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Abstract

Data owners are expected to disclose micro-data for research, analysis, and various other purposes.
In disclosing micro-data with sensitive attributes, the goal is usually two fold. First, the data utility of
disclosed data should be maximized for analysis purposes. Second, the private information contained
in such data must be to an acceptable level. Typically, a disclosure algorithm evaluates potential gener-
alization functions in a predetermined order, and then discloses the first generalization that satisfies the
desired privacy property. Recent studies show that adversarial inferences using knowledge about such
disclosure algorithms can usually render the algorithm unsafe. In this paper, we show that an existing un-
safe algorithm can be transformed into a large family of safe algorithms, namely, k-jump algorithms. We
then prove that the data utility of different k-jump algorithms is generally incomparable. The compari-
son of data utility is independent of utility measures and syntactic privacy models. Finally, we analyze
the computational complexity of k-jump algorithms, and confirm the necessity of safe algorithms even
when a secret choice is made among algorithms.

1 Introduction

The issue of preserving privacy in micro-data disclosure has attracted much attention lately [24]. Data
owners, such as the Census Bureau, may need to disclose micro-data tables containing sensitive information
to the public to facilitate useful analysis. There are two seemingly conflicting goals during such a disclosure.
First, the utility of disclosed data should be maximized to facilitate useful analysis. Second, the sensitive
information about individuals contained in the data must be to an acceptable level due to privacy concerns.

The upper left tabular of Table 1 shows a toy example of micro-data table t0. Suppose each patient’s name,
DoB, and condition are regarded as identifier attribute, quasi-identifier attribute and sensitive attribute,
respectively. Simply deleting the identifier Name is not sufficient because the sensitive attribute Condition
may still potentially be linked to a unique person through the quasi-identifier Age (more realistically, a
quasi-identifier is usually a combination of attributes, such as Age, Gender, and Zip Code). Nonetheless, we
shall not include identifiers in the remainder of the paper for simplicity.
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A Micro-Data Table t0 Generalization g1(t0)
Name DoB Condition
Alice 1990 flu
Bob 1985 cold

Charlie 1974 cancer
David 1962 cancer
Eve 1953 headache
Fen 1941 toothache

DoB Condition
1980∼1999 flu

cold
1960∼1979 cancer

cancer
1940∼1959 headache

toothache

Generalization g2(t0) Generalization g3(t0)
DoB Condition

1970∼1999 flu
cold

cancer
1940∼1969 cancer

headache
toothache

DoB Condition
1960∼1999 flu

cold
cancer
cancer

1940∼1959 headache
toothache

Table 1: A Micro-Data Table and Three Generalizations

To prevent such a linking attack, the micro-data table can be partitioned into anonymized group and then
generalized to satisfy k-anonymity [42, 39]. The upper right tabular in Table 1 shows a generalization g1(t0)
that satisfies 2-anonymity. That is, each generalized quasi-identifier value is now shared by at least two
tuples. Therefore, a linking attack can no longer bind a person to a unique tuple through the quasi-identifier.

Nonetheless, k-anonymity by itself is not sufficient since linking a person to the second group in g1(t0)
already reveals his/her condition to be cancer. To avoid such a situation, the generalization must also ensure
enough diversity inside each group of sensitive values, namely, to satisfy the l-diversity property [36]. For
example, assume 2-diversity is desired. If the generalization g2(t0) is disclosed, a person can at best be
linked to a group with three different conditions among which each is equally likely to be that person’s real
condition. The desired privacy property is thus satisfied.

However, adversarial knowledge about a generalization algorithm itself may cause additional complica-
tions [44, 50]. First, without considering such knowledge, an adversary looking at g2(t0) in Table 1 can
guess that the three persons in each group may have the three conditions in any given order. Therefore, the
adversary’s mental image of t0 is a set of totally 3! × 3! = 36 micro-data tables, each of which is equally
likely to be t0 (a common assumption is that the quasi-identifier attribute, such as Age in t0, is public
knowledge).We shall call this set of tables the permutation set with respect to the given generalization. The
left-hand side of Table 2 shows two example tables in the permutation set (with the identifier Name deleted).

The permutation set would be the adversary’s best guesses of the micro-data table, if the released gen-
eralization is his/her only knowledge. However, adversary may also know the generalization algorithm,
and can simulate the algorithm to further exclude some invalid guesses from the permutation set. In other
words, such knowledge may allow adversary to obtain a more accurate estimation of the private information
than that can be obtained from the disclosed data alone. For example, assume that the adversary knows the
generalization algorithm has considered g1(t0) before it discloses g2(t0). In Table 2, t1 is not a valid guess,
because g1(t1) satisfies 2-diversity and should have been disclosed instead of g2(t0). On the other hand, t2
is a valid guess since g1(t2) fails 2-diversity. Consequently, the adversary can refine his/her guess of t0 to
a smaller set of tables, namely, the disclosure set, as shown in Table 3. Since each table in the disclosure
set is equally like to be t0, the desired 2-diversity should be measured on each row of sensitive values (as a
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t1 g1(t1)
DoB Condition
1990 cancer
1985 flu
1974 cold
1962 cancer
1953 headache
1941 toothache

DoB Condition
1980∼1999 cancer

flu
1960∼1979 cold

cancer
1940∼1959 headache

toothache

t2 g1(t2)
DoB Condition
1990 cold
1985 flu
1974 cancer
1962 cancer
1953 headache
1941 toothache

DoB Condition
1980∼1999 cold

flu
1960∼1979 cancer

cancer
1940∼1959 headache

toothache

Table 2: Two Tables in the Permutation Set and Their Corresponding Generalizations under g1

multiset). From this set of tables, the adversary can infer that both Charlie and David, whose DoB are 1974
and 1962 respectively, are definitely associated with cancer. Clearly, 2-diversity is violated.

DoB Condition
1990 flu cold flu cold
1985 cold flu cold flu
1974 cancer cancer cancer cancer
1962 cancer cancer cancer cancer
1953 headache headache toothache toothache
1941 toothache toothache headache headache

Table 3: The Disclosure Set of g2(t0)

A natural solution to the above problem is for generalization algorithms to evaluate the desired privacy
property, such as l-diversity, on disclosure set in order to determine whether a generalization is safe to
disclose. For example, consider how we can compute the disclosure set of next generalization, g3(t0),
in Table 1. We need to exclude every table t in the permutation set of g3(t0), if either g1(t) or g2(t)
satisfies 2-diversity. However, to determine whether g2(t) satisfies 2-diversity, we would have to compute
the disclosure set of g2(t), which may be different from the disclosure set of g2(t0) shown in Table 3. The
left-hand side of Table 4 shows such an example table t3 in permutation set of g3(t0). The disclosure set of
g2(t3) as shown in right-hand side of Table 4 is different from the disclosure set of g2(t0). Clearly, such a
recursive process is bound to have a high cost.

The contribution of this paper is three fold. First, we show that a given generalization algorithm can
be transformed into a large family of distinct algorithms under a novel strategy, called k-jump strategy.
Intuitively, the k-jump strategy penalizes cases where recursion is required to compute the disclosure set.
Therefore, algorithms may be more efficient under the k-jump strategy in contrast to the above safe strategy.
Second, we discuss the computational complexity of such algorithms and prove that different algorithms
under the k-jump strategy generally lead to incomparable data utility (which is also incomparable to that
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t3 Disclosure Set of g2(t3)
DoB Condition
1990 cancer
1985 cancer
1974 flu
1962 cold
1953 headache
1941 toothache

DoB Condition
1990 cancer cancer cancer cancer cancer cancer
1985 cancer cancer cancer cancer cancer cancer
1974 flu flu flu flu flu flu
1962 cold cold headache headache toothache toothache
1953 headache toothache cold toothache cold headache
1941 toothache headache toothache cold headache cold

Table 4: A Table t3 in the Permutation Set of g3(t0) and its Corresponding Disclosure Set Under g2

of algorithms under the above safe strategy). This result is somehow surprising since the k-jump strategy
adopts a more drastic approach than the above safe strategy. Third, the result on data utility also has a
practical impact. Specifically, while all the k-jump algorithms are still publicly known, the choice among
these algorithms can be randomly chosen and kept secret, analogous to choosing a cryptographic key. We
also confirm that the choice of algorithms must be made among safe algorithms. Furthermore, the family
of our algorithms is general and independent of the syntactic privacy property and the data utility measure-
ment. Note that in this paper we focus on the syntactic privacy properties which has been evidenced as
complementary and indispensable to the semantic notion of privacy, such as differential privacy [32, 9].

The preliminary version of this paper has previously appeared in [35]. In this paper, we have substantially
improved and extended the previous version. The most significant extensions include the computational
complexity analysis of k-jump algorithms by mathematical induction (Section 6), the confirmation on the
necessity of safe algorithms by demonstrating that secret choice among unsafe algorithms cannot ensure the
privacy (Section 7). In addition, we also further elaborate the preliminary results in [35], such as the proofs
in Section 5.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 gives our model of
two existing algorithms. Section 4 then introduces the k-jump strategy and discusses its properties. Section 5
presents our results on the data utility of k-jump algorithms. We analyze the computational complexity of
k-jump algorithms in Section 6, and confirm that the secret choice must be made among safe algorithms
such as the family of k-jump algorithms in Section 7. Section 8 concludes the paper.

2 Related Work

2.1 Privacy-Preserving Micro-Data Disclosure

The micro-data disclosure problem has received significant attention lately [18, 41, 23, 10, 11, 24, 43].
Various generalization techniques and models have been proposed to transform a micro-data table into a
safe version that satisfies given privacy properties and retains enough data utility. In particular, data swap-
ping [20, 16, 13] and cell suppression [12] both aim to protect micro-data released in census tables, but
those earlier approaches cannot effectively quantify the degree of privacy. A measurement of information
disclosed through tables based on the perfect secrecy notion by Shannon is given in [38]. The authors
in [15] address the problem ascribed to the independence assumption made in [38]. The important notion of
k-anonymity has been proposed as a model of privacy requirement [39]. The main goal of k-anonymity is
to anonymize the data such that each record owner in the resultant data is guaranteed to be indistinguishable
from at least k − 1 other record owner. Since the data owner modifies the data, some information is dis-
torted. Therefore, it is desirable to find the modified table for k-anonymity with the minimum information
loss. However, to achieve optimal k-anonymity with the most data utility is proved to be computationally
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infeasible [37].

Since the introduction of k-anonymity, privacy-preserving data publishing has received tremendous in-
terest in recent years. A model based on the intuition of blending individuals in a crowd is proposed in [7].
A personalized requirement for anonymity is studied in [46]. In [6], the authors approach the issue from
a different perspective, that is, the privacy property is based on generalization of the protected data and
could be customized by users. Much efforts have been made around developing efficient k-anonymity al-
gorithms [2, 3, 4, 39, 5, 30, 19], whereas the safety of the algorithms is generally assumed. Many more
advanced models are proposed to address limitations of k-anonymity. Many of these focus on the deficiency
of allowing insecure groups with a small number of sensitive values. For instance, l-diversity [36] requires
that each equivalence class on the disclosed table should contain at least l well-represented sensitive val-
ues; t-closeness [31] requires that the distribution of a sensitive attribute in any equivalence class is close
(roughly equal) to the distribution of the attribute in the whole table; (α, k)-anonymity [45] requires that the
number of tuples in any equivalence class is at least k and the frequency (in fraction) of each sensitive value
is at most α, where k and α are data publisher-specified thresholds. In addition, a generic model called
GBP was proposed to unify the perspective of privacy guarantees in both generalization-based publishing
and view-based publishing [14].

2.2 The Case When Disclosure Algorithms is Publicly Known

While most existing work assume the disclosed generalization to be the only source of information available
to an adversary, recent work [50] [44] shows the limitation of such an assumption. In addition to such
information, the adversary may also know about the disclosure algorithm. With such extra knowledge,
the adversary may deduce more information and finally compromise the privacy property. In the work
of [50] [44], the authors discover the above problem and correspondingly introduce models and algorithms
to address the issue. However, the method in [44] is still vulnerable to algorithm-based disclosure [25, 26],
whereas the one in [50] is more general, but it also incurs a high complexity.

In [50], Zhang et al. presented a theoretical study on how an algorithm should be designed to prevent the
adversary from inferring private information when the adversaries know the algorithm itself. The authors
proved that it is NP-hard to compute a generalization which ensure privacy while maximizing data utility
under such assumptions of adversaries’ knowledge. The authors then investigate three special cases of the
problem by imposing constraints on the functions and the privacy properties, and propose a polynomial-time
algorithm that ensures entropy l-diversity.

Wong et al. in [44] showed that a minimality attack can compromise most existing generalization tech-
niques with the aim of only a small amount of knowledge about the generalization algorithm. The authors
assume that the adversaries only have one piece of knowledge that the algorithm discloses a generalization
with best data utility. Under this assumption, minimality attacks can be prevented by simply disclosing
sub-optimal generalizations. Unfortunately, the adversaries, equipped with knowledge of the algorithm, can
still devise other types of attacks to compromise sub-optimal generalizations.

Since the problem is discovered, some work have been developed to tackle the problem in the case that
l − diversity is the desired privacy property [52, 47, 26, 34]. For example, [26] defines a new privacy
model, namely, Algorithm-SAfe Publishing (ASAP), to capture and eliminate threats when the algorithm is
publicly known. Global look-ahead and local look-ahead are then proposed to be integrated in the existing
solutions to achieve ASAP. The authors also propose a post-process to enhance data utility.

To protect the individual privacy, the data owners may have different methods of anonymizing the original
table. While there exist other techniques in the literature which are efficient for some privacy property,
such as, anatomy [49] for l-diversity, in this paper, we focus on grouping-and-breaking, which partitions
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the records into anonymized groups and break the linkage between the quasi-identifier value and sensitive
value inside each group by generalization. Our proposed family of algorithms is general to handle different
syntactic privacy properties and different measures of data utility. Closest to this work, a special case of the
k-jump strategy is discussed in [51] where all jumps end at disclosing nothing. Our result in this paper is
more general than those in [51]. It is also worth noting that we substantially extend our previous version [35]
by elaborating on the proofs, analyzing the computational complexity, and confirming the necessity of safe
algorithms even when making the choice secret among the algorithms.

2.3 Privacy-Preserving Macro-Data Disclosure

In contrast to micro-data disclosure, aggregation queries are addressed in statistical databases [1, 23, 40].
The main challenge is to answer aggregation queries without allowing inferences of secret individual values.
The auditing methods in [8, 17] solve this problem by checking whether each new query can be safely
answered based on a history of previously answered queries. The authors of [8, 29, 27] considered the same
problem in more specific settings of offline auditing and online auditing, respectively.

Recently, a semantic privacy notation, differential privacy [21, 22], has been accepted as one of the
strongest privacy models for answering statistic queries. Differential privacy aims to achieve the goal that
the probability distribution of any disclosed information should be similar enough regardless of whether
that disclosed information is obtained using the real database, or using a database without any one of the
existing records. However, while the qualitative significance of the privacy parameter is well understood in
the literature, the exact quantitative link between this value and the degree of privacy guarantee has received
less attention. Furthermore, although differential privacy is extended to privacy preserving data publishing
(PPDP) [32, 48], most existing approaches that ensure differential privacy are random noise-based and are
suitable for specific types of statistical queries. It has also been evidenced that data analysis cannot replace
PPDP in some situations, such as, large number of queries, diverse analysis tasks, and so on [32, 33, 9].
Moreover, Kifer et al. [28] disproved some popularized claims about differential privacy and showed that
differential privacy cannot always guarantee the privacy in some cases. Due to these reasons, we focus on
syntactic privacy properties in this paper and regard the differential privacy as future work.

3 The Model

We first introduce the basic model of micro-data table and generalization algorithm in Section 3.1. We then
review two existing strategies and related concepts in Section 3.2. Table 5 lists our main notations which
will be defined in this section.

t0, t Micro-data table
a, anaive, asafe Generalization algorithm
gi(.), gi(t) Generalization (function)
p(.) Privacy property
per(.), per(gi(t)), peri, perk

i Permutation set
ds(.), ds(gi(t)), dsi, dsk

i Disclosure set
path(.) Evaluation path

Table 5: The Notation Table
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3.1 The Basic Model

A secret micro-data table (or simply a table) is a relation t0(QID, S) where QID and S is the quasi-
identifier attribute and sensitive attribute, respectively (note that each of these can also be a sequence of
attributes). We make the worst case assumption that each tuple in t0 can be linked to a unique identifier
(which the identifier is not shown from t0) through the QID value (if some tuples are to be deemed as not
sensitive, they can be simply disregarded by the algorithm). Denote by T the set of all tables with the same
schema, the same set of QID values, and the same multiset of sensitive values as those of t0.

We are also given a generalization algorithm a that defines a privacy property p(.) : 2T → {true, false}
and a sequence of generalization functions gi(.) : T → G (1 ≤ i ≤ n) where G denotes the set of all
possible generalizations over T . Note that the discussion about Table 3 in Section 1 has explained why
p(.) should be evaluated on a set of, instead of one, tables, and we follow the widely accepted notion of
generalization [39]. Given t0 as the input to the algorithm a, either a generalization gi(t0) will be the output
and then disclosed, or ∅ will be the output indicating that nothing is disclosed. Note that returning ∅ in this
paper means that the data owner decides to disclose nothing, and in this case the adversary cannot infer
anything without knowing about the original table itself.

Note that in a real world generalization algorithm, a generalization function may take an implicit form,
such as a cut of the taxonomy tree [44], illustrated as the dash-line in Figure 1. Moreover, the sequence of
generalization functions to be applied to a given table is typically decided on the fly. Our simplified model
is reasonable as long as such a decision is based on the quasi-identifier (which is true in, for example, the
Incognito [30], and the predetermined cuts of taxonomy trees as shown in Figure 1), because an adversary
who knows both the quasi-identifier and the generalization algorithm can simulate the latter’s execution to
determine the sequence of generalization functions for the disclosed generalization.

Age Gender ZIP Code

ANY ANY ANY

0-40 41-65 66-~

0-17 18-40

0-6 7-17 18-28 29-40

66-72 73-84 85-~

Male Female H** J**

H3* H4*

H3B H3H H4A H4Y

J0* J4*

J0A J0B J4X J4Y

Figure 1: Taxonomy Trees Example: Age, Gender, and ZIP Code

3.2 The Algorithms anaive and asafe

When adversarial knowledge about a generalization algorithm is not taken into account, the algorithm can
take the following naive strategy. Given a table t0 and the generalization functions gi(.) (1 ≤ i ≤ n) already
sorted in a non-increasing order of data utility, the algorithm will then evaluate the privacy property p(.) on
each of the n generalizations gi(t0) (1 ≤ i ≤ n) in the given order. The first generalization gi(t0) satisfying
p(gi(t0)) = true will be disclosed, which also maximizes the data utility. Note that our discussion does not
depend on specific utility measures as long as the generalizations and their orders are determined based on
quasi-identifiers.

Before giving the detail of naive strategy, we first formalizes the set of all tables in T whose generaliza-
tions, under a given function, are identical with that of a given table in Definition 1.

Definition 1 (Permutation Set). Given a micro-data table t0, a generalization function gi(.), the permutation
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set of t0 under gi(.) is a function per(.) : G→ 2T , defined by:

per(gi(t0)) = {t : gi(t) = gi(t0)}

Note that per(gi(t0)) is also written as peri when both gi and t0 are clear from context. It is easily seen
that, in the naive strategy, evaluating the privacy property p(.) on a generalization gi(t0) is equivalent to
evaluating p(.) on the permutation set per(gi(t0)).

Next we introduce the evaluation path in Definition 2. Informally, evaluation path represents the sequence
of evaluated generalization functions.

Definition 2 (Evaluation Path). Given a micro-data table t0, an algorithm composed of a sequence of
generalization functions gi(.)(1 ≤ i ≤ n), the evaluation path of t0 under the algorithm is a function
path(.) : T → 2[1,n], defined by:

path(t0) = {i : (the algorithm will evaluate t0 under gi) ∧ (1 ≤ i ≤ n)}

Note that although path(t0) is defined as a set, the indices naturally form a sequence (we shall need
this concept for later discussions). With these two concepts, we can describe the above algorithm as anaive

shown in Table 6.

Input: Table t0;
Output: Generalization g or ∅;
Method:
1. Let path(t0) = ∅;
2. For i = 1 to n
3. Let path(t0) = path(t0) ∪ {i};
4. If p(per(gi(t0))) = true then
5. Return gi(t0);
6. Return ∅;

Table 6: The Algorithm anaive

Unfortunately, the naive strategy leads to an unsafe algorithm as illustrated in Section 1 (that is, an
algorithm that fails to satisfy the desired privacy property). Specifically, consider an adversary who knows
the quasi-identifier ΠQID(t0), the above algorithm anaive, and the disclosed generalization gi(t0) for some
i ∈ [1, n]. Given any table t, by simulating the algorithm’s execution, the adversary also knows path(t).

First, by only looking at the disclosed generalization gi(t0), the adversary can deduce t0 must be one of
the tables in the permutation set per(gi(t0)). This inference itself does not violate the privacy property p(.)
since the algorithm anaive does ensure p(per(gi(t0)) = true holds before it discloses gi(t0). However, for
any t ∈ per(gi(t0)), the adversary can decide whether i ∈ path(t) by simulating the algorithm’s execution
with t as its input.

Clearly, any t ∈ per(gi(t0)) can be a valid guess of the unknown t0, only if i ∈ path(t) is true. By
excluding all invalid guesses, the adversary can obtain a smaller subset of per(gi(t0)). We call such a subset
of per(gi(t0)) the disclosure set, as formally stated in Definition 3.

Definition 3 (Disclosure Set). Given a micro-data table t0, an algorithm composed of a sequence of gener-
alization functions sg = (g1, g2, . . . , gn), the disclosure set of t0 under gi(.) is a function ds(.) : G → 2T ,
defined by:

ds(t0, gi, sg) = per(gi(t0)) \ {t : i /∈ path(t)}
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Note that ps(t0, gi, sg) is also written as ps(gi(t0)) or psi when gi, sg, and t0 are clear from context. A
natural way to fix the unsafe anaive is to replace the permutation set with the corresponding disclosure set in
the evaluation of a privacy property. From above discussions, after gi(t0) is disclosed, the adversary’s mental
image about t0 is ds(gi(t0)). Therefore, we can simply modify the algorithm to ensure p(ds(gi(t0))) = true
before it discloses any gi(t0). We call this the safe strategy, and formally describe it as algorithm asafe in
Table 7.

Input: Table t0;
Output: Generalization g or ∅;
Method:
1. Let path(t0) = ∅;
2. For i = 1 to n
3. Let path(t0) = path(t0) ∪ {i};
4. If p(ds(gi(t0))) = true then
5. Return gi(t0);
6. Return ∅;

Table 7: The Algorithm asafe (outline)

Taking the adversary’s point of view again, when gi(t0) is disclosed under asafe, the adversary can repeat
the aforementioned process to exclude invalid guesses from per(gi(t0)), except that now dsj (j < i) will be
used instead of perj . As the result, he/she will conclude that t0 must be within the set per(gi(t)) \ {t′ : i /∈
path(t′)}, which, not surprisingly, coincides with ds(gi(t0)) (that is, the result of the adversary’s inference
is t0 ∈ ds(gi(t0))). Since asafe has ensured p(ds(gi(t0))) = true, the adversary’s inference will not violate
the privacy property p(.). That is, asafe is indeed a safe algorithm.

It is worthy noting that, returning ∅ means to disclose nothing. In privacy-preserving data publishing
(PPDP), we only release once by generalizing the original table. This is different from privacy-preserving
data mining (PPDM), which may need to answer a sequence of queries, which may suffer from simulatable
auditing. In Theorem 1, we prove that disclosure nothing is safe when the generalization algorithm is
publicly-known. Basically, both disclosing nothing and adversaries’ knowledge about the fact that an ∅ was
produced are deemed as safe since the adversary cannot infer anything without knowing any form of the
original table.

Theorem 1. Returning ∅ is safe when generalization algorithm is publicly-known for privacy-preserving
micro-data disclosure.

Proof. First of all, we assume the given privacy property to be satisfied to an adversary who has no knowl-
edge at all. For example, if the sensitive attribute has only two possible values in its domain (e.g., Gender),
then 3-diversity can never be satisfied, even if the adversary has no knowledge at all about the original table.

We will focus on the worst case in which the adversary knows about following facts, and will discuss
other cases later.

• The data owner was planning to publish data.

• The data owner did not publish anything, because the algorithm sg returns an empty set when applied
to the original micro-data table t0.

• The adversary has a working copy of the algorithm sg.

• The adversary does not know t0, but knows its schema, the number of records, the quasi-identifier,
the sensitive attribute, and the domain of every attribute.
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In such a case, we show that the adversary’s mental image about t0 (the inferable set) will satisfy the
given privacy property. The intuition behind the proof is the following. Knowing the algorithm returns
an empty set, the adversary can simulate the algorithm to refine his/her mental image about t0, since any
table for which the algorithm does not return an empty set cannot be t0. However, since the adversary does
not see any released table in this case, he/she can only simulate the algorithm with every possible table (in
accordance with his/her knowledge about the table schema, attribute domains, and number of records). The
key is that, the final result obtained by the adversary (the inferable set) will be “symmetric” w.r.t. sensitive
values (e.g. the fact that an empty set is returned by the algorithm would not give an adversary any reason to
believe an identifier to be more likely associated with “cold” then “cancer”, or any other sensitive value for
that purpose). Therefore, the adversary’s refined mental image will still have the same uniform distribution
of sensitive values as initially when he/she has no knowledge at all, and hence both will satisfy the privacy
property.

More formally, we first define a new concept, the symmetric set of a micro-data table, as follows. Given
a micro-data table t0(QID, S), the symmetric set of t0 is a set of tables, defined by,

Ssym(t0) = {{(id, s′) : (id, s) ∈ t0 ∧ s′ = ρ(s)} : ρ ∈ %(S)},

where %(S) is the permutation set of the distinct version of S.

Then we have the following result: Given a generalization algorithm sg, a micro-data table t0, if sg(t0) =
∅, then sg(t′) = ∅ for all t′ ∈ Ssym(t0). The reason is the following.

The generalization algorithm sg = (g1, g2, . . . gn) (the functions and their order) is identical for any
tables in Ssym(t0), since the quasi-identifiers for these tables are identical. That is, given any function gi,
the quasi-identifiers in each anonymized group are same for all the tables in Ssym(t0), while the set of
sensitive values may be different.

∀(t′ ∈ Ssym(t0)), path(t0) = path(t′). The reason is as follows.

Given any table t0(QID, S), for any gi(t0) ∈ sg, any gij(t0) ∈ gi (gij is an anonymized group of gi), the
corresponding Sij(t0) (the multi-set of sensitive values in gij(t0)), we have the following.

For any t′ ∈ Ssym(t0), and the corresponding gij(t′) ∈ gi(t′) and Sij(t′) (note that Sij(t′) ⊆ S and
Sij(t0) ⊆ S, but they are not necessary to be identical), there exists a one-to-one mapping f : Sij(t0) →
Sij(t′), such that,

∀(s1, s2 ∈ Sij(t0)),

{
f(s1) = f(s2) if s1 = s2,

f(s1) 6= f(s2) if s1 6= s2,

Therefore, if the domain of a sensitive attribute has totally m different values, then the adversaries with
aforementioned knowledge can only infer that each record owner in the table has 1

m probability to link to
any sensitive value. In other words, the adversary has no knowledge to help him/her to distinguish between
different sensitive values to be the one for each record owner, which means a uniform distribution over all
values in the domain. Thus, knowing that an algorithm discloses nothing for a micro-data table will not
assist adversaries in refining their mental images about the original table. In conclusion, releasing nothing
is safe in this case.

Next, it is easy to see that other cases in which an adversary has less knowledge than in the above case
will also be safe. For example, assume the adversary does not know that the data owner was planning to
publish a table. In this case, when the data owner does not release anything, it may happen in two scenarios,
which the adversary cannot distinguish:

A.) The data owner did not plan to publish anything (the result of the algorithm may or may not be an
empty set),
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B.) The data owner plans to publish, but the algorithm returns empty set.

In case A.), it is obvious that the adversary would not gain any additional knowledge about the original
table. For case B.), we have provided the proof above. Hence, when adversary cannot distinguish between
the two cases, it is easy to show that his/her mental image will still satisfy the privacy property by following
similar reasoning.

For another example, if the adversary does not know the number of records in t0, then he/she must
simulate the algorithm with infinitely many tables (all possible tables with different sizes), which gives
him/her an infinitely large inferable set that can be easily shown to also satisfy the privacy property.

As discussed above, we need to evaluate the privacy property on the disclosure set (the adversaries’ mental
image about the original table). Informally, we call an algorithm is safe if, when that algorithm disclose a
generalization for any original table, the disclosure set of that disclosed generalization with regard to the
original table satisfies the desired privacy property, as formally stated in Definition 4.

Definition 4 (Safe Algorithm). Given a generalization algorithm G composed of a sequence of generaliza-
tion functions gi(.) (1 ≤ i ≤ n), its output range X composed of a subset of generalizations, the desired
privacy property p(.), we say G is safe if

∀(x ∈ X)∀(t ∈ G−1(x)), p(ds(t)) = true;

A subtlety here is that the definition of disclosure set may seem to be a circular definition: ds(.) is defined
using path(.), path(.) using the algorithm asafe, which in turn depends on ds(.). However, this is not the
case. In defining the disclosure set, ds(gi(t)) depends on the truth value of the condition i /∈ path(t). In
table 7, we can observe that this truth value can be decided in line 3, right before ds(gi(t)) is needed (in line
4). Therefore, both concepts are well defined, which can be justified by the pseudo-code in Table 8.

Algorithm asafe(t0, sg, p) Algorithm ds(t0, i, sg, p)
Input: an original table t0,

sequence of functions sg = (g1, g2, . . . , gn),
and a privacy property p(.);

Output: a generalization gi(1 ≤ i ≤ n) or ∅;
1: for (i = 1; i <= n; i+ +) do
2: if (p(ds(t0, i, sg, p)) = true) then
3: return gi(t0);
4: end if
5: end for
6: return ∅;

Input: a table t0,
function i (to calculate t0’s disclosure set),
sequence of functions sg = (g1, g2, . . . , gn),
and a privacy property p(.);

Output: the disclosure set dsi(t0);
1: dsi ← per(gi(t0));
2: for all (t ∈ dsi) do
3: for (j = 1; j ≤ i− 1; j + +) do
4: if (p(ds(t, j, sg, p)) = true) then
5: dsi ← dsi/{t};
6: break;
7: end if
8: end for
9: end for

10: return dsi;

Table 8: The Algorithm asafe (Detail)

On the other hand, we can see that for computing ds(gi(t0)), we must compute the truth value of the
condition i /∈ path(t) for every t ∈ per(gi(t0)). Moreover, to construct path(t) requires us to simulate the
execution of asafe with t as the input. Therefore, to compute ds(gi(t0)), we will have to compute ds(gj(t))
for all t ∈ per(gi(t0)) and j = 1, 2, . . . , i − 1. Clearly, this is an expensive process. In next section, we
shall investigate a novel family of algorithms for reducing the cost.
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4 k-jump Strategy

In this section, we first introduce the k-jump strategy in Section 4.1, and then discuss its properties in
Section 4.2.

4.1 The Algorithm Family ajump(~k)

In the previous section, we have shown that the naive strategy is unsafe, and the safe strategy is safe but
may incur a high cost due to the inherently recursive process. First, we more closely examine the limitation
of these algorithms in order to build intuitions toward our new solution. In Figure 2, the upper and middle
chart shows the decision process of the previous two algorithms, anaive and asafe, respectively. Each box
represents the ith iteration of the algorithm. Each diamond represents an evaluation of the privacy property
p(.) on the set inside the diamond, and the symbol Y and N denotes the result of such an evaluation to be
true and false, respectively.
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Figure 2: The Decision Process of Different Strategies

12



Comparing the two charts, we can have four different cases in each iteration of the algorithm (some
iterations actually have less possibilities, as we shall show later):

1. If p(peri) = p(dsi) = false (recall that peri is an abbreviation of per(gi(t0))), then clearly, both
algorithms will immediately move to the next iteration.

2. If p(peri) = p(dsi) = true, both algorithms will disclose gi(t0) and terminates.

3. The case of p(peri) = false ∧ p(dsi) = true does not exist when privacy property is set-monotonic
(which p(S) = true implies ∀S′ ⊇ S p(S′) = true).

4. We can see the last case, p(peri) = true ∧ p(dsi) = false, is the main reason that anaive is unsafe,
and that asafe must compute the disclosure set and consequently result in an expensive recursive
process.

Therefore, informally, we penalize the last case, by jumping over the next k−1 iterations of the algorithm.
As a result, we have the k-jump strategy as illustrated in the lower chart of Figure 2. More formally, the
family of algorithms under the k-jump strategy is shown in Table 9.

Input: Table t0, vector ~k ∈ [1, n]n;
Output: Generalization g or ∅;
Method:
1. Let path(t0) = ∅;
2. Let i = 1;
3. While (i ≤ n)
4. Let path(t0) = path(t0) ∪ {(i, 0)}; //the pair (i, 0) represents peri
5. If p(per(gi(t0))) = true then
6. Let path(t0) = path(t0) ∪ {(i, 1)}; //the pair (i, 1) represents dsi

7. If p(ds(gi(t0))) = true then
8. Return gi(t0);
9. Else
10. Let i = i+ ~k[i]; //~k[i] is the ith element of ~k
11. Else
12. Let i = i+ 1;
13. Return ∅;

Table 9: The Algorithm Family ajump(~k)

There are two main differences between ajump(~k) and asafe. First, since now in each iteration the
algorithm may evaluate peri and dsi, or peri only, we slightly change the definition of evaluation path to
be path(.) : T → 2[1,n]×{0,1} so (i, 0) stands for peri and (i, 1) for dsi. Consequently, the definition of a
disclosure set also needs to be revised by replacing the condition i /∈ path(t) with (i, 1) /∈ path(t).

Second, the algorithm family ajump(~k) takes an additional input, an n-dimensional vector ~k ∈ [1, n]n,
namely, the jump distance vector. In the case of p(peri) = true ∧ p(dsi) = false, the algorithm will
directly jump to the (i + ~k[i])th iteration (note that jumping to the ith iteration for any i > n will simply
lead to line 13 of the algorithm, that is, to disclose nothing). In the special case that ∀i ∈ [1, n] ~k[i] = k for
some integer k, we shall abuse the notation to simply use k for ~k.
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Despite the difference between asafe and ajump(~k), the final condition for disclosing a generalization
remains the same, that is, p(dsi) = true. This simple fact suffices to show ajump(~k) to be a safe family of
algorithms.

4.2 Properties of ajump(~k)

We discuss several properties of the algorithms ajump(~k) in the following.

4.2.1 Computation of the Disclosure Set

Again, the disclosure set is well defined under ajump(~k), although it may seem to be a circular definition at
first glance. First, ds(gi(t)) depends on the truth value of the condition (i, 1) /∈ path(t). In table 9, we can
then observe that this value can be decided in line 6, right before ds(gi(t)) is needed (in line 7).

Although computing disclosure sets under ajump(~k) is similar to that under asafe, the former is generally
more efficient. Specifically, recall that under asafe, to compute ds(gi(t0)) we must first compute ds(gj(t))
for all t ∈ per(gi(t0)) and j = 1, 2, . . . , i − 1. In contrast, this expensive recursive process is not always
necessary under ajump(~k).

Referring to the lower chart in Figure 2, to compute ds(gi(t0)) for any 2 < i < 2 + k, we no longer
need to always compute ds(g2(t)) for every t ∈ peri. By definition, ds(gi(t0)) = per(gi(t0)) \ {t : (i, 1) /∈
path(t)}. From the chart, it is evident that (i, 1) /∈ path(t) is true as long as p(per(g2(t))) = true (in
which case path(t) will either terminates at ds2 or jump over the ith iteration). Therefore, for any such
table t, we do not need to compute ds(g2(t)) in computing ds(gi(t0)).

As an extreme case, when the jump distance vector is (n, n − 1, . . . , 1), all the jumps end at ∅ (disclos-
ing noting). In this case, the computation of disclosure set is no longer a recursive process. To compute
ds(gi(t0)), it suffices to only compute per(gj(t)) for t ∈ per(gi(t0)) and j = 1, 2, . . . , i− 1. The complex-
ity is thus significantly lower.

4.2.2 ds(g1(t0)) and ds(g2(t0))

The first two disclosure sets have some special properties. First of all, ds(g1(t0) = per(g1(t0)) is true.
Intuitively, since any given table itself generally does not satisfy the privacy property, in computing ds1,
an adversary cannot exclude any table from per1. More specifically, when g1(t0) is disclosed, for all t ∈
per(g1(t0)), path(t) must always end at ds1, because p(per(g1(t))) = true follows from the fact that
per(g1(t)) = per(g1(t0)) (by the definition of permutation set) and p(per(g1(t0))) = true (by the fact
that g1(t0) is disclosed). Therefore, ds(g1(t0)) = per(g1(t0)) \ {t : (1, 1) /∈ path(t)} yields ds(g1(t0) =
per(g1(t0)).

Second, we show that ds(g2(t0)) is independent of the distance vector ~k. That is, all algorithms in
ajump(~k) share the same ds(g2(t0)). By definition, ds(g2(t0)) = per(g2(t0)) \ {t : (2, 1) /∈ path(t)}. As
ds(g1(t0) = per(g1(t0)) is true, the case p(per(g1(t0))) = true ∧ p(ds(g1(t0))) = false is impossible,
and consequently the jump from ds1 is never to happen (which explains the missing edge in the lower chart
of Figure 2). Therefore, the condition (2, 1) /∈ path(t) does not depend on the distance vector ~k.
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4.2.3 Size of the Family

First, with n generalization functions, we can have roughly (n − 1)! different jump distance vectors since
the ith (2 ≤ i ≤ n) iteration may jump to (n − i + 1) different destinations , where the (n + 1)th iteration
means disclosing nothing. Clearly, (n− 1)! is a very large number even for a reasonably large n. Moreover,
the space of jump distance vectors will be further increased when we reuse generalization functions in a
meaningful way, as will be shown in later sections. Therefore, we can now transform any given unsafe
algorithm anaive into a large family of safe algorithms. This fact lays a foundation for making secret choices
of k-jump algorithm to prevent adversarial inferences.

Note here the jump distance refers to possible ways an algorithm may jump at each iteration, which is not
to be confused with the evaluation path of a specific table. For example, the vector (n, n− 1, . . . , 1) yields
a valid k-jump algorithm that always jumps to disclosing nothing, whereas any specific evaluation path can
include at most one of such jumps. There is also another plausible but false perception related to this. That
is, an algorithm with the jump distance k (note that here k denotes a vector whose elements are all equal
to k) will only disclose a generalization under gi(.) where i is a multiple of k. This perception may lead to
false statements about data utility, for example, that the data utility for k = 2 is better than that for k = 4.
In fact, regardless of the jump distance, an algorithm may potentially disclose a generalization under every
gi(.). The reason is that each jump is only possible, but not mandatory for a specific table.

5 Data Utility Comparison

In this section, we compare the data utility of different algorithms. Section 5.1 considers the family of k-
jump algorithms. Section 5.2 studies the case when some generalization functions are reused in an algorithm.
Section 5.3 addresses asafe.

5.1 Data Utility of k-Jump Algorithms

Our main result is that the data utility of two k-jump algorithms ajump(~k) and ajump(~k′) from the same
family is generally incomparable. That is, the data utility cannot simply be ordered based on the jump
distance of two algorithms. Note that, deterministically the data utility cannot be improved without the
given table, and the data utility among algorithms is only comparable for the given table. In other words,
here the comparison of data utility is independent of the given table, accordingly, the notation ajump(~k)
does not indicate the given table.

We do not rely on specific utility measures. Instead, the generalization functions are assumed to be sorted
in a non-increasing order of their data utility. Consequently, an algorithm a1 is considered to have better or
equal data utility compared to another algorithm a2 (both algorithms are from the same family), if we can
construct a table t for which a1 returns gi(t) and a2 returns gj(t), with i < j.

Such a construction is possible with two methods. First, we let path(t) under a2 to jump over the iteration
in which a1 terminates. Second, when the first method is not an option, we let path(t) under a2 to include
a disclosure set that does not satisfy the privacy property p(.), whereas path(t) under a1 to include one that
does. We first consider the following two special cases.

• ajump(1) and ajump(i) (i>1) In this case, the evaluation path of ajump(1) can never jump over that
of ajump(i) (in fact, a jump distance of 1 means no jump at all). Therefore, we apply the above second
method, that is, to rely on different disclosure sets of the same disclosed generalization.
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• ajump(i) and ajump(j) (1 < i < j) For this case, we apply the above first method, that is, by
constructing an evaluation path that jumps over the other.

From now on, we shall add superscripts to existing notations to denote the distance vector of different
algorithms. For example, dsk

1 means the disclosure set ds1 under the algorithm ajump(k).

5.1.1 ajump(1) vs. ajump(i) (i > 1)

First, we need the following result.

Lemma 1. For any ajump(1) and ajump(i) (i > 1) algorithms from the same family, we have dsi
3 ⊆ ds13.

Proof. By definition, ds(g3(t0)) = per(g3(t0)) \ {t : (3, 1) /∈ path(t)}. Obviously, for ajump(1), the
disclosure set ds13(t0) is derived from the permutation set of g3(t0) by excluding those are disclosed under
g1 and g2, while for ajump(i) (i > 1), the disclosure set dsi

3(t0) is derived from the permutation set of
g3(t0) by excluding those permutation set are safe under g1 or g2. In other words, to remove a table t from
per(g3(t0)), not only the permutation set but also disclosure set of g2(t) must satisfy the privacy property
for ajump(1); while only permutation set of g2(t) must satisfy the privacy property for ajump(i) (i > 1),
since in this case, no matter whether the disclosure set satisfies or not, (3, 1) /∈ path(t). Formally,

ds13(t0) = per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) = true ∨ (p(per2(t)) = true ∧ p(ds12(t)) = true))}
(1)

dsi
3(t0) = per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) = true ∨ p(per2(t)) = true)} (2)

from which the result follows.

From Lemma 1, we can have the following straightforward result for the case that privacy property is
set-monotonic. This result is needed for proving Theorem 2.

Lemma 2. The data utility of ajump(1) is always better than or equal to that of ajump(i) (i > 1) when both
algorithms are from the same family with a set-monotonic privacy property p(.) and n = 3.

Proof. As shown in Section 4.2.2, per1(t0), per2(t0), and ds2(t0) are identical once the sequence of gen-
eralization functions are given. Therefore, either t0 can be released by g1 (or g2) in both ajump(1) and
ajump(i) (i > 1), or it cannot be in both of them.

For g3, based on Lemma 1 and the definition of set-monotonic, dsi
3(t0) satisfies privacy property only if

ds13(t0) satisfies. The proof is complete.

Theorem 2. For any i > 1, there always exist cases in which the data utility of the algorithm ajump(i) is
better than that of ajump(1), and vice versa.

Proof. The key is to have different disclosure sets ds3 under the two algorithms such that one satisfies p(.)
and the other fails. Figure 3 illustrates such evaluation paths.

By Lemma 2, the case where the data utility of ajump(1) is better than or equal to that of ajump(i)
(i > 1) is trivial to construct and hence is omitted. We only show the other case where ajump(i) has better
data utility. Basically, we need to design a table to satisfy the following. First, per1 and per2 do not satisfy
p(.) while per3 does. Second, p(dsi

3) = true and p(ds13) = false are both true.

Table 10 shows our construction for the proof. The privacy property p(.) is that the highest ratio of a
sensitive value in a group must be no greater than 1

2 . Notice that here (and in the remainder of the paper)
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Figure 3: The Construction for ajump(1) and ajump(i) (1 < i)

p(.) is not necessarily set-monotonic. We show that ajump(i) can disclose using g3, whereas ajump(1)
cannot.

1. For this special case, dsk
3(t0) can be computed by first excluding any table t for which p(per1(t)) =

true. The tables in dsi
3(t0) must belong to one of the following four disjoint sets.

In the first case, I has sensitive value C6. The number of tables in this case is
(
2
1

)
×
(
2
1

)
× (
(
4
1

)
×(

3
1

)
) × (

(
6
2

)
×
(
4
2

)
) = 48 × 90 = 4320. Denote this set by S1. In the other three cases, I does not

have C6 and both N and O have C7, C8, or C9, denoted respectively by S2, S3, and S4. Each of these
includes

(
2
1

)
×
(
2
1

)
× (
(
4
1

)
×
(
3
1

)
)×

(
2
1

)
× (
(
4
1

)
×
(
3
1

)
) = 48× 24 = 1152 tables.

Now consider generalizing these tables using g2. All tables in the last three sets cannot be disclosed
under g2 since each of their permutation sets under g2 fails the privacy property. For the same reason,
tables in the first set in which both N and O have C7, C8, or C9, which is denoted as S′1, cannot be
disclosed under g2, either. The cardinality of S′1 is

(
2
1

)
×
(
2
1

)
×(
(
4
1

)
×
(
3
1

)
)×
(
4
2

)
×
(
3
1

)
= 48×18 = 864.

For ajump(i), all the tables in (S1 \ S′1) will be excluded from dsi
3(t0). The reason is the following.

Each of their permutation sets under g2 satisfies the privacy property, so ajump(i) will disclose them
either under g2 or after g3. Therefore, dsi

3(t0) = S′1 ∪ S2 ∪ S3 ∪ S4. The highest ratio of sensitive
value is that of A and B associated with C0 or C1, which is 1

2 . Since dsi
3(t0) satisfies the privacy

property, it can be disclosed using g3 under ajump(i).

2. As to the case of ajump(1), the disclosure set of all the tables in S1 \ S′1 do not satisfy the privacy
property and hence all of them cannot be removed from ds13(t0). The reason is as follows. First,
the permutation set of each such table under g2 satisfies the privacy property. Next, consider their
disclosure sets under g2. The set S1 \ S′1 can be further divided into three disjoint subsets as follows.

• Either N or O has C7 and the other has C8. This subset has
(
2
1

)
×
(
2
1

)
× (
(
4
1

)
×
(
3
1

)
) ×

(
1
1

)
×
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(
(
4
1

)
×
(
3
1

)
)×

(
2
1

)
= 48× 24 = 1152 tables. Based on the sensitive value of H , this subset can

be further divided into two disjoint subsets again.

(a) H hasC6. This subset has
(
2
1

)
×
(
2
1

)
×(
(
3
1

)
×
(
2
1

)
)×
(
1
1

)
×(
(
4
1

)
×
(
3
1

)
)×
(
2
1

)
= 48×12 = 576

tables. For each table in this subset, to obtain its disclosure set, we must exclude the tables
that can be disclosed under g1 from its permutation set following the same rule as above.
The tables in its disclosure set must satisfy that both H and I have C6. The ratio of both H
and I being associated with C6 is 1.0 > 0.5. This clearly violates the privacy property.

(b) H does not have sensitive value C6, but has either C4 or C5. This subset has
(
2
1

)
×
(
2
1

)
×(

3
1

)
×
(
2
1

)
×
(
1
1

)
× (
(
4
1

)
×
(
3
1

)
) ×

(
2
1

)
= 48 × 12 = 576 tables. Similarly, the tables in the

disclosure set must satisfy that two from the set {E,F,G} have C6. Moreover, one and
only one of H and I has C6. Therefore, the ratio of both E, F , and G being associated with
C6 is 2

3 > 0.5. This also violates the privacy property.

In summary, the disclosure set of every table in this subset under function g2 will violate the
privacy property, and consequently these tables cannot be disclosed under g2. Therefore, the al-
gorithm ajump(1) must continue to evaluate these tables under g3 whose permutation set satisfies
the privacy property.

• The other two cases are that N and O have C7 and C9, respectively, or C8 and C9, respectively.
Similarly, each has 1152 tables, and for the same reason as above, the disclosure set of each
table in each subset does not satisfy the privacy property, and hence cannot be disclosed under
g2.

Consequently, all the tables in S1 \ S′1 cannot be removed from ds13(t0). Therefore, ds13(t0) = S1 ∪
S2 ∪ S3 ∪ S4. The ratio of I being associated with C6 is 48×90

48×(90+24×3) = 0.556 > 0.5. This violates
the privacy property. Therefore, the given table cannot be disclosed using g3 under ajump(1).

QID g1 g2 g3 . . .

A C0 C0 C0 . . .
B C1 C1 C1 . . .
C C2 C2 C2 . . .
D C3 C3 C3 . . .
E C4 C4 C4 . . .
F C5 C5 C5 . . .
G C6 C6 C6 . . .
H C6 C6 C6 . . .
I C6 C6 C6 . . .
J C7 C7 C7 . . .
K C7 C7 C7 . . .
L C8 C8 C8 . . .
M C8 C8 C8 . . .
N C9 C9 C9 . . .
O C9 C9 C9 . . .

Table 10: The Case Where ajump(i) Has Better Utility Than ajump(1)
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5.1.2 ajump(i) vs. ajump(j) (1 < i < j)

Next, we prove the data utility of ajump(i) and ajump(j) to be incomparable by constructing non-overlapping
evaluation paths.
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Figure 4: The Construction for ajump(i) and ajump(j) (1 < i < j)

Theorem 3. For any j > i > 1, there always exist cases where the data utility of the algorithm ajump(i) is
better than that of ajump(j), and vice versa.

Proof. Since both ajump(i) and ajump(j) can jump over iterations of the algorithm, we can easily construct
evaluation paths for the proof. Figure 4 illustrates such constructed paths.

Firstly, the case where ajump(i) has better utility than ajump(j) (1 < i < j) is relatively easier to
construct. We basically need to construct a case satisfying the following conditions:


(if ω = 1), p(perω) = false;
(if ω = 2), p(perω) = true ∧ p(dsω) = false;
(if ω = i+ 2), p(perω) = true ∧ p(dsi

ω) = true.

The above conditions imply that gi+2 will be used to disclose under ajump(i), while the algorithm
ajump(j) will jump over the (i + 2)th function to disclose under or after gj+2 since permutation set of
g2 satisfies privacy property while disclosure set of g2 does not.

Secondly, we show the construction for the other case where ajump(i) has worse utility than ajump(j)
(1 < i < j). We basically need to construct a case satisfying the following conditions:
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

(if ω = 1), p(perω) = false;
(if ω = 2), p(perω) = true ∧ p(dsi,j

ω ) = false;
(∀ω ∈ [3, j]), p(perω) = false;
(∀ω ∈ [j + 1, j + 2]), p(perω) = true;
(if ω = j + 1), p(dsi

ω) = false;
(if ω = j + 2), p(dsj

ω) = true.

The above conditions imply that gj+2 will be used to disclose under ajump(j). On the other hand, when
ajump(i) evaluates gi+2, since its permutation set does not satisfy the privacy property, the algorithm will
move to the next function, and repeat this until it reaches gj+1. Since dsi

j+1(t0) does not satisfy the privacy
property, the algorithm will jump to gj+1+i and will disclose using a function beyond gj+2.

Table 11 shows our construction where the privacy property is again that the highest ratio of a sensitive
value is no greater than 1

2 . We assume the table has many others tuples not shown (the purpose of these
additional tuples is only to ensure the data utility of the generalizations is in a non-increasing order). The
left (right) side of Table 11 shows the case where the data utility of ajump(i) is better (worse) than that of
ajump(j) (1 < i < j). Without loss of generality, we discuss the first 12 tuples in these two tables.

Firstly, we discuss the left side of Table 11. The given table, denoted by t0, cannot be disclosed under
g1 since p(per1) = false. For g2, we have p(per2) = true. The tables in ds2 (note that dsi

2 ≡ dsj
2 as

shown in Section 4.2.2) satisfy that E, F , G, and H have the sensitive value C4, S, S, and C5, respectively.
Clearly, p(ds2) = false, and g2(t0) cannot be disclosed, either. Then ajump(i) and ajump(j) will jump to
evaluate under gi+2 and gj+2, respectively.

Now we show that ajump(i) can be disclosed using gi+2. The dsi
i+2 can be computed first by excluding

the tables {t : p(per1(t) = true}. The tables in dsi
i+2 must belong to one of the following three disjoint

sets.

1. Two of A, B, and C have S. This subset has
(
3
1

)
×
(
5
1

)
× 4!× 5! = 3× 5!× 5! tables.

2. Both D and E have S. This subset has 5!× 5! tables.

3. Both F and G have S. This subset also has 5!× 5! tables.

Next, ajump(i) will evaluate these tables using g2. Clearly, the permutation set of each of these tables
satisfies privacy property. The ajump(i) will further evaluate their ds2. As discussed above, all the tables in
last set cannot be disclosed under g2. Similarly, those in second set cannot either. For the first set, all the
tables which D has S are safe under g1. In other words, the ds2 for each table in this set satisfies that two of
A, B, and C have S, which violates the privacy property. Summarily, all these tables are in dsi

i+2(t0). The
ratio of A, B, and C being associated with S are 2

5 , which is the highest ratio. Thus, gi
i+2(t0) can be safely

released. Besides, ajump(j) must disclose table t0 under or after gj+2, therefore, in this case, ajump(i) has
better data utility than ajump(j).

Secondly, we discuss the right side of Table 11. Similarly, ajump(i) will jump to evaluate gi+2 while
ajump(j) will jump to gj+2. For ajump(j), since p(perj+2) = true and p(dsj

j+2) = true (The ratio of A,
B, C, J , K, and L being associates with S is 2

9 which is highest ratio), therefore, ajump(j) will disclose
gj+2. For ajump(i), since p(peri+2) = false, it will move to evaluate gi+3 and repeat until gj+1 due to the
same reason. Obviously, the tables in dsi

j+1 satisfy that both F andG have sensitive value S, which violates
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the privacy property. Therefore, the algorithm ajump(i) jumps beyond gj+2 since j+2 < j+1+ i. Clearly,
with these constructions, both ajump(i) and ajump(j) will follow the desired evaluation paths as shown in
Figure 4.

(a). ajump(i) better than ajump(j) (b). ajump(i) worse than ajump(j)
QID g1 g2 . . . gi+2 . . . gj+2 . . .

A C0 C0 . . . C0 . . . C0 . . .
B C1 C1 . . . C1 . . . C1 . . .
C C2 C2 . . . C2 . . . C2 . . .
D C3 C3 . . . C3 . . . C3 . . .
E C4 C4 . . . C4 . . . C4 . . .
F S S . . . S . . . S . . .
G S S . . . S . . . S . . .
H C5 C5 . . . C5 . . . C5 . . .
I C6 C6 . . . C6 . . . C6 . . .
J C7 C7 . . . C7 . . . C7 . . .
K C8 C8 . . . C8 . . . C8 . . .
L C9 C9 . . . C9 . . . C9 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

QID g1 g2 g3 . . . gj gj+1 gj+2 . . .

A C0 C0 C0 . . . C0 C0 C0 . . .
B C1 C1 C1 . . . C1 C1 C1 . . .
C C2 C2 C2 . . . C2 C2 C2 . . .
D C3 C3 C3 . . . C3 C3 C3 . . .
E C4 C4 C4 . . . C4 C4 C4 . . .
F S S S . . . S S S . . .
G S S S . . . S S S . . .
H C5 C5 C5 . . . C5 C5 C5 . . .
I C6 C6 C6 . . . C6 C6 C6 . . .
J C7 C7 C7 . . . C7 C7 C7 . . .
K C8 C8 C8 . . . C8 C8 C8 . . .
L C9 C9 C9 . . . C9 C9 C9 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 11: The Data Utility Comparison Between ajump(j) and ajump(i) (1 < i < j)

5.1.3 ajump( ~k1) vs. ajump( ~k2) ( ~k1 6= ~k2)

Next, we extend the above results to the more general case in which the two algorithms ajump( ~k1) and
ajump( ~k2) both have an n-dimensional vector as their jump distances.

Theorem 4. For any ~k1, ~k2 ∈ [1, n]n, there always exist cases in which the data utility of the algorithm
ajump( ~k1) is better than that of ajump( ~k2), and vice versa.

Proof. Suppose the first element with different jump distance of ~k1 and ~k2 is the ith element. Without the
loss of generality, assume that ~k1[i] < ~k2[i]. Figure 5 illustrates such constructed paths. There are two cases
as follows,

First, ~k1[i] = 1: Since ds
~k1
l = ds

~k2
l for all 1 ≤ l ≤ i, and ds

~k1
i+1 ⊇ ds

~k2
i+1, we can construct in a similar

way as in the proof of Theorem 2. Basically, we construct the following evaluation path: per1 → per2 →
. . .→ peri → peri+1 → dsi+1 so that in one case we have p(ds

~k1
i+1) = true ∧ p(ds ~k2

i+1) = false, whereas

in the other case we have p(ds
~k1
i+1) = false ∧ p(ds ~k2

i+1) = true.

Second, ~k1[i] > 1: In this case, we consider two sub-cases.

1. (∃j)((i+ ~k1[i] ≤ j < i+ ~k2[i]) ∧ (j + ~k1[j] > i+ ~k2[i])):
In this sub-case, we can construct the following two evaluation paths.
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Figure 5: The Construction for ajump( ~k1) and ajump( ~k2) ( ~k1 6= ~k2)

(a) ajump( ~k1) : per1 → per2 → . . . → peri → ds
~k1
i → per

i+ ~k1[i]
→ . . . → perj → ds

~k1
j →

per
j+ ~k1[j]

→ . . .

ajump( ~k2) : per1 → per2 → . . .→ peri → ds
~k2
i → per

i+ ~k2[i]
→ p(ds

~k2

i+ ~k2[i]
) = true

(b) ajump( ~k1) : per1 → per2 → . . .→ peri → ds
~k1
i → per

i+ ~k1[i]
→ p(ds

~k1

i+ ~k1[i]
) = true

ajump( ~k2) : per1 → per2 → . . .→ peri → ds
~k2
i → per

i+ ~k2[i]
→ . . .

Since j+ ~k1[j] > i+ ~k2[i], the data utility of ajump( ~k1) in the first case is worse than that of ajump( ~k2).
Meanwhile, since i+ ~k1[i] < i+ ~k2[i], we have the converse result in the second case.

2. ¬(∃j)((i+ ~k1[i] ≤ j < i+ ~k2[i]) ∧ (j + ~k1[j] > i+ ~k2[i])):
In this sub-case, ds

~k1

i+ ~k2[i]
⊆ ds

~k2

i+ ~k2[i]
. We can reason as follows. The disclosure set of g

i+ ~k2[i]
under

ajump( ~k2) is computed by excluding from its permutation set the tables which can be disclosed using
g1 and those which p(per2(t)) = true; however, the disclosure set under ajump( ~k1) needs to further
exclude the tables which can be disclosed under some function gj and (j, 0) is in the evaluation path,
where (i+ ~k1[i] ≤ j ≤ i+ ~k2[i]− 1). Based on this result, we can construct the following evaluation
paths.

(a) ajump( ~k1) : per1 → per2 → . . . → peri → ds
~k1
i → per

i+ ~k1[i]
→ . . . → per

i+ ~k2[i]
→

p(ds
~k1

i+ ~k2[i]
) = false

ajump( ~k2) : per1 → per2 → . . .→ peri → ds
~k2
i → per

i+ ~k2[i]
→ p(ds

~k2

i+ ~k2[i]
) = true

(b) ajump( ~k1) : per1 → per2 → . . . → peri → ds
~k1
i → per

i+ ~k1[i]
→ . . . → per

i+ ~k2[i]
→

p(ds
~k1

i+ ~k2[i]
) = true
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ajump( ~k2) : per1 → per2 → . . .→ peri → ds
~k2
i → per

i+ ~k2[i]
→ p(ds

~k2

i+ ~k2[i]
) = false

Clearly, the data utility of ajump( ~k1) in the first (second) case is worse (better) than that of ajump( ~k2).

5.2 Reusing Generalization Functions

With the naive strategy, whether a generalization function satisfies the privacy property is independent of
other functions. Therefore, it is meaningless to evaluate the same function more than once. However,
we now show that with the k-jump strategy, it is meaningful to reuse a generalization function along the
evaluation path. This will either increase the data utility of the original algorithm, or lead to new algorithms
with incomparable data utility to enrich the the existing family of algorithms. That is, reusing generalization
functions may benefit the optimization of data utility.

Theorem 5. Given the set of generalization functions, there always exist cases in which the data utility of
the algorithm with reusing generalization functions is better than that of the algorithm without reusing, and
vice versa.

Proof. Consider two algorithms a1 and a2 that define the functions g1, g2, g3, g4, . . . and g1, g2, g3, g2′ , g4, . . .,
respectively, where g2′(.) and g2() are identical. Suppose both algorithms has the same jump distance k = 1,
and the privacy property is not set-monotonic. We can construct the following two evaluation paths.

1. a1(t0) : per1(t0)→ per2(t0)→ ds12(t0)→ per3(t0)→ per4(t0) . . .
a2(t0) : per1(t0) → per2(t0) → ds12(t0) → per3(t0) → per2′(t0) → ds12′(t0) → p(ds12′(t0)) =
true

2. a1(t0) : per1(t0)→ per2(t0)→ per3(t0)→ per4(t0)→ ds14(t0)→ p(ds14(t0)) = true
a2(t0) : per1(t0) → per2(t0) → per3(t0) → per2′(t0) → per4(t0) → ds14(t0) → p(ds14(t0)) =
false

Clearly, the data utility of a1 in the first case is worse than that of a2, while in the second case it is
better.

It is worth noting that although the same generalization function is repetitively evaluated, its disclosure
set will depend on the functions that appear before it in the evaluation path. Take the identical functions
g2 and g′2 above as an example, the disclosure set of g2 is computed by excluding from its permutation set
the tables which can be disclosed under g1; however, the disclosure set of g′2 needs to further exclude tables
which can be disclosed under g3. Therefore, ds2′ ⊆ ds2. Generally, dsi′ ⊆ dsi when gi(.) is reused as gi′(.)
in a later iteration. This leads to the following.

Proposition 1. With a set-monotonic privacy property, reusing generalization functions in a k-jump algo-
rithm does not affect the data utility under ajump(1).

Proof. Suppose gi(.) is reused as gi′(.) in a later iteration of the algorithm. For any table t, since dsi′(t) ⊆
dsi(t), p(dsi′(t)) = true implies p(dsi(t)) = true for any set-monotonic privacy property p(.). Therefore,
if p(dsi′(t)) = true, the algorithm will disclose under gi(.); if p(dsi′(t)) = false then the algorithm will
continue to the next iteration. In both cases, gi′(.) cannot exclude the tables from permutation set other than
gi(.) can do, therefore, gi′(.) does not affect the data utility.
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On the other hand, when generalization functions are reused at the end of the original sequence of func-
tions, some tables which will lead to disclosing nothing under the original sequence of functions may have
a chance to be disclosed under the reused functions, which will improve the data utility.

Proposition 2. Reusing a generalization function after the last iteration of an existing k-jump algorithm
may improve the data utility when p(.) is not set-monotonic.

Proof. We construct a case in which reusing a function will improve the data utility. Consider two algo-
rithms a1 and a2 that define the functions g1, g2, g3 and g1, g2, g3, g2′ , respectively, where g2′(.) and g2(.)
are identical. Suppose both algorithms have the same jump distance k = 1, and the privacy property is not
set-monotonic. We need to construct the following two evaluation paths by which a1 will disclose nothing,
while a2 will disclose using g2′ .

1. a1(t0) : per1(t0)→ per2(t0)→ ds12(t0)→ p(per3(t0)) = false

2. a2(t0) : per1(t0) → per2(t0) → ds12(t0) → per3(t0) → per2′(t0) → ds12′(t0) → p(ds12′(t0)) =
true

Table 12 shows our construction. The table will lead to disclosing nothing without reusing g2, whereas
reusing g2 will lead to a successful disclosure. In this example, the jump distance is 1, and the privacy
property is that the highest ratio of any sensitive value is no greater than 1

2 .

More specifically, the given table, denoted by t0, cannot be disclosed under g1(.) or g3(.) since p(per1) =
p(per3) = false. For g2, we have p(per2) = true. The tables in ds2 must be in one of the following three
disjoint sets.

1. C has the sensitive value C3. The number of such tables is
(
2
1

)
× (
(
4
1

)
×
(
3
1

)
) = 24. Denote this set

by S1.

2. C does not have C3, and both D and E have C3. There are
(
2
1

)
×
(
2
1

)
×
(
2
1

)
= 8 such tables. Denote

it by S2.

3. C does not have C3, and both F and G have C3. Similarly, there are 8 such tables. Denote this set by
S3.

We then have ds2 = S1 ∪ S2 ∪ S3. The ratio of C being associated with C3 is 24
24+8+8 = 0.6 > 0.5, so

g2(t0) cannot be disclosed, either.

Now, consider the case that g2 is reused as g2′ . To calculate the disclosure set of g2′ , the tables which
can be disclosed under g1, g2, and g3 must be excluded from ds2′ . After excluding the tables which can be
disclosed under g1, we have that the remaining tables in ds2′ are the same as above, that is, S1 ∪ S2 ∪ S3.
These tables cannot be disclosed under g2 as mentioned above. We further evaluate whether these tables can
be disclosed using g3. S1 can be further divided into three disjoint subsets as follows.

1. One and only one of D and E has C3, so does F and G. This subset has
(
2
1

)
×
(
2
1

)
×
(
2
1

)
×
(
2
1

)
= 16

tables, and is denoted by S11 .

2. Both D and E have C3. This subset has
(
2
1

)
×
(
2
1

)
= 4 tables, and is denoted by S12 .

3. Both F and G have C3. This subset also has 4 tables, and is denoted by S13 .

All the tables in S12 , S13 , S2, and S3 cannot be disclosed under g3 since their permutation sets under g3
do not satisfy the privacy property (the highest ratios of a sensitive value are respectively 0.6, 1.0, 0.6, and
1.0). On the other hand, the tables in S11 can be disclosed under g3. We can reason as follows. Consider
each table t in S11 under g3. Since the tables which can be disclosed under g1 must be excluded from ds3(t),
the remaining tables in ds3(t) must be in one of the following two disjoint sets.
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1. Both A and B have C3. This subset has 3!× 2! = 12 tables, and is denoted by S111
.

2. Two of C, D and E have C3. This subset has (
(
3
1

)
×
(
2
1

)
)×

(
3
1

)
×
(
2
1

)
= 36 tables, and is denoted by

S112
.

We must exclude from ds3(t) the tables which can be disclosed using g2. The tables in S111
cannot be

disclosed under g2 since their permutation sets under g2 do not satisfy the privacy property. Furthermore,
the tables in S112

can be further divided into two disjoint subsets based on whether C has C3. The tables
in the case that C has C3 cannot be disclosed using g2 because of the same reason as those in S111

, while
the tables in the case that C does not have C3 cannot be disclosed using g2 because of the similar reason
as g2(t0). In a word, all the tables in S111

and S112
cannot be disclosed using g2, accordingly, these tables

cannot be excluded from ds3(t). Thus, ds3(t) = S111
∪S112

. The ratio of C,D, E, F orG being associated
with C3 in ds3(t) is 1

2 which is the highest ratio, accordingly, the tables in S11 can be disclosed under g3.

Therefore, the disclosure set under the reused function g2′ must exclude the tables in S11 , consequently,
ds2′ = S12 ∪ S13 ∪ S2 ∪ S3. The ratio of F and G being associated with C3 are 0.5, which is the highest
ratio. Therefore, g2′(t0) can be safely disclosed.

QID g1 g2 g3 g2′

A C1 C1 C1 C1

B C2 C2 C2 C2

C C3 C3 C3 C3

D C4 C4 C4 C4

E C5 C5 C5 C5

F C3 C3 C3 C3

G C3 C3 C3 C3

Table 12: The Case Where Reusing Generalization Functions Improves Data Utility

5.3 asafe and ajump(1)

We show that the algorithm asafe is equivalent to ajump(1) when the privacy property is either set-monotonic,
or based on the highest ratio of sensitive values.

Given a group ECi in the disclosed generalization, let nri be the number of tuples and nsi be the number
of unique sensitive values. Denote the sensitive values within ECi by {si.1, si.2, . . . , si.nsi}. Denote by
nsi.j the number of tuples associated with si.j .

Lemma 3. If the privacy property is either set-monotonic or based on the highest ratio of sensitive values,
then a permutation set not satisfying the privacy property will imply that any of its subsets does not, either.

Proof. The result is obvious if the privacy property is set-monotonic. Now consider a privacy property
based on the highest ratio of sensitive values, which is supposed to be no greater than a given δ. Suppose
that ECi is a group that does not satisfy the privacy property, and in particular, si.j is a sensitive value that
leads to the violation. First, obviously we have that

nsi.j

nri
> δ. Let nt be the cardinality of any subset of

the permutation set. Since all tables in this subset have the same permutation set, each such table has totally
nsi.j appearances of si.j in ECi. Therefore, among these tables, the total number of appearances of si.j in
ECi is nsi.j × nt. On the other hand, assume that one subset of the permutation set with totally nt tables
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actually satisfies the privacy property. Then, the number of each sensitive value associated with a tuple
should satisfy |si.j | ≤ δ × nt. Therefore, the total number of sensitive values for all identities is:

nri × |si.j | ≤ nri × (δ × nt) < nri ×
nsi.j

nri
× nt = nsi.j × nt. (3)

Therefore, we have nsi.j × nt < nsi.j × nt, a contradiction. Consequently, the initial assumption that
there exists a subset of the permutation set satisfying the privacy property must be false.

Since the disclosure set is computed by excluding tables from the corresponding permutation set, we
immediately have the following.

Corollary 1. When the privacy property is either set-monotonic or based on the highest ratio of sensitive
values, the algorithm asafe has the same data utility as ajump(1).

For other kinds of privacy properties, we prove that the data utility is again incomparable between asafe

and ajump(1). First, we compare their disclosure set under the 3rd generalization function.

Lemma 4. The ds3 under asafe is a subset of that under ajump(1).

Proof. By definition, we have the following (where the superscript 0 denotes asafe).

ds13(t0) = per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) ∨ (p(per2(t)) ∧ p(ds12(t))))} (4)

ds03(t0) = per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(ds01(t)) ∨ p(ds02(t)))}
= per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) ∨ p(ds12(t)))} (5)

Therefore, we have ds13(t0) ⊇ ds03(t0).

Theorem 6. The data utility of asafe and ajump(1) is generally incomparable.

Proof. Based on Lemma 4, we can construct the following two evaluation paths.

1. ajump(1) : per1 → per2 → per3 → p(ds13) = true
asafe : ds01(per1)→ ds02 → p(ds03) = false

2. ajump(1) : per1 → per2 → per3 . . .
asafe : ds01 → p(ds02) = true

Clearly, the data utility of ajump(1) in the first case is better than that of asafe, while in the second case
it is worse.

6 Computational Complexity of k-Jump Algorithms

In this section, we analyze the computational complexity of k-jump algorithms. Given a micro-data table t0
and one of its k-jump algorithm a, let nr be the cardinality of t0, and np and nd be the number of tables in its
permutation set and disclosure set under function gi, respectively. In the worst case, np = nr! and nd ≈ np,
in which there is only one anonymized group and all the sensitive values are distinct.

Due to the definition of permutation set, we directly have the following result: Given a micro-data table
t0 under a generalization function, the distribution of sensitive values corresponding to each identity in the
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permutation set is coincident with the distribution of the multiset of sensitive values in the anonymized group
the identity belongs to.

Based on such coincidence, the privacy can be operated on table (when ignoring the order (identifier) of
records inside each anonymized group), which is equivalent to evaluating on the permutation set (which is a
set of tables). Based on these results, the running time of evaluating permutation set against privacy property
reduces from O(np × nr) to O(nr) for most existing privacy models, such as k-anonymity, l-diversity, and
so on. Given a table t0, let ep(t0) and ed(t0) be the running time of evaluating permutation set and disclosure
set under a function gi, respectively. Since generally the disclosure set does not satisfy the coincidence in
the distribution, the running time of evaluating disclosure set is O(nd × nr). Nevertheless, for simplicity,
we will consider that O(ep(t)) = O(1) and O(ed(t)) = O(1) in the following discussion. To facilitate the
analysis, we elaborate the family of k-jump algorithms as shown in Table 13.

Algorithm ajump(t0, sg,~k) Algorithm ds(t0, i, sg,~k)
Input: an original table t0,

sequence of functions sg = (g1, g2, . . . , gn),
vector of jump distance ~k,
and a privacy property p(.);

Output: a generalization gi(1 ≤ i ≤ n) or ∅;
1: i← 1;
2: while (i ≤ n) do
3: if (p(per(gi(t0))=true) then
4: if (p(ds(t0, i, sg,~k)) = true) then
5: return gi(t0);
6: else
7: i← i+ ~k[i];
8: end if
9: else

10: i← i+ 1;
11: end if
12: end while
13: return ∅;

Input: a table t0,
function i (to calculate t0’s disclosure set),
sequence of functions sg = (g1, g2, . . . , gn),
vector of jump distances ~k,
and a privacy property p(.);

Output: the disclosure set dsi(t0);
1: dsi ← per(gi(t0));
2: for all (t ∈ dsi) do
3: j ← 1;
4: while (j ≤ i− 1) do
5: if (p(per(gj(t))) = true) then
6: if (p(ds(t, j, sg,~k)) = true) then
7: dsi ← dsi/{t};
8: break;
9: else

10: j ← j + ~k[i];
11: end if
12: else
13: j ← j + 1;
14: end if
15: end while
16: if (j > i) then
17: dsi ← dsi/{t};
18: end if
19: end for
20: return dsi;

Table 13: Algorithms: ajump(~k) and ds~ki With Any Given Privacy Property p(.)

Basically, an ajump(~k) algorithm checks the original table t0 against privacy property p(.) under each
generalization function in the given order and discloses the first generalization gi in the sequence whose
permutation set peri and disclosure set dsi both satisfy the desired privacy property. To determine whether
a table can be disclosed under certain generalization function gi in the algorithm, its permutation set peri is
evaluated first. If the permutation set does not satisfy the privacy property, the table will not be disclosed
under this function and the algorithm moves to evaluate under next function, otherwise, its disclosure set
dsi is evaluated. If the disclosure set satisfies the privacy property, the table can be disclosed under this
function gi; otherwise, the algorithm will check the (i + ~k[i])th generalization function in a similar way.
This procedure will continue until the table is successfully disclosed under a function gi (1 ≤ i ≤ n) or fails
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to satisfy the privacy property for all functions and nothing is disclosed.

To compute the disclosure set dsi of t0 under generalization function gi, we first enumerate all possible
tables by permuting each group in the generalization gi(t0). Then, by following the algorithm, for each table
t in the permutation set peri(t0), we first assume it is the original table t0, check under the generalization
functions in sequence following the paths of the generalization algorithm, then determine whether it will not
be disclosed under generalization function gi. Such tables may fall into two different cases. First, the table
can be disclosured under certain generalization function gj(j < i) before gi; Second, the table will not be
checked by the generalization function gi, even it cannot be disclosed before gi, which has been discussed
in Section 4.2.1.

Based on the above detailed analysis of the algorithm, it can be shown that the running time of evaluating
whether a given disclosure set satisfies privacy property is different from the time of deriving that disclosure
set. On one hand, we consider O(ed(t)) = O(1). On the other hand, to derive dsi(t0), we must separately
evaluate each table t in peri(t0) to determine whether it is a valid guess.

With the aforementioned discussions, we can analyze the time complexity of k-jump algorithms as fol-
lows.

Theorem 7. Given a micro-data table t0, a generalization algorithm of k-jump strategy that considers
the sequence of generalization functions g1, g2, . . . , gn in the given order and the jump-distance k, the
computational complexity of such k-jump strategy is O((maxp)

n
k ) where maxp is the maximal cardinality

of possible tables in the permutation set among the functions (in the worse case, maxp = (|t0|)!.

Proof. Given a jump-vector, we prove the result by mathematical induction on n. Note that, the number
of generalization functions is related to the domain size (the larger the domain size is, the more possible of
generalization functions based on the methods in the literature). For simplicity, we assume the jump-vector
to be jump-distance k, where k is a constant.

The Inductive Hypothesis: To compute the disclosure set of micro-data table t0 under generalization
function i in k-jump strategy, its computational complexity is O((maxp)

i
k ).

The Base Case: When i = 1, it is clear that we only need to evaluate whether the permutation set satisfies
the privacy property, whose running time is ep(t).

For i = 2, 3, . . . , 1 + k, as mentioned before, the tables for which p(perj) = true for any j < i will
be removed from gi’s disclosure set. Therefore, the worst case is to evaluate all the permutation sets under
each j < i and evaluate both permutation set and disclosure set under function i. Thus, the running time is
O((i− 1)×maxp × ep(t) + ep(t) + ed(t)) = O((k ×maxp + 1)× ep(t)), which is O((maxp)1).

The Inductive Assumption: Suppose the inductive hypothesis hold for any j > 0, the running time for
i ∈ [2 + j × k, 1 + k + j × k] is O((maxp)j+1).

The Inductive Step: Now we show the hypothesis also holds for j+ 1, and equivalently, for i = 2 + (j+
1)×k, 3+(j+1)×k, . . . , 1+k+(j+1)×k. Based on the assumption above, the most-time-consuming case
is that for each table t in permutation set peri(t0), there exists an evaluation of disclosure set psm(t) where
m ∈ [2+j×k, 1+k+j×k]. Therefore, the running time isO(ep(t)+. . .+maxp×O((maxp)j+1)+ed(t)) =
O((maxp)j+2). Therefore, the assumption holds for any j > 0, and equivalently, for any i ≥ 2. This
concludes the proof.

Summarily, it is shown that the computational complexity of the family of algorithms is exponential in n
k

and |t0|. Similarly, k-jump algorithm requires O(maxp)
n
k ) storage for maintaining the disclosure sets. The

main reason is as follows: to compute disclosure set of an original data under a generalization function, the
solution must first compute the disclosure set for each instance in each permutation set, under all the previous
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generalization functions in the sequence. In turn, to compute disclosure set under any previous function for
any instance, the solution must compute the disclosure set by repeating aforementioned process.

Although the worse case complexity is still exponential, this is, to the best of our knowledge, one of the
first algorithms that allow users to ensure the privacy property and optimize the data utility given that the
adversaries know the algorithms. Furthermore, unlike the safe algorithms discussed in [26, 47] which only
work with l-diversity, the family of our algorithms ajump(~k) is more general and independent of the privacy
property and the measure of data utility.

7 Making Secret Choices of Publicly-Known Algorithms

In this section, we discuss the feasibility of protecting privacy by making a secret choice among publicly-
known algorithms. The main objective of discussing secret choices in this section is not to advocate using
this solution to ’get more security’, but to demonstrate the fallacy of such a seemingly attractive solution,
by showing that making secret choices among unsafe algorithms cannot ensure the privacy (in order to
confirm the necessity of safe publicly-known algorithms, such as k-jump algorithms). Recall that we say
an algorithm is safe if it can ensure the privacy property for any micro-data in the case that the adversary
knows the algorithm itself, otherwise, we say it is unsafe. K-jump algorithms are safe since they evaluate
the privacy property on the adversaries’ mental image instead of the disclosed generalization (data), which
is simutable.

7.1 Secret-Choice Strategy

From previous discussions, we know that the family of algorithms ajump share two properties, namely, a
large cardinality and incomparable data utility. The practical significance of this result is that we can now
draw an analogy between ajump and a cryptographic algorithm, with the jump distance ~k regarded as a
cryptographic key. Instead of relying on the secrecy of an algorithm (which is security by obscurity), we
can rely on the secret choice of ~k for protecting privacy. Table 14 shows the analogy between the secret
choice among k-jump algorithm and cryptography. The main difference is how to utilize the output. For
cryptography, it is to decrypt the cipher-text for the plain-text. For privacy-preserving data publishing, it is
to achieve relatively statistical analysis on the disclosed data (the result should be as close to the analysis on
the original data as possible) and prevent from recovering the original data.

Secret Choice Cryptography
the k-jump strategy the cipher algorithm
the jump parameter (~k) the secret key
to generalize the original data to encrypt the plain-text
the disclosed data (generalization) the cipher-text
to analyze the disclosed data to decrypt the cipher-text

Table 14: The Analogy Between Secret Choice Among k-Jump Algorithms and Cryptography

On the other hand, as discussed in previous sections, a safe algorithm (e.g., asafe or ajump) usually incur
a high computational complexity, therefore, one may suggest that we can make the secret choice among
unsafe but more efficient publicly-known algorithms instead of safe algorithms to reduce the computational
complexity. We first formulate the secret-choice strategy.

The secret-choice strategy among a set of algorithms can take the following three stages. Given a table t0
and the set of generalization functions gi(.)(1 ≤ i ≤ n), the strategy first defines a large set of generalization
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algorithms (either safe or unsafe) based on the set of functions, then randomly and secretly selects one of
these algorithms, and finally executes the selected algorithm to disclose the micro-data. We can thus describe
the above strategy as asecret shown in Table 15.

Input: Table t0, a set of functions gi(.)(1 ≤ i ≤ n);
Output: Generalization g or ∅;
Method:
1. Define a large set of generalization algorithms A = {a1, a2, . . . , am} based on gi(i ∈ [1, n]]);
2. Select an j ∈ [1,m] randomly for representing one of the above algorithms aj ;
3. Return (Call aj);

Table 15: The Secret-Choice Strategy asecret

There certainly exist many approaches to defining the sets of algorithms (the first stage of asecret). We
demonstrate the abundant possibilities through the following two examples.

First, each generalization function is slightly revised to be a generalization algorithm. That is, instead
of only evaluating whether the permutation set of a micro-data table under the function satisfies the desired
privacy property, such generalization algorithm further discloses the generalization or nothing. To complete
the random selection, the asecret will randomly select one of such algorithms and then discloses its corre-
sponding generalization if it satisfies privacy property or nothing otherwise. Intuitively, this approach may
be safe as long as the cardinality of the set of functions is sufficient large. However, such randomness will
generally lead to worse data utility since usually the number of functions under which the permutation sets
of a given micro-data satisfy privacy property is relatively low compared to the total number of functions.
Consequently, such algorithm will disclose nothing for the micro-data with considerably high probability.
Therefore, in the following discussion, without loss of generality, the randomness refers to the selection of
algorithms which is not to be confused with the selection of functions in an algorithm. In other words, we
assume that the algorithms sort the functions in a predetermined non-decreasing order of the data utility.

The k-jump strategy is another possible approach to defining the set of algorithms based on a given set of
generalization functions. In k-jump, k is the secret choice, while all the functions appear in each algorithm
and are sorted based on data utility. Given the set of functions, the one and only difference among k-jump
algorithms is the jump-distance (k). As discussed above, k-jump algorithms are safe and the adversaries can
at most refine their mental image to the disclosure set no matter whether they know the k. In other words, it
is not necessary to hide the k among the family of k-jump algorithms. Similarly, we do not need to make a
secret choice among other categories of safe algorithms. Therefore, in the remainder of this section, we will
restrict the discussions on the case of secret choice among the unsafe algorithms based on predetermined
order of the generalization functions. We show that secret choice among such unsafe algorithms cannot
guarantee the privacy through a family of unsafe algorithms.

7.2 Subset Approach

To facilitate our discussion, we design a straightforward subset approach to define the set of unsafe algo-
rithms for the first stage of asecret. Given a set of generalization functions G = {g1, g2, . . . , gn}, the subset
approach first construct all the subsets SG of G which includes at least 2 functions. Then the naive strategy
discussed in Section 3.2 is adapted on each of such subsets to embody an algorithm. That is, the functions
in a subset is sorted in the non-increasing order of the data utility, and then the first function under which the
permutation set of given micro-data satisfies the privacy property is disclosed; otherwise, ∅will be the output
and nothing is disclosed as shown in Table 16. We assume that the adversaries know the set of functions G
since they know the released micro-data and in most cases the generalization is based on the quasi-identifier.
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We also call the secret-choice strategy built upon subset approach subset-choice strategy.

Input: Set of function G = {g1, g2, . . . , gn};
Output: Set of algorithms SA

Method:
1. Let SA = ∅;
2. Let SG = 2G/{∅ ∪ {gi : 1 ≤ i ≤ n}};
3. For each element Sf in SG

4. Create in SA an algorithm by applying naive strategy on Sf ;
5. Return SA;

Table 16: The Subset Approach For Designing the Set of Unsafe Algorithms

From the adversaries’ point of view, when they know the disclosed data, the subset-choice strategy (that
is, the secret-choice strategy with the subset approach as its first stage), the privacy property, and the set
of functions G, they may be able to validate their guesses and refine their mental image about the original
data. With the knowledge about G, the adversary can know there are

(|G|
2

)
+
(|G|

3

)
+ . . . +

(|G|
|G|
)

= 2|G| −
|G| − 1 possible different secret choices; With the knowledge of the disclosed data, the adversary can
further know the following two facts. First, the original micro-data is in the permutation set of the disclosed
generalization. Second, the generalization function corresponding to the disclosed data should be a function
in the selected algorithms, and consequently the number of possible secret choices in his/her mental image
is reduced to be 2|G|−1− 1. Each secret choice corresponding to an algorithm is equally likely selected. For
each of these refined secret choices, the adversary first assumes that it is the true secret choice, then deduces
the disclosure set for given disclosed data and corresponding naive algorithm in a similar way discussed in
Section 1. Finally, the adversary refines his/her mental image to be (2|G|−1 − 1) disclosure sets.

Based on such a mental image, the adversary may refine his knowledge about an individual’s sensitive
information. For example, for entropy l-diversity, the adversary can calculate the ratio of an individual being
associated with a sensitive value in each disclosure set, and then average the ratio among all disclosure sets.
Whenever the average ratio among the disclosure sets of an individual being associated with a sensitive
value is larger than 1

l , the privacy of that individual is violated. Taking k-anonymity as another example,
the adversary can simply count the number of sensitive values that an individual possibly being associated
with among all disclosure sets. If the resultant number for any individual is less than k, the privacy of that
individual is violated.

7.3 The Safety of Subset-Choice Strategy

In the following, we show that subset-choice strategy cannot ensure the privacy property by constructing a
counter-example.

Theorem 8. Given a subset-choice strategy, there exist cases that the strategy discloses an unsafe general-
ization.

Proof. One counter example, that an algorithm taking subset-choice strategy discloses a generalization
while the privacy is actually violated, is sufficient to prove the theorem. Table 17 shows our construc-
tion for the proof. The left tabular shows the micro-data table t0 whose identifiers are removed. The right
tabular shows the five generalization functions in G. For clarification purposes, we intentionally keep the
original value of QID. In other words, we only focus on the anonymized groups as illustrated by the hori-
zontal lines while omitting the modification of quasi-identifiers. For example, by g1, we partition t0 into two
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(a). The Micro-Data Table t0 (b). The set G of generalization functions for t0

QID S
A C0

B C0

C C0

D C1

E C2

F C3

G C4

H C5

I C6

g1 g2 g3 g4 g5
QID S QID S QID S QID S QID S

A C0 A C0 B C0 A C0 A C0

B C0 C C0 C C0 B C0 B C0

C C0 B C0 A C0 C C0 C C0

D C1 D C1 D C1 D C1 D C1

E C2 E C2 E C2 E C2 E C2

F C3 F C3 F C3 F C3 F C3

G C4 G C4 G C4 G C4 G C4

H C5 H C5 H C5 H C5 H C5

I C6 I C6 I C6 I C6 I C6

Table 17: The Counter Example for Secret Choice among Unsafe Algorithms

Possible SG Probability Possible SG Probability
A B C A B C

{g1, g5} 1 1 1
7 {g1, g2, g5} 1 1 1

{g2, g5} 1 1
7 1 {g1, g3, g5} 1 1 1

{g3, g5} 1
7 1 1 {g1, g4, g5} 1 1 1

7

{g4, g5} 2
3

2
3

2
3 {g2, g3, g5} 1 1 1

{g1, g2, g3, g5} 1 1 1 {g2, g4, g5} 1 1
7 1

{g1, g2, g4, g5} 1 1 1 {g3, g4, g5} 1
7 1 1

{g1, g3, g4, g5} 1 1 1 {g1, g2, g3, g4, g5} 1 1 1
{g2, g3, g4, g5} 1 1 1

Table 18: The Possible Subsets of Functions and the Corresponding Probability of A,B, and C Being
Associated With C0

anonymized groups: A and B form one anonymized group, while the others (C − I) form another group.
In this construction, the privacy property is 2-diversity and the data utility is measured by discernibility
measure (DM).

Suppose that the algorithm select subset SG of generalization functions to be SG = {g4, g5}. Obviously,
the permutation set of t0 under function g4 does not satisfy 2-diversity, while it does so under g5. Therefore,
based on the subset-choice strategy, the algorithm discloses g5(t0).

Unfortunately, the knowledge of G and disclosed table will enable the adversary to refine his mental
image about the original micro-data, and finally violate the privacy property since the adversary can infer
that the ratio of A, B and C being associated with C0 is 272

315 >
1
2 .

The adversary can reason as follows. There are totally
(
5
2

)
+
(
5
3

)
+
(
5
4

)
+
(
5
5

)
= 26 possible secret choices

of SG. By observing the disclosed data, the adversary knows that g5 ∈ SG and then refines the number of
possible choices to be

(
4
1

)
+
(
4
2

)
+
(
4
3

)
+
(
4
4

)
= 15. That is, one, two, three or all of g1, g2, g3 and g4 together

with g5 form SG. Note that these 15 possible subsets are equally likely to be SG. The possible subsets of
functions are shown in the possible SG column of Table 18.

By the data utility measurement DM, g1, g2, and g3 have the same data utility which is better than that
of g4, and g4 has better data utility than g5. From the adversary’s point of view, since g5 is disclosed, the
micro-data t0 under any other functions in the selected SG should violate the 2-diversity (otherwise, other
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generalization should be disclosed based on the subset-choice algorithm).

Based on the disclosed data g5, the adversary knows that only three individuals can share the same
sensitive value (C0). Therefore, the anonymized group {C − I} in g1, whose cardinality is 7, cannot
violate 2-diversity, neither do groups {B,D − I} in g2, {A,D − I} in g3, and {D − I} in g4. In other
words, the reason that subset approach does not disclose t0 using function g1, g2, g3 or g4 is that the group
{A,B}, {A,C}, {B,C} or {A,B,C} respectively does not satisfy 2-diversity. For example, suppose that
SG = {g1, g5} and g5 is disclosed, then g1 must violate 2-diversity, therefore, both A and B should be
associated with C0, while C can be associated with any sensitive value in set {Ci : i ∈ [0, 6]}. The similar
analysis can be applied to other possible subsets SG and the probability of A, B, and C being associated
with C0 are shown in Table 18 when corresponding subset SG of G is selected. Since each SG is equally

likely selected, the ratio of A being associated with C0 is 12×1+2× 1
7
+1× 2

3
15 = 272

315 >
1
2 , so do B and C. In

other words, once the adversary knows G, the subset-choice algorithm, subset approach, and the disclosed
data g5, he/she can infer that A, B, and C is associated with C0 with ratio higher than 1

2 even in the case that
she/he does not know the secret choice (the adversary does not know which subset of G is selected). This
clearly violates the privacy property. Thus we have proved the theorem.

The counter example in the above proof is sufficient to demonstrate that secret choices made among un-
safe algorithms does not always guarantee the privacy property. Therefore, safe algorithms are still necessary
for preserving the privacy property.

8 Conclusion

In this paper, we have proposed a novel k-jump strategy for preserving privacy in micro-data disclosure us-
ing public algorithms. We have shown how a given unsafe generalization algorithm can be transformed into
a large number of safe algorithms. By constructing counter-examples, we have shown that the data utility of
such algorithms is generally incomparable. It has been shown that the computational complexity of a k-jump
algorithm with n generalization functions is exponential in n

k which indicates a reduction in the complex-
ity due to k. We have also shown that making a secret choice among unsafe algorithms cannot ensure the
desired privacy property which embodies the need of safe algorithms from another standpoint. Besides the-
oretical value, this result has the following positive impact: it identifies the root cause of high complexity in
developing safe public generalization algorithms, which motivates further efforts on developing alternative
methods to avoid the naturally recursive process under the popular idea in the literature.

Further studies will be conducted in the following directions. First, we will study other, more efficient
algorithms using the same strategy of making a secret choice of public algorithms. Second, we will em-
ploy statistical methods to investigate the average-case data utility provided by different k-jump algorithms.
Third, we will further investigate the issue of reusing generalization functions in an existing algorithm,
which has only received limited study in the current work.
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