows.

Construct a graph G. Each tuple maps to a node. If two tuples are CSIND,
which can be easily checked based on the current private table, add an edge
between the corresponding nodes. Then a complete subgraph of G is a subset
of an RSIND set. Therefore, finding an RSIND partition can be transformed to
finding a maximal clique partition. If each query of v contains the projection on
P , the above checking algorithm is a precise (not conservative) algorithm.

It is known, however, that finding a clique partition with each block’s size of
at least k is NP-hard [13]. It is not difficult to prove that it is NP-hard to decide
whether v provides k-RSIND in the special case where each query of v contains
the projection on P . Therefore, given a released view set v, it is NP-hard to
decide whether v provides k-RSIND.

Nevertheless, we can use the heuristic algorithms in [13] to find a clique par-
tition with each block size at least k. This will result in a conservative algorithm
even for the special case where each query in v contains the projection on P .

t3[B]t1[B]

t2[B] t4[B]

Fig. 5. An RSIND partition for the views in Figure 3 maps to a maximal clique par-
tition.

15

For example, consider the views in Figure 3. We construct a graph as Figure 5.
Each edge represents that the B tuples corresponding to the two adjacent nodes
are CSIND. An RSIND partition maps to a maximal clique partition in the
graph.

4 Related Work

The most relevant work to indistinguishability is k-anonymization, which focuses
on how to gain k-anonymity by recoding the quasi-IDs in a single view, e.g., [24,
25, 21, 14, 18]. Recently, there is another work [19] aiming to achieve good un-
certainty while gaining k-anonymity by imposing additional requirements on
anonymization. But k-anonymity applies only to the case where released data is
an anonymized table. In our work, we introduced different definitions of indis-
tinguishability that apply to more general situations, and focused on checking
data base views against these indistinguishability metrics. We also discussed the
relationship between k-anonymity and indistinguishability.

Some work studies the privacy or secrecy disclosure by general database
views. The conditions of perfect secrecy are studied in [22, 8] using probability
model, and in [28] using query conditional containment. In this paper, we ad-
dressed the case where we intend to release data if some partial disclosure by
database views is tolerated, and hence the disclosure needs to be measured.

Except for the study of k-anonymity, the privacy metrics used in prior work
have mainly been based on uncertainty of private property values, i.e., the un-
certainty what private value an individual has. These metrics can be classified
into two categories: non-probabilistic and probabilistic.

The non-probabilistic metrics are mainly used in the fields of inference prob-
lem of statistical databases [1, 17, 16, 26], multilevel databases [20, 5] and general
purpose databases [7, 5, 27]. The most often used one is that if the private value
of an individual cannot be uniquely inferred, released data about the individ-
ual are considered safe [1, 20, 7, 17, 5, 16]. The other one is the cardinality of the
set of possible private values for each individual, among which attackers cannot
determine which one is the actual one [26, 27] (The metric used in [27] is an
uncertainty metric in spite of the notion of k-anonymity introduced).

In the above fields, some uncertainty metrics are based on probability. Au-
thors use the probability value associated with the actual value [12, 16] or the
variance of the probability distribution of private values [1, 23]. Most work in
privacy-preserving data mining uses probability-based metrics. Their metrics
are based on only the characteristics of the a posteriori probability distribution
of private values [3, 2, 10], or on both a priori and the a posteriori distribution [2,
9, 15, 4]. The work in [6] uses indistinguishability based on probability “distance”
as privacy metric.

In this work, we used symmetry-based indistinguishability metrics. And we
illustrated that uncertainty needs to be supplemented with indistinguishability.

16

5 Conclusions

In this paper, we identified a requirement of privacy in data release, namely
indistinguishability, in addition to uncertainty. We first gave two definitions of
indistinguishability, namely, SIND and RSIND. Then we focused on checking
database views against these indistinguishability metrics. Generally, checking
for k-SIND is intractable. We presented a case where polynomial algorithms are
possible. Furthermore, we presented a conservative checking method. Checking
for RSIND is easy, but checking for k-RSIND is intractable and can be done in
a conservative way with heuristic polynomial algorithms.

References

1. N. R. Adam and J. C. Wortmann. Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys, 21(4):515–556, De-
cember 1989.

2. D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy pre-
serving data mining algorithms. In Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), 2001.

3. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD
Conference), pages 439–450, 2000.

4. S. Agrawal and J. R. Haritsa. A framework for high-accuracy privacy-preserving
mining. In Proceedings of the 21st International Conference on Data Engineering
(ICDE), pages 193–204, 2005.

5. A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, inference
channels, and monitoring disclosures. IEEE Transactions on Knowledge and Data
Engineering, 12(6):900–919, 2000.

6. S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in public
databases. In Theory of Cryptography, Second Theory of Cryptography Conference
(TCC), pages 363–385, 2005.

7. H. S. Delugach and T. H. Hinke. Wizard: A database inference analysis and detec-
tion system. IEEE Transactions on Knowledge and Data Engineering, 8(1):56–66,
1996.

8. A. Deutsch and Y. Papakonstantinou. Privacy in database publishing. In Database
Theory - ICDT 2005, 10th International Conference, pages 230–245, 2005.

9. A. V. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in pri-
vacy preserving data mining. In Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages
211–222, 2003.

10. A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving
mining of association rules. In Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pages 217–
228, 2002.

11. R. Gavison. Privacy and the limits of the law. In D. G. Johnson and H. Nissenbaum,
editors, Computers, Ethics, and Social Values. 1995.

12. J. Hale and S. Shenoi. Catalytic inference analysis: Detecting inference threats due
to knowledge discovery. In Proceedings of the 1997 IEEE Symposium on Security
and Privacy, pages 188–199, 1997.

17

13. X. Ji and J. E. Mitchell. Branch-and-price-and-cut on clique partition problem
with minimum clique size requirement. In IMA Special Workshop: Mixed-Integer
Programming, 2005.

14. R. J. B. Jr. and R. Agrawal. Data privacy through optimal k-anonymization. In
Proceedings of the 21st International Conference on Data Engineering (ICDE),
pages 217–228, 2005.

15. M. Kantarcioglu, J. Jin, and C. Clifton. When do data mining results violate
privacy? In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 599–604, 2004.

16. K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In Proceedings
of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 118–127, 2005.

17. J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. Auditing boolean at-
tributes. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems (PODS), pages 86–91, 2000.

18. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain
k-anonymity. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD Conference), pages 49–60, 2005.

19. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. In Proceedings of the 22nd International Conference
on Data Engineering (ICDE), pages 24–35, 2006.

20. D. G. Marks. Inference in MLS database systems. IEEE Transactions on Knowl-
edge and Data Engineering, 8(1):46–55, 1996.

21. A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In
Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pages 223–228, 2004.

22. G. Miklau and D. Suciu. A formal analysis of information disclosure in data
exchange. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD Conference), pages 575–586, 2004.

23. K. Muralidhar and R. Sarathy. Security of random data perturbation methods.
ACM Transactions on Database Systems (TODS), 24(4):487–493, 1999.

24. P. Samarati. Protecting respondents’ identities in microdata release. IEEE Trans-
actions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

25. L. Sweeney. Achieving k-anonymity privacy protection using generalization and
suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, 10(5):571–578, 2002.

26. L. Wang, D. Wijesekera, and S. Jajodia. Cardinality-based inference control in
sum-only data cubes. In Proceedings of 7th European Symposium on Research in
Computer Security (ESORICS), pages 55–71, 2002.

27. C. Yao, X. S. Wang, and S. Jajodia. Checking for k-anonymity violation by views.
In Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB), pages 910–921, 2005.

28. Z. Zhang and A. O. Mendelzon. Authorization views and conditional query con-
tainment. In Database Theory - ICDT 2005, 10th International Conference, pages
259–273, 2005.

