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Abstract. Today’s cloud providers strive to attract customers with better services and less downtime in a highly competitive
market. The need for minimizing the operational cost unavoidably leads cloud providers to rely on third party remote admin-
istrators for fulfilling regular maintenance tasks. In such a scenario, the lack of trust in those third party remote administrators
paired with the extra privileges granted to them to complete the maintenance tasks usually implies undesirable security threats.
A dishonest remote administrator, or an attacker armed with the stolen credential of a remote administrator, can pose severe
insider threats to both the cloud provider and its tenants. In this paper, we take the first step towards understanding and mit-
igating such insider threats of remote administrators in clouds. Specifically, we first model the maintenance task assignments
and their corresponding security impact due to privilege escalation. We then mitigate such impact through optimizing the task
assignments with respect to given constraints. Finally, the simulation results demonstrate the effectiveness of our solution in
various scenarios.
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1. Introduction

Cloud computing has become the cost-saving IT solution for 73% of organizations worldwide [1] and
is predicted to grow to a $300 billion business by 2021 [2]. Cloud computing is also affecting our daily
lives through its impact on politics (e.g., politicians are increasingly turning to social networks, which
are mostly cloud-based), education (e.g., Massive Open Online Course (MOOC) is mostly delivered via
cloud), healthcare, entertainment, etc. The success of cloud computing comes from the many benefits
it brings to IT management, e.g., the pervasive access from anywhere with an Internet connection, the
flexibility of scaling services up or down to fit changing needs, and the efficiency to deploy applications
quickly without worrying about underlying costs or maintenance of the infrastructure.

On the other hand, the widespread adoption of cloud computing also attracts more attention to its
unique security and privacy challenges [3, 4]. In particular, as the cloud service market becomes more
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and more competitive, cloud providers are striving to attract customers with better services and less
downtime at a lower cost. Consequently, the search for an advantage in cost and efficiency will inevitably
lead cloud providers to follow a similar path as what has been taken by their tenants, i.e., outsourcing
cloud maintenance tasks to remote administrators including those from specialized third party mainte-
nance providers [5]. Such an approach may also lead to many benefits due to resource sharing, e.g., the
access to specialized and experienced domain experts, the flexibility (e.g., less need for full-time onsite
staff), and the lower cost (due to the fact that such remote administrators are usually shared among many
clients).

However, the benefits of outsourcing cloud maintenance tasks come at an apparent cost, i.e., the in-
creased insider threats from remote administrators. Specifically, in order to complete their assigned
maintenance tasks, the remote administrators must be provided with necessary privileges, which may
involve accesses to physical and/or virtual resources of the underlying cloud infrastructure. Armed with
such privileges, a dishonest remote administrator, or an attacker with the stolen credentials of such an
administrator, can pose severe insider threats to both the cloud tenants (e.g., causing a large scale leak of
confidential user data) and the provider (e.g., disrupting the cloud services or abusing the cloud infras-
tructure for illegal activities) [6]. On the other hand, cloud providers are under the obligation to prevent
such security or privacy breaches caused by insiders [7], either as part of the service level agreements, or
to ensure compliance with security standards (e.g., ISO 27017 [8]). Therefore, there is a pressing need
to better understand and mitigate the insider threats of remote administrators in clouds.

Dealing with the insider threat of remote administrators in clouds faces unique challenges. First, there
is a lack of public access to the detailed information regarding cloud infrastructure configurations and
typical maintenance tasks performed in clouds. Evidently, most existing works on insider attacks in
clouds either stay at a high level or focus on individual nodes instead of the infrastructure [5, 9, 10]
(a more detailed review of related work will be given in Section 6). Second, cloud infrastructures can
be quite different from typical enterprise networks in terms of many aspects of security. For instance,
multi-tenancy means there may co-exist different types of insiders with different privileges, such as
administrators of a cloud tenant, those of the cloud provider, and third party remote administrators.
Also, virtualization means a more complex attack surface consisting of not only physical nodes but also
virtual or hypervisor layers. To the best of our knowledge, there is a lack of any concrete study in the
literature on the insider attack of remote administrators in cloud data centers.

In this paper, we take the first step towards understanding and mitigating the insider threat of remote
administrators in clouds. Specifically, we first model the maintenance tasks and their corresponding priv-
ileges based on industrial practices from major cloud vendors and providers. We then model the insider
threats posed by remote administrators assigned to maintenance tasks by applying existing security met-
rics; remote administrators possess elevated privileges due to the assigned maintenance tasks, and those
privileges correspond to initially satisfied security conditions, which are normally only accessible by ex-
ternal attackers after exploiting certain vulnerabilities. Such model allows us to formulate the mitigation
of the insider threats of remote administrators as an optimization problem and solve it using standard
optimization techniques. We evaluate our approach through simulations and the results demonstrate the
effectiveness of our solution under various situations. The main contribution of this paper is twofold:

— To the best of our knowledge, this is the first study on the insider threat of remote administrators in

cloud infrastructures. As cloud providers leverage third parties for better efficiency and cost saving,
our study demonstrates the need to also consider the security impact, and our model provides a
way for quantitatively reasoning about the tradeoff between such security impact with other related
factors.



— By formulating the optimization problem of mitigating the insider threat of remote administrators
through optimal task assignments, we provide a relatively effective solution, as evidenced by our
simulation results, for achieving the optimal tradeoff between security and other constraints using
standard optimization techniques.

The preliminary version of this paper has previously appeared in [11]. In this paper, we have substan-
tially improved and extended the previous version, with the following most significant extensions. First,
while the previous version focuses on physical and virtual resources (e.g., physical hosts and virtual ma-
chines), we have added Section 3.4 to additionally consider a higher level of abstraction, i.e., services or
business functions which may involve multiple physical and virtual resources; we do so by integrating
the service dependency graph concept [12, 13] with the existing resource graph in order to model the
impact of service dependencies on cloud security during maintenance time. Second, while the previous
version only relies on the k-zero day safety metric [14, 15], which only considers the shortest attack path
and zero day exploits, we have added Section 3.3 to additionally model the impact of all possible attack
paths and exploits of known vulnerabilities using the Bayesian network-based security metric. Those
extensions in our models correspondingly lead to additional use cases (Section 4.2) and a series of new
simulations (Section 5).

The remainder of this paper is organized as follows. Section 2 presents a motivating example and
discusses maintenance tasks and privileges. Section 3 presents the models of task assignment and insider
threat. Section 4 formulates the optimization problem and discusses several use cases. Section 5 gives
simulation results and Section 6 discusses related work. Finally, Section 7 concludes the paper.

2. Preliminaries
This section gives a motivating example and discusses maintenance tasks and privileges.
2.1. Motivating Example

The insider threat of remote administrators depends on the underlying cloud infrastructures. Therefore,
we will need the detailed configuration of cloud data centers in order to construct a concrete example of
such insider threats. A key challenge here is the lack of public accesses to detailed information regarding
hardware and software configurations deployed in real cloud data centers. Consequently, most existing
works focus on either high level frameworks and guidelines for risk and impact assessment [16-18],
or specific vulnerabilities or threats in clouds [19, 20], with a clear gap between the two. To overcome
such a limitation, we choose to devise our own fictitious, but realistic cloud data center designs, by
piecing together publicly available information gathered from various cloud vendors and providers [21],
as shown in Figure 1.

To above configuration is based on existing concepts and common practices borrowed from ma-
jor cloud vendors and providers to make our design more representative. For example, we borrow
the multi-layer concept and some hardware components, e.g., Carrier Routing System (CRS), Nexus
(7000,5000,2000), Catalyst 6500, and MDS 9000, from the cloud data center design of Cisco [22]. We
synthesize various concepts of the VMware vSphere [23] for main functionality of hardware components
in our cloud infrastructure (e.g., authentication servers, DNS, and SAN). We also assume the cloud em-
ploys OpenStack as its operating system [24]. The infrastructure provides accesses to both cloud users
and remote administrators through the three layer design. Layer 1 connects the cloud to the internet
and includes the authentication servers, DNS, and Neutron Server. Layer 2 includes the rack servers
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Fig. 1. An example of cloud data center

and compute nodes. Layer 3 includes the storage servers. OpenStack components run on the authenti-
cation servers, DNS server (a Neutron component provides address translation to machines running the
requested services), and compute nodes (Nova to host and manage VMs, Neutron to connect VMs to the
network, and Ceilometer to calculate the usage) to provide cloud services.

Such a cloud data center may require many maintenance tasks to be routinely performed to ensure
the normal operation of the hardware and software components. Such maintenance tasks may be per-
formed by both internal staff working onsite, and remote administrators including those from specialized
third party providers. In our example, assume the cloud provider decides to rely on third party remote
administrators for the regular maintenance of the five compute nodes (nodes #1-5 in Figure 1), the au-
thentication server (node #6), and the two controllers (nodes #7 and #8). As an example, Table 1 shows
the maintenance tasks that need to be performed on those nodes. For simplicity, we only consider three



Table 1
An example of required maintenance tasks

- Maintenance tasks
Node number (in Figure 1) - - - —
Read log files [ Modify configuration files [ Install a new system

1 X X

2 X X
3 X X
4 X
5 X X
6 X X

7 X

8 X

types of tasks here (more discussions about maintenance tasks will be given in next section).

In such a scenario, the cloud provider naturally faces security challenges due to the fact that neces-
sary privileges must be granted to allow the third party remote administrators to perform their assigned
maintenance tasks. For instance, the task of reading log files needs certain read privilege to be granted,
whereas modifying configuration files and installing a new system would demand much higher levels
of privileges. Even though the cloud provider may (to some extent) trust the third party maintenance
provider as an organization, the granted privileges may allow a dishonest remote administrator, or at-
tackers with stolen credentials of a remote administrator, to launch an insider attack and cause significant
damage to the cloud provider and its tenants. It is in the cloud provider’s best interest to better understand
and proactively mitigate such potential threats. However, this toy example is enough to demonstrate that
there exist many challenges in modeling and mitigating such threats.

— First, as demonstrated in Table 1, there may exist complex relationships between maintenance tasks
and corresponding privileges needed to fulfill such tasks, relationships between different privileges
(e.g., aroot privilege implies many other privileges), and dependency relationships between services
or business functions and the underlying physical and virtual resources used to host such services
or functions. Those relationships will determine the extent of an insider threat.

— Second, the insider threat will also depend on which nodes in the cloud infrastructure are involved in
the assigned tasks, e.g., an insider with privileges on the authentication servers (hode #6 in Figure 1)
or on the compute nodes (nodes #1-5) may have very different security implications.

— Third, the extent of the threat also depends on the configuration (e.g., the connectivity and fire-
walls), e.g., an insider having access to the controller node #8 would have a much better chance to
compromise the storage servers than one with access to the other controller node #7).

— Finally, while an obvious way to mitigate the insider threat is through assigning less tasks to each
remote administrator such as to limit his/her privileges, as our study will show, the effectiveness
of such an approach depends on many other factors and constraints, e.g., the amount of tasks to be
assigned, the number of available remote administrators, constraints like each administrator may
only be assigned to a limited number of tasks due to availability, or a subset of tasks due to his/her
skill set, etc.

Clearly, modeling and mitigating the insider threat of remote administrators may not be straightfor-
ward even for such a simplified example (the solution for this example scenario is given in Section 4.2),
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Table 2
Maintenance tasks in popular cloud platforms

Maintenance Task | AWS [25] | GCP[26] | Azure[27] |
Review Logs X X X
Hard Disk Scan X X
Update Firmware X X X
Patch Operating System X X X
Update Operating System X X X
System Backup X X X
Upgrades System X X X
Maintain Automated Snapshots X
Bug Fix X X X
Update Kernel X

and the scenario is likely far more complex for real clouds than the one demonstrated here. The remain-
der of the paper will present a systematic approach to tackle those challenges.

2.2. Remote Administrators, Maintenance Tasks, and Privileges

There exist different types of administrators in cloud data centers who perform maintenance tasks ei-
ther onsite or through remote accesses [5]. For example, hardware administrators have physical access
to the cloud data center to perform maintenance on the physical components. Security team administra-
tors are responsible for maintaining the cloud security policies. Remote administrators (RAs) perform
maintenance tasks on certain nodes of the infrastructure through network connections from remote sites.
The first two types can be considered relatively more trustworthy due to their usually limited quantity
and the fact they work onsite and directly for the cloud provider. The last type is usually considered
riskier due to two facts, i.e., they work through remote accesses which are susceptible to attacks (e.g.,
via stolen credentials), and they may be subcontracted through third party companies, which means less
control by the cloud provider. In this paper, we focus on the security risk of such remote administra-
tors (RAS), even though our models and mitigation solution may be adapted to deal with other types of
administrators and users if necessary.

There exists only limited public information about the exact maintenance tasks performed by major
cloud providers. We have collected such information from various sources, and our findings are sum-
marized in Table 2, which shows sample maintenance tasks mentioned by Amazon Web Service [25],
Google Cloud [26], and Microsoft Azure [27]. As to privileges required for typical maintenance tasks,
Bleikertz et al. provided five sample privileges required for maintaining the compute nodes in clouds [5],
which we will borrow for our further discussions, as shown in Table 3.

To simplify our discussions, our running example will be limited to ten maintenance tasks on three
compute nodes with corresponding privileges on such nodes, as shown in Table 4. Later in Section 4.2,
we will expand the scope to discuss the solution for our motivating example which involves all the eight
nodes.

3. Models

This section presents out threat model and the proposed models of the maintenance task assignment
and insider threats.



Table 3
Privileges used in this work

Privilege \ Restriction
No privilege No access
Read Cannot read VM-related data
Write_L1 The restriction of read privilege

applies, software modification restricted
to trusted repository
Write_L2 Bootloader, kernel, policy enforcement,
maintenance agent, file system
snapshots, package manager transaction logs,
and certain dangerous system parameters

Write_L3 No restriction
Table 4
Maintenance tasks and privileges for the running example

Task Number | Node Number (in Figure 1) \ Task Description \ Privilege
1 4 (http) Read log files for monitoring Read
2 4 (http) Modifying configuration files | Write_L1
3 4 (http) Patching system files Write_L3
4 3 (app) Read log files for monitoring Read
5 3 (app) Modifying configuration files | Write_L1
6 3 (app) Update kernel Write_L3
7 1(DB) Read log files for monitoring Read
8 1(DB) Modifying configuration files | Write_L1
9 1(DB) Update kernel Write_L3
10 1(DB) Install new systems Write_L2

3.1. The Threat Model and Maintenance Task Assignment Model

The in-scope threats we consider include insider attacks from dishonest remote administrators or at-
tackers with stolen credentials of such administrators. Consequently, we assume the majority of remote
administrators is trusted, and if there are multiple dishonest administrators (or attackers with their cre-
dentials), they do not collude (a straightforward extension of our models by considering each possible
combination of administrators as one insider can accommodate such colluding administrators). The third
party provider is considered trusted as an organization and it will collaborate with the cloud provider to
implement the intended task assignment. The cloud provider is concerned about certain critical assets,
such as physical or virtual resources and services or business functions, inside the cloud, and it is aware
of the constraints about task assignments such as the number of remote administrators, their availability
and skill set, etc. Finally, as a preventive solution, our mitigation approach is intended as a comple-
mentary solution to existing vulnerability scanners, intrusion detection systems, and other prevention or
mitigation solutions.

The cloud provider assigns the maintenance tasks to remote administrators (RAs) based on given con-
straints (e.g., which tasks may be assigned to each RA), and consequently the RA will obtain privileges
required by those tasks. This can be modeled as follows (which has a similar syntax as [28]).

Definition 1 (Maintenance Task Assignment Model). Given
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a set of remote administrators RA,
a set of maintenance task T,
a set of privileges P,
the remote administrator task relation RAT C RA x T which indicates the maintenance tasks that
are allowed to be assigned to each remote administrator, and
the task privilege relation TP C T x P which indicates the privileges required for each task,

a maintenance task assignment is given by function ta(.) : RA — 2T that satisfies (Vra € RA)(ta(ra) C
{t| (ra,t) € RAT } (meaning a remote administrator is only assigned with the tasks to which he/she is
allowed), and the corresponding set of privileges given to the remote administrator is given by function

pa(ra) = Uteta(ra){p | (ta p) € TP}'
3.2. The Insider Threat Model

To model various resources and their relationships in cloud infrastructures, we borrow the resource
graph concept [29, 30] to represent hardware hosts (e.g., servers and networking devices), software
resources (e.g., network services and applications) running on such hosts (only remotely accessible
resources are considered), and the causal relationships between different resources (e.g., a zero day
exploit on the Web server may lead to user privilege on that server which subsequently causes the
application server to be accessible). This concept is more formally stated in Definition 2 and will be
illustrated through an example.

Definition 2 (Resource Graph [29, 30]). Given a network with the set of hosts H, the set of resources R,
with the resource mapping res(.) : H — 2R, the set of zero day exploits E = {(r,hs,hq) |hs €H,hg €H,r €
res(hg)} and their pre- and post-conditions C, a resource graph is a directed graph G(E UC,R; UR;)
where R, C C x E and R; C E x C are the pre- and post-condition relations, respectively.

To quantify the insider threat of remote administrators based on resource graphs, we extend the k-zero
day safety security metric [14, 15]. Roughly speaking, the metric starts with the worst case assumption
that the relative severity of unknown (zero day) vulnerabilities are not measurable; it then simply counts
how many different resources must be compromised through such unknown vulnerabilities in order to
compromise a given critical asset; a larger count will indicate a relatively more secure network, since
the likelihood of having more unknown vulnerabilities all available at the same time, inside the same
network, and exploitable by the same attacker, would be significantly lower. The following provides a
simplified version of this concept, which will be illustrated through an example.

Definition 3 (Attack Path and k-Zero Day Safety [14, 15]). Given a resource graph G(E UC,R, UR;),
we call C; = {c:c € C,(fle € E)({e,c) € Ri)} the set of initial conditions; we call any sequence of zero
day exploits ey, e,,...,e, an attack path if all the pre-conditions of each e; are either initial conditions,
or post-conditions of some e;( j < i). For any given critical asset ¢ € C, we say the network is k-zero day
safe if there does not exist any attack path which involves k or less distinct resources, and includes at
least one exploit having c as its post-condition.

Figure 2 shows an example resource graph for our running example (the dashed lines and shades
represent our extension to the model, which can be ignored for now and will be discussed later in
Section 4.2; also, only a small portion of the resource graph is shown here due to space limitations).
Each triple inside an oval indicates a potential zero day or known exploit in the format <service or
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Fig. 2. Modeling insider threat using the resource graph

vulnerability, source host, destination host> (e.g. <Xen, RA, 4> indicates an exploit of Xen on host 4
from host RA), and the plaintext pairs indicate the pre- or post-conditions of those exploits in the format
<condition, host> where a condition can be either a privilege on the host (e.g., <W1,4> means the
level 1 write privilege and <R,4> means the read privilege which are both explained in Section 2.2),
the existence of a service on the host (e.g., <Xen,4>), or a connectivity (e.g., <0,4>means attacker can
connect to host 4 and <4,4> means a local exploit on host 4). The edges point from pre-conditions to an
exploit and then to its post-conditions, which indicate that any exploit can be executed if and only if all of
its pre-conditions are satisfied, whereas executing an exploit is enough to satisfy all its post-conditions.

In Figure 2, the left-hand side box indicates the normal resource graph which depicts what an external



attacker may do to compromise the critical asset <user, Xen>. The right-hand side boxes depict the
insider threats coming from RAs assigned to each of the three compute nodes. The gray color exploits
are what captures the consequences of granting privileges to remote administrators. For example, an
RA with the level 1 write privilege <W1,4> can potentially exploit Xen (i.e., <Xen_w1,4,4>) to es-
calate his/her privilege to the user privilege on host 4 (i.e.., <user,4>), whereas a higher level privilege
<W2,4> can potentially lead to the root privilege <root,4> through an exploit <Xen_w2,4,4>, and
the highest privilege <W3,4> can even directly lead to that privilege. Those examples show how the
model can capture the different levels of insider threats as results of different privileges obtained through
maintenance task assignments.

Next, given the maintenance task assignment for each RA, we can obtain all the possible paths he/she
may follow in the resource graph, starting from all the initially satisfied conditions (e.g., <Xen,4>)
and those implied by the task assignment (e.g., <W1,4>) to the critical asset (i.e., <user,Xen>). To
quantify the relative level of such threats, we apply the k-zero day safety metric (kOd) mentioned above.
The metric value of each RA provides an estimation for the relative level of threat of each RA, since
a larger number of distinct zero day exploits on the shortest path means reaching the critical asset is
(exponentially, if those exploits are assumed to be independent) more difficult. For example, an RA with
privilege <W3,1> would have a k0d value of 1 since only one zero day exploit <Xen,1,1> is needed
to reach the critical asset, whereas an RA with <W2,1> would have a k value of 2 since an additional
exploit <Xen_wz2,1,1> is needed. Finally, once we have calculated the k values of all RAs based on their
given maintenance task assignments, we take the average (and minimum) of those k values as the average
(and worst) case indication of the overall insider threat of the given maintenance task assignments. The
above discussions are formally defined as follows.

Definition 4 (Insider Threat Model). Given the maintenance task assignment (i.e., RA, T, P, RAT, TP,
ta, and pa, as given in Definition 1) let C; = J,,cra Pa(ra) be the set of privileges implied by the as-
signment and E, be the set of new exploits enabled by C,. Denote by G(E UE; UCUC,,R) the resource
graph (where E and C denote the original set of exploits and conditions, respectively, and R denote

the edges) and let kOd(.) be the k zero day safety metric function. We say kod(ra), zm‘ﬁgi'f‘d”’"), and

min({k0d(ra) : ra € RA}) represent the insider threat of ra, the average case insider threat of the
maintenance task assignment, and the worst case insider threat of the maintenance task assignment,
respectively.

3.3. The Bayesian Network Model

The previous section has applied the k-zero day safety metric to model the insider threat of remote
administrators. This is a conservative model since the k value is defined based on the shortest attack
paths, which attacker may or may not be able to follow in practice. Moreover, the model only considers
zero day exploits and known vulnerabilities do not contribute to the k value. In this section, we extend
this model by applying the Bayesian network (BN)-based metric [31] instead of the k-zero day safety.

The BN-based metric is based on the conditional probability of reaching the given critical assets given
that all initial conditions are satisfied. We first construct a Bayesian network based on the resource
graph and the conditional probability that each exploit can be executed given its pre-conditions are all
satisfied. Such conditional probabilities can be assigned to both known vulnerabilities based on standard
vulnerability scores (e.g., the CVSS scores [32]), and zero day exploits based on a nominal value (e.g.,
0.08 [33]). Therefore, the model captures both zero day and known vulnerabilities, and it also takes
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all attack paths into consideration. Finally, the model can also capture additional casual dependencies,
e.g., the same vulnerability appearing on multiple hosts may yield a higher probability (e.g., 0.9 in our
examples).

By applying the BN-based metric to the resource graph given in Definition 4, we can obtain the
probability for each RA to compromise the given critical assets given all the privileges implied by a
maintenance task that is assigned to the RA. Since an RA may be assigned to multiple maintenance tasks,
the RA can compromise the critical assets as long as at least one of the assigned tasks enables him/her to
do so whose probability can be computed as in Equation 1. We redefine the insider threat model based
on those discussions in Definition 5. The model also allows assigning the relative likelihood of each RA
to be misbehaving, which can be estimated either based on the background (e.g., third party RAs should
be assigned a higher probability than RAs of the cloud provider) or behavior-based detection results if
available.

Definition 5 (The BN-based Insider Threat Model). Given the maintenance task assignment (i.e., RA,
T,P,RAT, TP, ta, and pa), let C; = U,acra Pa(ra) be the set of privileges implied by the assignment and
E; be the set of new exploits enabled by C,. Denote by G(E UE; UCUC;,R) the resource graph (where
E and C denote the original set of exploits and conditions, respectively, and R denote the edges) and let
BN = (G, 6) be a Bayesian network where 6 denotes the BN parameters. Let Pgy (t) be the conditional
probability that an RA assigned with task t can compromise the given critical assets, and Py(ra) the
given probability that ra will misbehave. We say P(ra), 2“6‘%’(“), and min({P(ra) : ra € RA}) represent
the insider threat of ra, the average case insider threat of the maintenance task assignment, and the worst
case insider threat of the maintenance task assignment, respectively, where

Praj=1—[ ] (1—Pen(t)-Pu(ra)) 1)
teT,(ra,t)eRAT

3.4. The Service Dependency Model

The insider threat models introduced in previous sections are based on resource graphs, which are
mainly designed to model hardware and software resources. The resource graphs, however, do not di-
rectly indicate any higher level services or business functions, the relationships between such services
or functions, or their dependencies on the underlying hardware and software resources. For this pur-
pose, the concept of service dependency graph [12, 13] has been proposed to model security impact
on services [34]. For example, Figure 3 demonstrates an example in which the lower figure shows an
attack graph (which is syntactically equivalent to a resource graph but designed for exploits of known
vulnerabilities) depicting various exploits and their relationships, and the upper figure shows the service
dependency graph depicting various services; the dashed line edges show the dependencies between the
services and corresponding resources involved in the vulnerabilities. The service dependency graph and
the attack graph can be integrated and flattened as an extended model. This model can be used to identify
attack paths exploiting services or leading to critical assets given as services.

We apply the service dependency model [12] to extend our insider threat models introduced in previ-
ous sections. For example, in Figure 4, the left side of Figure 4 shows examples of service dependency-
related exploits which are integrated into the previous resource graph. Each triple inside a shadowed oval
indicates a service dependency exploit, and the plaintext nodes in between shadowed ovals indicate the
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type of impacted service, which can run on either virtual or physical resources; the dash line shows the
dependency between services. This model can be used to represent various causal relationships between
services and resources, e.g., all services running on top of a server may be compromised if attackers gain
full control over the server, a server (and other services) may not be affected when one of the services
running on the server is compromised, and a service involving multiple resources may be compromised
either when one of the resources is compromised (e.g., a \Web service may become unavailable if either
the Web, application, or database server is down) or multiple resources are compromised at the same
time (e.g., a Web service might be supported by multiple redundant Web servers).

We formalize the service dependency resource graph concept in Definition 6. The model extends
the resource graph by adding nodes for services and their pre- and post-conditions, edges connecting
services to those conditions, and edges inter-connecting the services (or their pre- and post-conditions)
and the pre- and post-conditions of exploits (or the exploits). Definition 7 then extends the previous
insider threat models based on the service dependency resource graph. We will apply this model in the
upcoming sections to study the solution for mitigating the insider threats of remote administrators, and
to conduct simulations to evaluate the effectiveness of the solution. In practice, the choice between those
different models (e.g., k-zero day safety versus BN, or whether to consider service dependencies) will
depend on the needs of specific applications and the available information or assumptions.

Definition 6 (Service Dependency Resource Graph). Given a network with the set of hosts H, the set
of resources R, with the resource mapping res(.) : H — 2R, the set of zero day exploits E = {(r,hs,hg) |
hs € H,hg € H,r € res(hy) } and their pre- and post-conditions C, the set of services S, their pre- and
post-conditions Cs, a service dependency resource graph is a directed graph G(E UCUSUC, R, UR;
where Ry C (CUGC;) x (EUS), Rj C (EUS) x (CUC;) are the dependency relations.
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Definition 7 (The Service Dependency-based Insider Threat Model). Given the maintenance task as-
signment (i.e., RA, T, P, RAT, TP, ta, and pa), let C; = ,.cra Pa(ra) be the set of privileges implied by
the assignment and E, be the set of new exploits enabled by C,. Denote by G(E USUCUC;UE, UC,R)
the service dependency resource graph (where E, S, C, and C, denote the original set of exploits,

services, and conditions, respectively, and R denote the edges). We say k0d(ra), z“‘ﬂgi'ff“a), and

min({kod(ra) : ra € RA}) (or P(ra), Z=5) and min({P(ra) : ra € RA}) in the case of BN-based
metrics) the insider threat of ra, the average case insider threat of the maintenance task assignment, and

the worst case insider threat of the maintenance task assignment, respectively.

4. TheMitigation and Use Cases

In this section, we formulate the optimization-based solution for mitigating the insider threat of remote
administrators during maintenance task assignment.
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4.1. The Optimization-based Mitigation

Based on our definitions of the maintenance task assignment model and the insider threat model, we
formulate the problem of optimal task assignment in Definition 8. The remote administrator task relation
RAT basically defines the optimization constraints since it states which tasks may be assigned to which
RA. Additional constraints in other forms may also be introduced, e.g., the maximum number of tasks
that can be assigned to an RA.

Definition 8 (The Optimal Task Assignment Problem). Given a resource graph G, the set of remote ad-
ministrators RA, maintenance tasks T, privileges P, the remote administrator task relation RAT, and the

task privilege relation TP, find a maintenance task assignment function ta which maximizes 2“6'?‘;7‘;?"”3)

(or min({k0d(ra) : ra € RA})).
Theorem 1. The Optimal Task Assignment Problem (Definition 8) is NP-hard.

Proof: First, evaluating the kOd function is already NP-hard w.r.t. the size of the resource graph [14]. On
the other hand, we provide a sketch of proof to show the problem is also NP-hard from the perspective
of the maintenance task assignment. Specifically, given any instance of the well known NP-complete
problem, exact cover by 3-sets [35] (i.e., given a finite set X containing exactly 3n elements, and a
collection C of subsets of X each of which contains exactly 3 elements, determine whether there exists
D C Csuch that every x € X occurs in exactly one d € D), we can construct an instance of our problem as
follows. We use X for the set of maintenance tasks, and C for the set of RAs, such that the three elements
of each ¢ € C represent three tasks which can be assigned to c. In addition, no RA can be assigned
with less than three tasks, and an RA already assigned with three tasks can choose any available task
to be assigned in addition. We can then construct a resource graph in which the critical asset can be
reached through any combination of four privileges. It then follows that, the k value for insider threat
is maximized if and only if there exists an exact cover D due to the following. If the exact cover exists,
then every RA d € D is assigned with exactly three tasks and therefore the k value of every RA will be
equal to infinity since the critical asset cannot be reached with less than four privileges; if the cover does
not exist, then to have every task assigned, we will have to assign at least one RA with more than three
tasks, and hence the k value will decrease. O

In our study, we use the genetic algorithm (GA) [36] to optimize the maintenance task assignments by
maximizing k. Specifically, the resource graph is taken as input to the optimization algorithm, with the
(either average case or worst case) insider threat value k as the fitness function. We try to find the best
task assignment for maximizing the value k within a reasonable number of generations. The constraints
can be given either through defining the remote administrator task relation RAT in the case of specific
tasks that can be assigned to each RA, or as a fixed number of tasks for each RA. Other constraints can
also be easily added to the optimization problem. In our simulations, we choose the probability of 0.8
for crossover and 0.2 for mutation based on our experiences.

4.2. Use Cases

We demonstrate our solution through several use cases with different constraints. The first three use
cases are based on the five remote administrators and ten maintenance tasks presented in Table 4 and the
fourth use case is based on the motivating example shown in Section 2.1. The last use case is based on
the service dependency resource graph with three remote administrator and five maintenance tasks.
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Maintenance tasks assignments for use case A

Table 5

User A1 B; Ci D1 E1 Az B> Cy D, E> A3 B3 C3 D3 E3
TasksNumber || 4 5 6 8 9] 6 4 7 54 5 6 8 9
1 10 7 3 2 310 1 2 7 3 10
k 3 1 2 2 1 3 3 2 2 1
k 18 22
Minimum k 1 1 1
Use Case A:. Inthis case, each RA should be assigned with exactly two tasks (e.g., to evently distribute

the tasks among all the RAS). The three tables shown in Table 5 show three possible assignments and the
corresponding k values. Also, Figure 2 shows an example path (dashed lines) for tasks assigned to RA
C, based on the left table, and also the shortest path yielding the minimum k value. We use the GA to
find the optimal task assignment that meets the constraint given in this case, as shown in the right table,
the maximal average of k values among all RAs is k = 2.2. It can also be seen that the minimum k value
among all RAs is always k = 1 in this special case.

Use Case B:. Inthis case, each RA should be assigned with at least one task (e.g., to ensure all RAs are
employed while there is no consideration for their workload). The optimal task assignment under this
constraint is (RA1{8,9,10}, RA2{4,5}, RA3{3}, RA4{1,2}, and RA5 {6,7}). This relaxed constraint
improves the average k from 2.2 in the previous example to 2.8, which shows relaxing the constraint
may increase k (which means less threat).

Use Case C:. In this case, each RA can handle a fixed subset of tasks (e.g., due to the level of training
or skill). In our example, we assume RA1 can be assigned to any task requiring the read privilege, RA2 to
tasks requiring write level 1 privilege, RA3 to tasks requiring write level 1 and 2, RA4 to tasks requiring
write level 3, and RA5 can be assigned to any task. After applying our solution, the optimal assignment
yields the maximal average of k values to be k = 2.2.

Use Case D:. This case shows the optimal maintenance task assignment for tasks discussed in our
motivating example in Section 2.1. We have eight RAs and each RA can handle maximum two tasks.
The upper table in Table 6 shows the 15 maintenance tasks to be assigned. In Table 6, the four tables on
the bottom show four different scenarios of tasks assigned to RAs and each table shows different average
k. The bottom table on the right shows the optimal task assignment in term of the average k = 3.125.
In Figure 5, the red dashed line represents the path used by RAL to reach the critical asset when task
number 1 is assigned to RAL. Also, the solid red line shows the path when task number 12 is assigned
to RAL.

Use Case E:. In this use case, we demonstrate how service dependencies may affect the task assign-
ment. We have five maintenance tasks as presented in Table 7. Assume all VMs running on the http
compute node have backups but some VMs running on the app compute node do not have a backup.
The critical asset is given as the DB service. We have three RAs each of which can be assigned with a
maximum of two maintenance tasks. Table 8 shows two possible ways to assign the maintenance tasks
to RAs and the corresponding k values. We use the GA to find the optimal task assignment that satisfies
the constraints given in this case. As shown in the right table, the maximal average of k values among
all RAs is k = 2.3. It can also be seen that the minimum k value among all RAs is always k = 2 in
this special case. Figure 6, shows the service dependency graph. The shadowed oval represents the path
followed by the attacker to compromise the service when the app VM (VMb) does not have a backup.
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Table 6
Maintenance task assignments for use case D (the motivating example)

Task# Maintenance task Task# Maintenance task
1 Read log files for node 1 2 Modify configuration file for node 1
3 Read log files for node 2 4 Install a new system for node 2
5 Read log files for node 3 6 Modify configuration file for node 3
7 Install a new system for node 3 8 Modify configuration file for node 4
9 Install a new system for node 4 10 Read log files for node 5
11 Install a new system for node 5 12 Read log files for node 6
13 Modify configuration file for node 6 14 Read log files for node 7
15 Read log files for node 8
User RA1 RA2 RA3 RA4 RA5 RA6 RA7 RA8
Tasks Number 14 L 4 8 2 3 ! 6
5 9 15 12 10 11 13
k 1 3 2 3 2 3 2 3
k 2.375
Minimum k 1
User RA1 RA2 RA3 RA4 RA5 RA6 RA7 RA8
Tasks Number 2 3 4 ° 6 ! 8
10 11 12 13 14 15
k 3 2 3 3 3 1 2 5
k 2.75
Minimum k 1
User RA1 RA2 RA3 RA4 RA5 RA6 RA7 RA8
Tasks Number . 2 3 > 6 15 13 8
7 9 10 11 12 14
k 3 2 4 4 3 2 1 5
k
Minimum k 1
User RA1 RA2 RA3 RA4 RA5 RA6 RA7 RA8
Tasks Number ! 2 8 > 6 14 4 8
12 7 9 10 11 15 13
k 3 2 4 4 3 1 3 5
k 3.125
Minimum k 1

5. Simulations

This section shows simulation results on applying our mitigation solution under various constraints.

Experimental Settings. All simulations are performed using a virtual machine equipped with a 3.4
GHz CPU and 4GB RAM in the Python 2.7.10 environment under Ubuntu 12.04 LTS and the MATLAB
R2017b’s GA toolbox. To generate a large number of resource graphs and service dependency graphs
for simulations, we start with seed graphs with realistic configurations similar to Figure 1 and then
generate random resource graphs and service dependency graphs by injecting new nodes and edges into
those seed graphs. Those resource graphs and service dependency graphs were used as the input to the
optimization toolbox where the fitness function is to maximize the average or worst case insider threat
values (given in Definition 4 and Definition 7); also, we used the optimization toolbox where the fitness
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Fig. 5. Resource graph for the motivating example

function is to minimize the probability of reaching the critical asset by using the BN-based metric (given
in Eqg. 1) with various constraints, e.g., the number of available RAs and maintenance tasks, how many
task may be assigned to each RA, assigning a fixed number of RAs with specific privilege, and assigning
some of the maintenance tasks to the local administrators. We repeat each simulation on 300 different

resource graphs to obtain the average result.

The Average Case Insider Threats.

17

The objective of the first two simulations is to study how the average
case insider threat (i.e., the average of k values among all RAs) may be improved through our mitigation
solution under constraints on the number of tasks and RAs, respectively. In Figure 7, the number of
available RAs is fixed at 500, while the number of maintenance tasks is varied between 500 and 2,000
along the X-axis. The Y -axis shows the average of k values among all RAs. The solid lines represent
the results after applying our mitigation solution under constraints about the maximum number of tasks
assigned to each RA. The dashed lines represent the results before applying the mitigation solution.



Table 7
Maintenance tasks and privileges for the service dependency

Task Number | Node Number (in Figure 1) \ Task Description \ Privilege
1 4 (http) Read log files for monitoring Read
2 4 (http) Install new systems Write_L2
3 3 (app) Read log files for monitoring Read
4 3 (app) Install new systems Write_L2
5 1 (DB) Read log files for monitoring Read
Table 8
Maintenance tasks assignments for use case E
User [A B C[[Aa B G
Tasks Number . 2 3 L 8 >
5 2
k 2 2 2 3 2 2
k 2 2.33
Minimum k 2 2

Results and Implications: From the result, we can make the following observations. First, the miti-
gation solution successfully reduces the insider threat (increasing the average of k values) in all cases.
Second, the results before and after applying the solution decrease (meaning increased insider threat)
following similar linear trends, as the number of maintenance tasks increases until each RA reaches its
full capacity. Finally, the result of maximum four tasks per RA after applying the solution is close to the
result of maximum ten tasks per RA before applying the solution, which means the mitigation solution
may allow more (more than double) tasks to be assigned to the same number of RAs while yielding the
same level of insider threat.

In Figure 8, the number of maintenance tasks is fixed at 2,500 while the number of RAs is varied
between 400 and 1,000 along the X-axis. The Y -axis shows the average of k values among all RAs. The
solid lines represent the results after applying the mitigation solution and the dashed lines for the results
before applying the solution. All the lines start with sufficient numbers of RAs for handling all the tasks
since we only consider one round of assignment. We apply the same constraint as in previous simulation.

Results and Implications: Again, we can see the mitigation solution successfully reduces the insider
threat (increasing the average of k values) in all cases. More interestingly, we can observe the trend of
the lines as follows. The dashed lines all follow a similar near linear trend, which is expected since a
larger number of RAs means less insider threat since each RA will be assigned less tasks and hence
given less privileges. On the other hand, most of the solid lines follow a similar trend of starting flat then
increasing almost linearly before reaching the plateau. This trend indicates that, the mitigation solution
can significantly reduce the insider threat when the number of RAs is within certain ranges past which it
becomes less effective (because each RA already receives minimum privileges). The trend of four tasks
per RA is slightly different mostly due to the limited number of RAs.

The Worst Case Insider Threats. The objective of the next two simulations is to study how the worst
case insider threat (i.e., the minimum k values among all RAs) behaves under the mitigation solution.
Figure 9 and Figure 10 are based on similar X -axis and constraints as previous two simulations, whereas
the Y -axis shows the minimum k among all RAs (averaged over 300 simulations).
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Fig. 6. The service dependency resource graph for use case E

Results and Implications: In Figure 9, we can see that the minimum k values also decrease (meaning
more insider threat) almost linearly as the number of tasks increases. In contrast to previous simulation,
we can see the minimum k values are always lower than the average k values, which is expected. In
Figure 10, we can see the minimum k values also increase almost linearly before reaching the plateau as
the number of RAs increases. In contrast to previous simulation, we can see the increase here is slower,
which means the worst case results (minimum k values) are more difficult to improve with a increased
number of RAs. Also, we can see that the worst case results reach the plateau later (e.g., 900 RAs for 8
tasks per RA) than the average case results (700 RAS).

The Impact of the Highest Privileges. The objective of the next two simulations is to study how the
average case insider threat (i.e., the average of k values among all RAs) can be when we assign some
RAs with the highest privilege (W3) under our mitigation solution. In Figure 11, the number of available
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RAs is fixed at 500 and each RA can handle 4 tasks as maximum, while the number of maintenance tasks
is varied between 500 and 2,000 along the X-axis. The Y -axis shows the average k among all RAs. The
solid lines show the results of average k after applying our mitigation solution under constraints about
the number of RAs grant the W3 privilege before assigning tasks which are 20 RAs, 10 RAs, and no RA
are granted the W3 privilege before task assignment, respectively.

Results and Implications: From the results, we can make the following observations. Grant the highest
privilege to some of the RAs before assigning maintenance tasks can increase the average k to some
degree when compared to the case when RAs are only granted privilege based on tasks needed to be
performed. However, this decreases slower than others for the RAs who are granted privileges based on
the maintenance tasks. As we can see in the figure, the trend (average k) of 20 RAs granted the highest
privilege decreases faster (the insider threat increases) than others, which is expected because the highest
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privilege does not always correspond to the shortest path (e.g. W3 on the http node corresponds to a
longer path than W2 on the app node).

In Figure 12, the number of maintenance tasks is fixed at 2,500 while the number of RAs is varied
between 400 and 1,000 along the X-axis. The Y -axis shows the average k among all RAs. Each RA can
perform 10 maintenance tasks at most. The solid lines show the results of average k after applying our
mitigation solution under constraints about the number of RAs grant the W3 privilege before assigning
tasks which are 40 RAs, 20 RAs and no RA are granted the W3 privilege before task assignment,
respectively.

Results and Implications: From the results, we can make the following observations. Granting the
highest privilege to some of the RAs before assigning maintenance tasks can increase the average k in
all cases, and all cases follow the similar trend of starting flat then increasing almost linearly before
reaching the plateau. This trend shows granting the highest privilege to some RAs will increase the
average k since the number of RAs are increased and the number of tasks are fixed.
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64 —*~— 10 RAs with WL3 —e— 20 RAs with WL3
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Fig. 11. The average k among 500 RAs with some of them  Fig. 12. The average k among different numbers of RAs with
granted the highest privilege some of them granted the highest privilege

The objective of the next two simulations is to study how the worst case insider threat (i.e., the min-
imum k values among all RAs) behaves under the mitigation solution when we assign some RAs with
the highest privilege (W3). In Figure 13, the number of available RAs is fixed at 500 and each RA can
handle four tasks at most, while the number of maintenance tasks is varied between 500 and 2,000 along
the X-axis. The Y -axis shows the minimum k among all RAs. In Figure 13, the number of maintenance
tasks is fixed at 2,500 while the number of RAs is varied between 400 and 1,000 along the X-axis. The
Y -axis shows the average k among all RAs. Each RA can perform 10 maintenance tasks at most. The
solid lines show the results of minimum k after applying our mitigation solution under constraints about
the number of RAs granted the W3 privilege before assigning tasks, which are 10 RAs, 20 RAs, and
no RA granted W3 privilege in Figure 13, respectively, and 20 RAs, 40 RAs, and no RA granted W3
privilege in Figure 14, respectively.

Results and Implications: From the result, we can make the following observations. The minimum k
in Figure 13 follows the similar trend as in Figure 11 which decreases almost linearly as the number of
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tasks increases and decrease faster as the number of RAs granted with the highest privilege increases. In
Figure 14, the minimum k increases almost linearly before reaching the plateau.
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The Impact of Local Administrators. The objective of the next two simulations is to study how the
average case insider threat (i.e., the average of k values among all RAs) behaves when we add a local
administrator (LA) to perform MTs with their k value equal to the minimum k. In Figure 15, the number
of available RAs is fixed at 500, while the number of maintenance tasks is varied between 500 and 2,000
along the X-axis. In Figure 16, the number of maintenance tasks is fixed at 2,500, while the number of
RAs is varied between 400 and 1,000 along the X-axis. The Y-axis shows the average k among all RAs
in both figures. The solid lines show the results of average k after applying our mitigation solution under
the constraint that an LA can perform MT with its k value equal to the minimum k.

Results and Implications: In Figure 15, we can see that the the average k mostly decreases slowly.
The local administrator corresponds to the shortest path (minimum k) MTs needed to be performed.
Increasing the number of tasks that can be assigned to each RA can increase the average k and the value
of the average k decreases more slowly. In Figure 16, we can see that increasing the number of RAs
and eliminating the highest risk tasks (minimum k) by assigning those tasks to the LAs will increase the
average k linearly before reaching the plateau.

The Impact of Service Dependencies. The objective of the next simulations is to study how the service
dependency can affect the average k. In Figure 17, the number of available RAs is fixed at 500, while
the number of maintenance tasks is varied between 500 and 2,000 along the X-axis. The Y -axis shows
the average k among all RAs. The solid lines show the results of average k after considering the service
dependency in our mitigation solution under constraints about the maximum number of tasks assigned
to each RA. The dashed lines represent the results without considering the service dependency in our
mitigation solution.

Results and Implications: In Figure 17, we can see that considering the service dependencies will
decrease the average k because we would have to consider more critical assets at the same time (e.g.
if we want to secure the database VM service from being compromised, we will need to consider any
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service connected to the database VM as a critical asset). Also, we can see that, the result of k when
considering the service dependency is relatively close to the result of k without considering it, which
means the mitigation solution is relatively effective for protecting services as well as resources.

In Figure 18, the number of maintenance tasks is fixed at 2,500 while the number of RAs is varied
between 400 and 1,000 along the X -axis. The Y -axis shows the average k among all RAs. The solid lines
show the results of average k after considering the service dependency in our mitigation solution under
constraints about the maximum number of tasks assigned to each RA. The dashed lines represent the
results without considering the service dependency in our mitigation solution.

Results and Implications: From the result, we can make the following observations. Considering the
service dependency will increase the average k almost linearly before reaching the plateau. However,
when we compare the average k with the result of the resource graph, we find that the average k under
service dependency is lower which is expected because we are essentially considering more critical
assets under the service dependency.

The objective of this simulation is to show how the minimum k behaves when considering the service
dependency. In Figure 19, the number of available RAs is fixed at 500, while the number of maintenance
tasks is varied between 500 and 2,000 along the X-axis. The Y -axis shows the average k among all RAs.
In Figure 20, the number of maintenance tasks is fixed at 2,500 while the number of RAs is varied
between 400 and 1,000 along the X-axis. The Y -axis shows the average k among all RAs.

Results and Implications: In Figure 19, we can see that the minimum k values also decrease almost
linearly as the number of tasks increases, which means the insider threat increases. From the results
in Figure 20, we can see that the minimum k values also increase almost linearly before reaching the
plateau as the number of RAs increases. The increase here is slower than that in Figure 18, which means
the worst case (minimum k values) are more difficult to improve.

The BN-based Metric. The objective of this simulation is to apply the BN-based metric instead of the
k-zero day safety metric on both the resource graph and the service dependency graph. In Figures 21
and 22, the number of available RAs is fixed at 500, while the number of maintenance tasks is varied

between 500 and 2,000 along the X-axis. The Y -axis shows the average probability to compromise the
critical asset among all RAs.
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Results and Implications: From the results, we can make the following observations. In Figure 21,
The probability to reach a critical asset almost increases linearly when the number of maintenance tasks
increases while the number of RAs are fixed. Also, we find increasing the maximum number of tasks that
can be assigned to each RA slows the increasing rate of the probability which means slower increase
in the insider threat. In Figure 22, we find the result follows the similar trend as the previous figure.
However, the probability to reach the critical assets in the service dependency resource graph is much
higher than that in the resource graph (e.g. for a maximum four tasks for each RA, the probability is
almost 25% higher in the service dependency resource graph), which is expected because the service
dependency means attackers would have more options to compromise the critical assets.
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6. Related Work

The insider threat is a challenging issue for both traditional networks and clouds. Ray and Poolsapas-
sit propose an alarm system to monitor the behavior of malicious insiders using the attack tree [37].
Mathew et al. use the capability acquisition graphs (CAG) to monitor the abuse of privileges by mali-
cious insiders [38]. Sarkar et al. propose DASAI to analyze if a process contains a step that meet the
insider attack condition [39]. Chinchani et al. propose a graph-based model for insider attacks and mea-
sure the threat [40]. Althebyan and Panda propose predication and detection model for insider attacks
based on knowledge gathered by the internal users during work time in the organization [41]. Bishop et
al. present insider threat definition based on security policies and determine the source of risk [42]. Roy
et al. study an employee assignment problem to find an optimal tasks assigned to the employee based on
constraints in role-based access control [43].

There exists only limited effort on insider attacks in the context of clouds. Our previous work focuses
on applying different threat modeling techniques to cloud data center infrastructures where the focus is
on external attackers [21]. Gruschka and Jensen devise a high level attack surface framework to show
from where the attack can start [44]. The NIST emphasizes the importance of security measuring and
metrics for cloud providers in [16]. A framework is propose by Luna et al. for cloud security metrics
using basic building blocks [45]. Resource graphs can be automatically generated by modeling the net-
work and vulnerabilities and many useful analyses may be performed using resource graphs [46—49];
however, our work is the first to use resource graphs for modeling insider attacks.

There exist many works on network security metrics in general [50, 51]. Some of those works focus
on modeling known vulnerabilities for network security [48, 52] while other works focus on modeling
unknown vulnerabilities (zero day attacks) [14, 53-55], which are usually considered unmeasurable
due to the uncertainties involved [56]. A BN-based security metric applies resource graphs to measure
the security level of a network [31]; the metric converts the CVSS scores of vulnerabilities into attack
probabilities and then obtain the overall attack likelihood for reaching critical assets. We apply this
metric to measure insider threats in this paper. Security metrics and measurements in clouds still face
many challenges as shown in [57]. Following security standards is shown to be not enough to ensure
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the security of cloud infrastructures and security metrics may help to evaluate the security level [58].
Halabi and Bellgich use the Goal-Question-Metric to develop quantitative evaluation metric to help the
cloud provider to evaluate its cloud security service and to know the level of security [59]. Finally, there
exist some works focusing on high level risk assessment for clouds, such as the framework to evaluate
the security of clouds based on the security impact in six categories and abstract levels of security
impact [17].

The proactive mitigation of security threats can be performed through network hardening. Early works
on network hardening focus on breaking all the attack paths that an attacker can follow to compromise a
critical asset, either in the middle of the paths or at the beginning (disabling initial conditions) [60-62].
Network hardening using optimization is proposed by Gupta et al. in [63], refined with multiple objective
optimization by Dewri et al. in [64] and with dynamic conditions by Poolsappasit et al. in [65], and ex-
tended as vulnerability analysis with cost/benefit assessment [66] and risk assessment [67]. More recent
works [68, 69] focus on combining multiple hardening options through optimization, and improving the
diversity of networks, respectively. We borrow the optimization-based hardening techniques [63, 69] to
mitigate the insider threats in this paper. In the context of clouds, there are works on securing the cloud
from insider attacks by limiting the trust on the compute node [10]. Li et al. focuses on supporting users
to configure privacy protection in compute nodes [9]. Closest to our work, Bleikertz et al. focus on se-
curing the cloud during maintenance time by limiting the privileges granted to the remote administrators
based on the tasks assigned to that administrator [5].

There are many works that focus on the service dependency. Some of those existing works focus
on the mission impact which relies on the service dependency model to capture the threats that can
impact a mission [70, 71]. Chen et al. [34] show how the service dependency can affect the system since
compromising a service can affect other services hosted in same network. Natarajan et al. [72] develop
a tool for automaticaly finding dependency between services in large networks. Another work develops
different techniques to monitor service dependencies in distributed systems [73]. Closest to our work,
Sun et al. [12] embeds mission impact and service dependency in an attack graph to to find how service
dependency can impact different missions. We borrow their model of service dependency in evaluating
the insider threats of remote administrators.

7. Conclusion

In this paper, we have modeled the insider threat during maintenance task assignment for cloud
providers to better understand the threats posed by third party remote administrators. We have formu-
lated the optimal assignment as an optimization problem and applied a standard optimization technique
to derive solutions under different constraints. We have extended our insider threat models to consider
service dependencies. Also, we applied the BN-base metric to take all attack paths and known vulnera-
bilities into consideration. Based on such models, we have conducted simulations for different use cases
whose results show our solution can significantly reduce the insider threat of remote administrators. The
limitations and corresponding future directions are as follows. First, the current mitigation solution is
static in nature, and we will devise incremental solutions to handle streams of new maintenance tasks
and dynamics (joining or leaving) of RAs, changing priority or weight of tasks, etc.). Second, our model
has kept the cost implicit, and we will consider explicit cost models (e.g., based on the nature of the
tasks, the amount or duration of tasks, and privileges needed) and incorporate such cost models into the
mitigation solution.
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