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Abstract—As one of the main technology pillars of 5G networks, Network Functions Virtualization (NFV) enables agile and
cost-effective deployment of network services. However, the multi-level, multi-actor design of NFV may also allow for inconsistency
between the different abstraction levels to be mistakenly or intentionally introduced, as shown in recent studies. Serious security
issues, such as man-in-the-middle, network sniffing, and DoS, may arise at one abstraction level without being noticed by the victims at
another level. Most existing solutions are either limited to one abstraction level of NFV or reliant on direct access to lower-level data
which could become inaccessible when managed by different providers.
In this paper, by drawing an analogy between cross-level NFV event sequences and natural languages, we propose a Neural Machine
Translation-based approach, namely, Caught-in-Translation (CiT), to detect cross-level inconsistency attacks in NFV at runtime.
Specifically, we first extract event sequences from different abstraction levels of an NFV stack. We then leverage Long Short-Term
Memory (LSTM) to translate the event sequences from one level to another. Finally, we apply both a similarity metric and a Siamese
neural network to compare the translated event sequences with the original ones to detect attacks. We integrate CiT into
OpenStack/Tacker, a popular open-source NFV implementation, and evaluate its performance using both real and synthetic data.
Experimental results show the benefit of leveraging NMT as CiT achieves AUC ≥ 96.03%, which significantly outperforms traditional
SVM-based anomaly detection. We also evaluate CiT in terms of its efficiency, scalability, and robustness for detecting inconsistency
attacks in NFV platforms.

Index Terms—Inconsistency detection, Neural Machine Translation, NFV security

✦

1 INTRODUCTION

Network functions virtualization (NFV) has emerged as one
of the main technology pillars of 5G networks [1], [2]; for
instance, in a 2021 survey, over 50% of network service
providers have adopted NFV [3], and the NFV market
size is projected to grow from $12.9B in 2019 to $36.3B by
2024 [4]. The main benefit of NFV comes from its power
in decoupling the network functions, such as firewall or in-
trusion detection, from dedicated and proprietary hardware
appliances. By virtualizing those network functions on top
of standard hardware infrastructures, NFV makes it possible
for providers to deploy dynamic, agile, scalable, and cost-
efficient network services.

When a user requests the deployment of a new network
service (e.g., creating a virtual network function (VNF)), a
cascade of events occurs across multiple levels of the NFV
stack. As each level is operated by autonomous managerial
components (i.e., the so-called multi-actor design of NFV [5]),
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potential inconsistencies may arise between the specification
of a network service and its actual implementation at lower
levels. Worse, an adversary could tamper with a managerial
component at an implementation level and the malicious
changes could remain unnoticed by the user, thus enabling
stealthy attacks. These attacks may cause severe security
issues, such as unauthorized modifications of Service Func-
tion Chains (SFCs), network eavesdropping, and denial-of-
service (DoS) attacks, breaking confidentiality, as enabled by
real-world vulnerabilities (e.g., [6]–[9])1 and as illustrated in
recent studies (e.g., [10]–[14]).

Most of the existing works (e.g., [15]–[19] ) focus on
verifying the state (e.g., system configurations) of the NFV
system to discover the presence of inconsistencies. Such
an after-the-fact verification is retroactive in nature and
cannot detect attacks as they happen, which fails to prevent
irreversible damages, e.g., information leakage. Moreover,
some approaches (e.g., [16], [20]–[22]) rely on the access
to lower-level configuration data (e.g., network flow rules,
flow classifiers), which may become inaccessible when mul-
tiple providers are involved [23]. Finally, to the best of our
knowledge, none of the existing work considers the impli-
cation of all abstraction levels of the NFV stack, and most
only focus on part of the NFV stack (e.g., the physical [24]
or virtual infrastructures [25], or SFC [15]–[18]).

1. CVE-2015-3456, CVE-2015-7835, CVE-2018-10853, CVE-2023-2088,
CVE-2022-47951, CVE-2022-47950, CVE-2021-40797
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Fig. 1: The motivating example showing an example inconsistency attack (left), the event sequences in NFV and cloud
levels highlighted with the natural language analogy (middle), and the steps involved in inconsistency attack detection by
CiT (right)

To detect inconsistencies at runtime, we could monitor
and compare the streams of events as they happen at
all levels of an NFV stack (similar ideas exist for cloud
platforms [26], [27]). A straightforward approach would be
to establish a cross-level mapping of NFV events corre-
sponding to the same originating user request, and report
mismatches. However, a main challenge with event-based
cross-level inconsistency detection is that the same event
sequence at one level of an NFV stack usually corresponds
to multiple event sequences at a lower level, depending
on the nature of requests and the specification of the
network services (e.g., different scaling up/down policies,
ports attached to VNFs, or storage volumes). It would be
impractical to enumerate all possible combinations to create
a rule-based solution (see details in Section 5).

A better approach would be to rely on traditional ma-
chine learning-based detection systems. However, those sys-
tems usually require carefully chosen features, dependent
on the characteristics of each level in an NFV stack. As
evidenced by our experimental results, such systems will
be outperformed by our solution.

Instead, we draw an analogy between comparing event
sequences at different NFV levels and translating sentences
between different natural languages. As a result, we can
leverage existing Neural Machine Translation (NMT) tech-
niques designed for the latter to detect inconsistency attacks
in NFV. Specifically, a user request would automatically
trigger a sequence of events at each level of the NFV stack.
Those event sequences from different levels are syntactically
different, but semantically all correspond to the same user
request. This is similar to a situation where several charac-
ters who speak different natural languages can converse on
the same topic through a translator.

Based on such an analogy, we could “translate” event se-
quences from one level to another, and subsequently detect
any inconsistencies by comparing the translated sequence
to the actual one. Translation-based solutions have already
shown promising results in other domains (e.g., binary
code similarity [28], network traffic anomaly [29], Android
malware detection [30]). Nonetheless, to the best of our
knowledge, this is the first effort to apply such an idea in
the context of NFV.

Motivating Example. We present a motivating example (see

Figure 1) to further highlight existing challenges in cross-
level inconsistency detection for NFV and motivate towards
our solution. For simplicity, we refer to the VNF and NFV in-
frastructure as NFV level and cloud level, respectively. The
NFV-related concepts are further explained in Section 2.1.

The Problem: The left side of Figure 1 shows the NFV
stack of a tenant, which consists of an NFV level with
three network functions (Virtual Router, Virtual Firewall, and
Virtual DPI) and a cloud level with their corresponding
virtual machines. Knowing that an adversary Eve could
potentially inject a malicious virtual machine (mVM) into
the tenant’s network directly at the cloud level, without
causing any noticeable changes to the NFV level2, this ten-
ant is concerned with the following question: “Is my service
function chain (SFC) properly deployed at the lower levels?”

As shown in the middle part of Figure 1, a user-level
request (e.g., creating a network function forwarding path)
triggers a series of events at both the NFV and cloud
levels during deployment. This is depicted as a conversation
between the two characters (NFV and cloud), spoken in
two different languages (i.e., NFV events and cloud events)
but on the same topic (i.e., deploying the network service
requested by the user). Our question is: ”Is the cloud talking
in a manner that is consistent with the NFV?” Notably, between
the two possible cloud-level event sequences, the upper
one includes an extra event updateflowrules (highlighted in
red) that would cause an inconsistency, whereas the lower
sequence is consistent.

Our Ideas: The right side of Figure 1 demonstrates the
main ideas of our approach, Caught in Translation (CiT),
for detecting such inconsistency attacks. CiT first translates
the cloud-level event sequence back to the NFV level, and it
then compares the translated event sequence to the original
NFV-level event sequence for detecting any inconsistency.
The two cloud-level sequences demonstrate the key chal-
lenge that the same NFV-level event sequence may corre-
spond to multiple cloud-level event sequences, depending
on the nature of requests and the specification of the net-
work services. This means there does not exist a trivial
mapping between the event sequences that would enable
translation with simple rules.

2. For instance, by exploiting existing vulnerabilities CVE-2015-3456,
CVE-2015-7835, or CVE-2018-10853 in a specific way [13].
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Specifically, we propose a Neural Machine Translation
(NMT)-based approach, Caught in Translation (CiT), to de-
tect cross-level inconsistency attacks in NFV. More specif-
ically, we first extract events and event sequences from
raw logs and generate their corresponding embeddings.
Second, we devise an NMT-based technique (tested with
Long Short-Term Memory (LSTM) [31], Gated Recurrent
Unit (GRU) [32], and simple Recurrent Neural Network
(RNN) [33]) to translate event sequences between different
levels of NFV. Finally, we quantify the similarity between
the translated and the original event sequences to detect
any inconsistencies by applying both a Siamese neural net-
work [34] and a traditional similarity metric [35]. We im-
plement CiT and integrate it into OpenStack/Tacker [23], a
popular choice for NFV deployment on cloud management
platform [36]. We evaluate the accuracy and efficiency of
CiT using both real and synthetic data. In summary, our
main contributions are as follows.

- To the best of our knowledge, CiT is the first event-based
approach for detecting inconsistency attacks in NFV. In
contrast to most after-the-fact approaches, CiT can detect
malicious events at runtime before such events cause any
potentially irrecoverable damages, such as the leakage of
sensitive information or DoS.

- CiT demonstrates the potential of a translation-based de-
tection approach. First, CiT outperforms traditional SVM-
based anomaly detection working at one abstraction level
in terms of accuracy (AUC ≥ 96.03%) under the same sys-
tem settings. Second, through comparisons with alterna-
tive implementations of CiT, we observe that translation
can significantly improve the detection accuracy. Finally,
the translation capability may have other applications in
NFV, such as providing translated events at a level where
the access to actual events is prohibited (e.g., operated by
different providers).

- The practicality of CiT is demonstrated through its in-
tegration into OpenStack/Tacker. Its accuracy and effi-
ciency are evaluated through extensive experiments using
both real and synthetic NFV datasets. The feasibility of
training CiT under a controlled environment and then
applying it to a real production system is evaluated (AUC
≥ 83%) and CiT is applied to capture anomalous events
triggered by real-world bugs and errors. Notably, the
trained model demonstrates the ability to detect bugs
and errors that are not present in the training dataset,
suggesting its potential for identifying issues without
prior knowledge.

The rest of the paper is organized as follows. Section 2
provides the preliminaries. Section 3 details the CiT method-
ology. Section 4 presents the experimental results. Section 5
provides more discussions. Section 6 reviews the related
work, and Section 7 concludes the paper.

2 PRELIMINARIES

This section provides some background on NFV and deep
learning, explains the NFV-specific challenges of applying
NMT techniques, and defines our threat model.
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Fig. 2: The ETSI NFV Architecture (left) and the NFV de-
ployment model (right)

2.1 NFV Background

NFV Stack. Network Functions Virtualization (NFV) is a
concept designed to virtualize network functions, such as
routers, firewalls, load balancers, etc. Figure 2 illustrates
the ETSI NFV reference architecture [37] (left), and a typical
NFV stack deployment (right). The ETSI architecture depicts
two main abstraction levels, namely, the Virtual Network
Function (VNF) level providing a high-level representation
of network functions, and the NFV Infrastructure (NFVI)
level representing the underlying cloud infrastructure. The
managerial components at different levels (e.g., the Network
Function Virtualization Orchestrator (NFVO), Virtual Net-
work Function Manager (VNFM), and Virtualized Infras-
tructure Manager (VIM)) are together known as the NFV
Management and Orchestration (MANO), and are responsi-
ble for managing and orchestrating the physical and virtual
network resources.

NFV Acronyms. Table 1 lists all the main abbreviations we
use in this paper.

Acronym Full Form
GRU Gated Recurrent Unit
LSTM Long Short-term Memory
NFP Network Forwarding Path
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NFVO Network Function Virtualization Orchestrator
NMT Neural Machine Translation
NS Network Service
OOV Out-of-Vocabulary
OvS Open vSwitch
RNN Recurrent Neural Network
SDN Software Defined Networking
SDN-C SDN Controller
SFC Service Function Chain
SVM Support Vector Machine
TFIDF Term Frequency-inverse Document Frequency
TOSCA Topology and Orchestration Specification for Cloud Applications
VDU Virtual Deployment Unit
VIM Virtual Infrastructure Manager
VM Virtual Machine
VNF Virtual Network Function
VNFD VNF Descriptor
VNFFG VNF Forwarding Graph
VNFFGD VNFFG Descriptor
VNFM VNF Manager

TABLE 1: Acronyms used in this paper



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

NFV Attack Surface. The attack surface of NFV can be
broadly divided into three categories, VNFs, cloud infras-
tructure, and MANO, which are identified as the critical
components of an NFV stack [38]. A lack of consistency
between these components on how to orchestrate and man-
age the virtualized network functions can incur security
challenges [11] by enabling stealthy attacks in which the
adversary can conduct malicious activities without leaving
any trace visible to the user. In particular, modern secu-
rity attacks such as, software flaw attacks (e.g., unautho-
rized volume access [39]), orchestration attacks that exploit
vulnerable virtual components (e.g., CVE-2022-47951 [40]
and CVE-2022-47950 [41]), resource monopolization or DoS
attacks that consume unauthorized resources (e.g., CVE-
2021-40797 [42]), and security misconfiguration attacks (e.g.,
direct memory access attack [43]) form a major concern to
NFV system security by going undetected.

NFV Tenants and Users. As defined by OpenStack [44],
“Tenants” are an organization/project (e.g., a university),
and “Users” are a part of organization/project (e.g., stu-
dents/staff/researchers).

NFV Events. Events are function calls that get triggered
upon execution of a user-level request.

NFV Event Sequences. The deployment of a network ser-
vice starts with user-level requests (e.g., create network
functions, chain network functions, etc.), which will eventu-
ally trigger a sequence of internal events (i.e., function calls)
at each level of the NFV stack. CiT leverages these event
sequences to validate the correctness of a network service
implementation across all NFV levels.

2.2 Deep Learning Background

LSTM. LSTM is an artificial RNN that supports sequence-to-
sequence learning (Seq2Seq) [45], a mechanism for training
machine learning models to convert text sequences from
one language (e.g., English) to another (e.g., French) by cap-
turing the meaning of those sentences using automatically
generated features (embedding). The event embeddings
are numerical vector representations of events, efficiently
capturing the semantic information which facilitates the
event sequence translation. Particularly, the LSTM Encoder-
Decoder model [46] has been shown to achieve good per-
formance especially for long sequences [45]. Therefore, we
adopt this Encoder-Decoder model for translation since the
NFV event sequences are relatively long.

Siamese Network Architecture. The Siamese network [34]
is a deep learning model that has been applied to evaluate
similarities between two comparable inputs. Specifically,
Siamese network employs two identical deep learning mod-
els that share the same weights of parameters; where each
model takes encoded inputs and generates its semantic rep-
resentation as outputs. For calculating the similarity score,
Siamese network utilizes Manhattan distance [35], which is
preferable to Euclidean distance to evaluate the distance of
two high dimensional inputs [47] (which is the case in our
context).

2.3 Challenges of applying NMT techniques in NFV

NMT-based detection has been used in other domains such
as, binary code similarity [29], network traffic anomaly [30],
and Android malware detection [31]. However, adopting
this technique to NFV presents multiple domain specific
challenges as listed below.

- Cross-level Dependencies in NFV Stack. A distinct
feature of NFV is its multi-level nature, as shown in
Figure 2. Therefore, to build a translation-based incon-
sistency detection model, it is necessary but challenging
to capture the relationship between event sequences
across the different levels of the NFV stack. Specifically,
the multi-level design of the NFV stack poses chal-
lenges as higher-level event sequences often correspond
to multiple sequences at lower levels. For example,
the corresponding event sequence of the VM creation
operation may or may not include additional events
related to new ports, storage volumes, or auto-scaling
policies based on the user specification. We have further
explained this challenge in Section 1.

- Out-of-Vocabulary Challenge. Raw log records (gath-
ered from NFV service logs or intercepted at run-
time using middleware) typically contain many
implementation-specific details (e.g., platform-specific
APIs) and parameters (e.g., request/resource IDs).
Some of these non-essential details, if fed directly
into the training modules, could cause the Out-of-
Vocabulary (OOV) challenge [48] leading to inaccurate
results. For example, the event that converts TOSCA
template to HOT template (represent odict) may contain
parameters such as, vnf, heatclient, inst req info, and
grant info. Each parameter may receive unpredictable
values based on the state of the system. Therefore, the
raw data must be carefully processed in order to avoid
the OOV issue while preserving all the essential details
such that events belonging to the same sequence can
still be identified even if they arrive out of order. We
address the OOV challenge in Section 3.2.

- Robust NFV-specific Detection Model. Developing a
robust detection model that can be readily integrated
into existing NFV systems in production is a chal-
lenge. The challenge lies in collecting high-quality data,
labeling the data properly, training the model, and
validating the trained model. More specifically, unlike
most other applications where NMT models are trained
once using large text corpora (e.g., Word-Net [51] and
Wiki) and there exist pre-trained models which can
be reused (e.g., GloVe [52] or fastText [53]), there do
not exist similar text corpora or pre-trained models for
NFV. To the best of our knowledge, we are the first
to apply such techniques in the context of NFV, and
therefore, one of the key challenges is to build our own
domain-specific corpus related to NFV events and train
our models from scratch. To ensure the correctness of
the training, it is important to maintain a training set
containing only normal event occurrences. Any abnor-
mal event sequences could lead to inaccurate outcomes.
Furthermore, during the implementation of the model,
we should also validate the ability of the model to
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accommodate unseen event sequences and avoid issues
like overfitting. Section 3.4 explains the methodology of
our detection model, and Section 4 illustrates the results
obtained from this evaluation.

2.4 Threat Model
Our in-scope threats include insiders, such as malicious
tenants or tenant administrators (who can only control the
NFV-level management, but not the host OS) who may
create inconsistencies in an NFV stack either with malicious
intentions or by mistakes, as well as external attackers who
exploit existing vulnerabilities in the NFV stack to launch
inconsistency attacks. Those fall in the third category of the
NFV attack surface, i.e., MANO. On the other hand, our
solution relies on events captured at different levels of the
NFV stack. Similarly to most event-based solutions [26],
[27], we assume that the events as captured from the ser-
vices are intact, and an adversary cannot compromise the
integrity of events or their order. Therefore, out-of-scope
threats include attacks that do not cause any violation of
consistency in the NFV stack, attacks that are not reflected
in the events (e.g., CPU pinning, SR-IOV, PCI Passthrough)
or their order, and attacks with which adversaries can either
escape the capture of events or tamper with the captured
results. Finally, our work focuses on event detection, and is
not designed to either attribute detected attacks to under-
lying vulnerabilities or prevent future attacks, although our
solution may provide useful inputs to such solutions.

3 METHODOLOGY

This section first provides an overview of CiT, followed by
the detailed methodologies of its major components.

3.1 Overview
Figure 3 depicts how CiT prepares the data and trains the
neural network models (training phase), and how it applies
the trained models to first translate event sequences from
the cloud level to the NFV level, and then compare the event
sequences to detect inconsistency attacks (detection phase).
Training Phase. This phase (top of Figure 3) consists of three
main steps. First, CiT extracts events from both NFV and
cloud levels, and constructs event sequences per level. Sec-
ond, the neural machine translation (e.g., LSTM model [49])
and the inconsistency attack detection model (e.g., neural

network similarity learning model [34]) are trained based
on the prepared datasets. Finally, the trained models are
updated through retraining when any substantial change
is made to the NFV system (e.g., major service updates that
may introduce new event types).

Detection Phase. In this phase (bottom of Figure 3) also
contains three main steps. CiT first extracts the event se-
quences from both NFV and cloud levels. Then it applies
the trained translation model to translate an event sequence
from one level (e.g., cloud) to another (e.g., NFV). Finally,
the translated and original sequences from the same level
are compared in order to detect any inconsistency attacks.
Note that translation is bi-directional between two levels,
although we will only mention the translation from cloud
to NFV for simplicity. Each step of these two phases will be
further elaborated in the following subsections.

CiT Variations. To support various use cases (see Section
5) CiT couples translation and detection in three different
ways as follows.

- CiTts: This variation of CiT first translates an event se-
quence at cloud level into NFV level. Then, it compares
the translated event sequences to the original event se-
quences using neural network similarity learning (e.g.,
Siamese [34]). Finally, the similarity score is compared
to a pre-defined threshold value to determine whether
an attack has been detected.

- CiTtm: This variation first performs a similar translation
step as CiTts, and then compares the event sequences
using a traditional similarity metric (e.g., Manhattan
distance [35], [47]) to detect any inconsistency.

- CiTs: This variation skips the translation step, and di-
rectly applies neural network similarity learning (e.g.,
Siamese [34]) on the event sequences from both levels
to detect any inconsistency.

Summary. CiT captures the relationship between event se-
quences through different deep learning models, i.e., the
translation model and the Siamese model. A range of com-
plex relationships such as, inclusion and hierarchy, can be
captured through the translation step. Then, we use Siamese
network architecture (CiTts and CiTs) to compare the two
sequences (CiTtm only uses traditional similarity metric
after the translation step). This step resolves equivalent parts
of the event sequences by tokenizing and generating embed-
dings out of them. It helps to ignore unimportant reordering
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of events or optimizations. Finally, the distance between
the two sequence embeddings is calculated to detect any
inconsistency.

3.2 Data Preparation
The data preparation step generates event sequences from
raw logs for both translation and inconsistency detection.
CiT first extracts relevant events from the data intercepted at
runtime using middleware or available in service logs. Then,
the events are aggregated into a sequence corresponding to
the same user-level request based on their parameters, such
as the resource ID and timestamps.

20-02-01 03:25:45.5 6422 vnfm_db vnf ...} 
_create_vnf_pre vnf {u'vnfd_id': u'b3812’, 
'tenant_id': u'e3e0f8...} .../vnfm_db.py:392
…
20-02-01 03:25:45.6 6422 … 
status='PED_CRTE' ...}}> _make_vnf_dict
.../vnfm_db.py:220
…
20-02-01 03:26:04.2 6422 vnfm_db [-] 
vnf_dict {…}_create_vnf 'id’: 'c679c095…

processrequest getvim
createvnfpre makevnfdict
createvnf ... createstack

Vnfd_id: u'b3812 ' 
Tenant_id: u'e3e0f8'
VNF_id: c679c095

Event sequences

Parameters

Fig. 4: An excerpt of Tacker log entries and the output of
data preparation (event seq. and corresponding parameters)

Challenge. A main challenge in preparing NFV data for
training is that the raw data typically contains many im-
plementation specific details (e.g., platform-specific APIs)
and parameters (e.g., request/resource IDs). Utilizing raw
data with such non-essential details could create an infinite
vocabulary leading to new events appearing during the
detection phase. This is a well-known problem in NMT,
namely, the Out-of-Vocabulary (OOV) challenge [48], which
ultimately affects the accuracy of any application, e.g., in-
consistency detection in our context. Therefore, the raw data
must be carefully processed such that the OOV issue can
be avoided (by removing non-essential details) while the
events belonging to the same sequence can still be identified
even if they arrive out of order or interleave (by preserving
all the essential parameters).

To overcome this challenge, CiT strips out the
implementation-specific details and parameters from the
sequences while keeping essential information, such as the
events’ names. The output of our data preparation step is an
NFV data corpus ready to be fed into the training modules
along with the required parameters, e.g., the implemented
VM’s memory size, to enable fine-grained resource-level
inconsistency detection.
Example 1. Figure 4 shows an excerpt of Tacker log entries (left)

and the corresponding processed event sequences and extracted
parameters (right). All the events that correspond to the same
user-level request of creating a network function are identified
from the raw data. Note that highlighted events correspond
to different stages of implementation, e.g., initialization stage
( create vnf dict). The parameters are used to generate speci-
fications for resource-level inconsistency detection.

3.3 Neural Machine Translation
CiT translates event sequences between different levels of an
NFV stack by leveraging neural machine translation (NMT),

particularly, long short-term memory (LSTM) [31]. We adopt
LSTM over a simple recurrent neural network (RNN) since
the latter is not equipped to capture the contextual semantic
dependencies to translate long NFV event sequences. In
this section, we describe our translation approach with an
example.

INPUT: creatingstack ... generatehot creatingport  
creatingserver … stackcreatecomplete <EOS>

 Tokenization and Event Embedding

OUTPUT:  createvnfd getvim buildvimauth createvnf  
create getmgmtports … createstack <EOS>

  [ 25   22   8   5   4   26   14   17   23   6   24   13   99 ]

ENCODER

LSTM

DECODER

... 

... 
LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

T
A

R
G

E
T

Ground Truth Similarity Score = 1
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[34, 22, 4, …, 1, 7, 23, …, 6][25, 4, …, 12, …, 4, 3, 56, 6]
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Fig. 5: An example of Seq2Seq translation using the LSTM
Encoder-Decoder model for an event sequence

Event Sequence Translation. CiT performs event sequence
translation in two main steps: training LSTM models with
hyperparameters, and translating event sequences using the
trained models. The hyperparameters (i.e., the parameters
that play a major role in shaping and maximizing the perfor-
mance of translation model [50]) used in LSTM for natural
language translation or other domains may not necessarily
apply to NFV data. Thus, we evaluate different combina-
tions of the hyperparameters to improve the performance
and accuracy of our translation model (see Section 4.5).

To train the LSTM model, CiT first constructs pairs of
event sequences at two different levels that correspond to
the same user-level request. Specifically, normal events at
cloud level corresponding to a specific request (e.g., creat-
ing a network function) is provided as the input to LSTM-
based encoder, with the corresponding event sequence at
the NFV level as the reference for LSTM-based decoder. We
train LSTM models from other levels in a similar manner.
Finally, CiT applies the trained LSTM models to translate
event sequences from one level to another level to facilitate
inconsistency detection.

Example 2. Figure 5 shows an example of event sequences
translation using a trained LSTM Encoder-Decoder model.
The event sequence (INPUT) from cloud level is translated
to an event sequence (OUTPUT) at NFV level. Both INPUT
and OUTPUT correspond to the same NFV user-level request
for creating a network function. More specifically, the event
embeddings of INPUT are fed into the LSTM Encoder. Each
LSTM cell in the Encoder accepts an event from INPUT and
produces a corresponding output to the next cell to retain the
contextual meaning of the sentence. The Decoder, which is
initialized with an arbitrary start event, TARGET, predicts
the next event (e.g., creatingstack) using the output from
the Encoder. The translated event is then appended to both
OUTPUT and TARGET. This translation process is repeated
until the Decoder generates the end-event (⟨EOS⟩).
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3.4 Inconsistency Detection Model
After translating event sequences from cloud level to NFV
level, a straightforward way to detect inconsistency would
be to apply word-to-word similarity comparison. However,
as demonstrated in our motivating example (Section 1),
one user request may correspond to many possible event
sequences which may look completely different but are in
fact equivalent. A word-to-word comparison could yield
misleading results for such syntactically different but se-
mantically equivalent sequences. Therefore, as mentioned in
Section 3.1, we design different variations of CiT employing
both traditional similarity metrics and Siamese neural net-
work [34] to detect inconsistency attacks in NFV. Our exper-
imental results (Section 4.3) show that translation coupled
with Siamese neural network can achieve the best accuracy.
Data Labeling. To facilitate the training of Siamese networks
for detection, we prepare two types of training datasets:
(i) pairs of event sequences at the same level (e.g., NFV
level), and (ii) pairs of event sequences at two different
levels (e.g., NFV and cloud). For each pair of sequences,
we also provide a ground truth similarity score based on
whether the two sequences correspond to the same user-
level request; if so, a pair is called a consistent pair; otherwise,
it is an inconsistent pair. In this stage, all the data are collected
in a controlled environment, and abnormal events, such
as execution failures, are excluded from the labeling. High
quality training data is essential for building a robust model.

INPUT: createvnfd getvim buildvimauth createvnf  
create getmgmtports … createstack <EOS>

 Tokenization and Event Embedding

OUTPUT: creatingstack ... generatehot creatingport  
creatingserver … stackcreatecomplete <EOS>

  [ 25   22   8   5   4   26   14   17   23   6   24   13   99 ]
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... 

... 
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G
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T

Ground Truth Similarity Score = 1
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createvnf getvim buldvimauth … 
getmgmtprts getvdumonitor...

makevnfdict buldvimauth ... create 
getblkstrgedtals … 

exp ( -||hT
(1) - hT

(2) ||1 ) Similarity Score : y

Minimize Loss 
Function
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….

LSTM1

….

[34, 22, 4, …, 1, 7, 23, …, 6][25, 4, …, 12, …, 4, 3, 56, 6]

LSTM LSTM LSTM LSTM LSTMLSTM

Fig. 6: An example of training the Siamese Manhattan Net-
work with NFV-level event sequences

Training. The training process will vary depending on
which variation, i.e., CiTts, CiTtm, or CiTs (as mentioned
in Section 3.1) of our detection technique is involved. First,
since CiTts compares the translated result to the original
event sequence, the Siamese network is trained using the
first type of dataset (i.e., pairs of event sequences at the
same level). Second, no training is needed for CiTtm as
it compares using a similarity metric (e.g., Manhattan dis-
tance) instead of Siamese network. Third, since CiTs directly
compares the embedded event sequences between the NFV
and cloud levels, the Siamese network is trained using the
second type of dataset (i.e., pairs of event sequences from
two different levels).
Example 3. Figure 6 shows the training of the Siamese network

with a pair of event sequences S1 and S2. Since both event
sequences correspond to the same user-level request, create

network function, this is a consistent pair and its ground
truth similarity score is 1. First, the events in S1 and S2 are
embedded and fed into two LSTM models, LSTM1 and LSTM2
respectively. The LSTM networks then learn the sequence
embedding for both S1 and S2. Finally, the similarity score, y,
is calculated as the negative exponent of the Manhattan dis-
tance using the sequence embedding. The training of Siamese
network mainly focuses on minimizing the loss between the
calculated similarity score and ground truth.

Cross-validation. To ensure the model’s ability in accom-
modating unseen event sequences, the training dataset is
partitioned into three distinct subsets, comprising training,
validation, and testing data. Importantly, both the validation
and the testing datasets are deliberately withheld from the
training procedure. The training process strictly follows the
standard cross-validation protocol, a widely accepted prac-
tice that safeguards against bias and ensures equitable eval-
uation. This procedural framework enhances the model’s
generalization capabilities and validates its performance
across diverse datasets.
Robustness. The robustness of the detection model is es-
tablished through integrating a high-quality and diversified
training dataset. The implementation of cross-validation
extends the model’s performance generalization capabilities
across distinct subsets of the data. Furthermore, we fine-
tune all the hyperparameters in the neural network models
and implement early-stop to monitor and avoid overfitting.

Effective data quality, diverse dataset representation,
robust cross-validation, and careful hyperparameter tuning
collectively contribute to building a model that performs
well on the training data and generalizes effectively to new,
unseen data. These practices enhance the model’s ability to
handle various challenges and uncertainties in real-world
applications. We performed three experiments in Section 4.4
to evaluate the robustness of our trained model.
Detection. CiT detects inconsistency attacks at two different
levels of granularity: event-level (i.e., within the execution
of one user-level request) and workflow-level (i.e., during
the execution of a sequence of user-level requests), which is
detailed in the following.

Missing Events: Silent failure 

of flow rule update due to a 

service version mismatchEvent-level Comparison

Similarity: 0.3034

E: [5, 41, 230, 85, 7] E’: [5, 41, 230, 89, 89, 89]

e: [87, 121, 132, -, -, -]

N
F

V
C

lo
u

d

Fig. 7: An example of event-level inconsistency detection

Event-Level Detection. As an example, Figure 7 depicts a
real-world inconsistency that occurred in our NFV testbed,
which is diagnosed to be related to a version mismatch
between Neutron (networking service) and Open vSwitches
(OvS). Specifically, when the user level request E is per-
formed at NFV level, a series of corresponding events
denoted as e are executed at cloud level. However, due
to the version mismatch issue, some events are missing
at the cloud level and the user’s request for updating
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OvS flow rules fails silently (without returning any error
message). To detect this inconsistency, CiT first translates e
to the corresponding NFV level event sequence E′. When
the translation module hits the unknown part of the event
sequence e (missing events in our case), it will repeat the last
known event, which can be observed as the repetitive events
89 in the translated event sequence. This inconsistency is
detected by the Siamese network through comparing the
translated E′ to the actual E, which results in a low similarity
score (Manhattan distance of 0.3034).

N
F

V
C

lo
u
d

em: [62, 8, 13, 27, 82]e2: [87, 11, 13, 26, 8]e1: [10, 3, 2, 7, 72]

em: [27, 15, 1, 31, 5, 5, 4]

E2’:  [5, 41, 230, 85, 73]

E1’: [26, 14, 23, 6, 24, 13]

E1: [26, 14, 23, 6, 24, 13]

E2: [5, 41, 230, 85, 73]

Additional sequence: Stealthily 

adding mVM to the victim’s chain

Similarity: 0.2068

Workflow Comparison

E1: crtvnf E2: crtvnffg e1: crtstack e2: crtportchain em: updtflwrules

Fig. 8: An example of workflow-level inconsistency detec-
tion

Workflow-Level Detection. Figure 8 shows an example for
workflow-level inconsistency detection, where a malicious
resource (e.g., mVM in the motivating example) is stealthily
added at cloud level without leaving any trace at NFV level.
Specifically, the example workflow includes two requests,
i.e., E1 and E2. An attacker operating at cloud level generates
a request em to inject a malicious VM into the victim’s
chain to sniff sensitive information. CiT can detect such
inconsistency by first translating the workflow from cloud
level back to NFV level and then calculating the similarity
score between the translated and the original workflows.
Due to the additional event sequence in the translated
workflow, the inconsistency is detected through a relatively
low (0.2068) similarity score between the original and the
translated workflows.

3.5 Diff-based TOSCA Verifier

Inconsistencies may still exist after the event sequence
similarity comparison as we remove the parameter values
from the raw log entries as described in Section 3.2. As a
result, we lose few implementation specific details, such as
the technical specifications of a VNF, applications installed
inside the VNF, etc. To compensate the loss, we utilize the
parameters from service logs to generate TOSCA template
that reflects the implementation details to verify the correct-
ness of resource allocation. TOSCA template is stored in the
YAML format that could be compared between the elements
(i.e., requested resources, such as VDUs), e.g., mem size is
an attribute that denotes the memory size of a requested
VDU.

In Algorithm 1, Lines 1-2 obtain the logs that associate
with the input tenant ID. The logs belong to this tenant
gets separated into element, e.g., VDU, and attribute values,
e.g., mem size = 256MB in Lines 3-4. Then the element gets
identified in the input default TOSCA template and changes
the attribute values into the ones obtained in Lines 5-6. Once

all the logs are processed, a TOSCA template contains lower
level details, which will be returned. Then Algorithm 2 takes
the TOSCA user template and TOSCA generated template
as inputs and generate the difference from Lines 1-3. In the
end, the inconsistency between the requested resources and
deployed resources will be return to the end user.

Algorithm 1: TOSCA TEMPLATE TRANSLATOR

Input: Services Logs, Tenant ID, TOSCA Template.Default
Output: TOSCA Template.Translated

1 for log in Services Logs do
2 Tenant ID.logs = get(Services Logs, Tenant ID)
3 for log in Tenant ID.logs do
4 attribute.value, element = get(log)
5 search element in TOSCA Template.Default
6 add attribute.value to TOSCA Template.element
7 return TOSCA Template.Generated

Algorithm 2: TOSCA TEMPLATE COMPARISON

Input: TOSCA UserTemplate, TOSCA GeneratedTemplate
Output: TOSCA diff

1 d = difflib.Differ() for text1, text2 in UserTemplate,
GeneratedTemplate do

2 diff = d.compare(text1, text2)
3 return newline.join(diff)

4 EXPERIMENT

In this section, we first provide the implementation details
and dataset description, and then present our experimental
results (accuracy, efficiency, robustness, and usability) of CiT
using both real and synthetic data.

4.1 Implementation and Experimental Details

In both the translation and inconsistency detection modules
of CiT, we leverage the word2vec [51] model from Genism [52]
to learn event embeddings from the corpus. The embedding
vector is then fed into the embedding layer implemented
based on Keras [53]. The deep learning layer, e.g., LSTM, is
implemented based on the Keras.layers library to generate
the event sequence embeddings. For comparison, we also
implement GRU and RNN. The implementation of the
evaluation metrics, e.g., loss and AUC, is based on scikit-
learn [54], a well-known ML library. The implementation of
data preparation is based on pandas [55], a data analysis
library. All the modules of CiT are developed in Python
3.7.4.

To evaluate CiT, we implemented an NFV testbed with
OpenStack [56] as the VIM component that manages the
virtual infrastructure. Tacker [23], an official OpenStack
project for building generic VNFM and NFVO based on
the ETSI MANO architectural framework, is used to deploy
virtual network services on the VIM. All the experiments
(unless explicitly stated otherwise) are performed on a
SuperServer6029P-WTR running Ubuntu 18.04 equipped
with Intel(R) Xeon(R) Bronze 3104CPU @ 1.70GHz and
128GB of RAM without GPUs.
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TABLE 2: Dataset statistics (the gray shaded datasets are processed real data)

Dataset Training Validation Testing Total Service RelationshipCon. Incon. Total Con. Incon. Total Con. Incon. Total Con. Incon. Total
D1: Tacker-SFC 16,023 15,628 31,651 1,960 1,996 3,956 1,968 198 2,166 19,951 17,822 37,773 Dependency
D2: Tacker-Heat 65,223 64,956 130,179 8,090 8,182 16,272 8,416 785 9,201 81,729 73,923 155,652 Dependency
D3: Heat-Nova 84,952 77,415 162,367 10,660 9,636 20,296 10,574 972 11,546 106,186 88,023 194,209 Composition & Dependency
D4: Heat-Neutron 65,343 62,258 127,601 8,119 7,831 15,950 8,092 785 8,877 8,1554 70,874 152,428 Composition & Dependency
D5: Neutron-OvS 14,022 12,344 26,366 1,674 1,622 3,296 1,742 155 1,897 17,438 14,121 31,559 Collaboration & Association

D6: Heat-Nova 64,423 37,542 101,965 8,073 4,673 12,746 8,080 466 8,546 80,576 42,681 123,257 Composition & Dependency
D7: Heat-Neutron 76,209 39,992 116,201 9,578 4,947 14,525 9,491 503 9,994 95,278 45,442 140,720 Composition & Dependency
D8: Neutron-OvS 187,635 67,036 254,671 23,574 8,260 31,834 23449 838 24,287 234,658 76,134 310,792 Collaboration & Association

D9: Mixed-levels 56,758 54,625 111,383 7,078 6,845 13,923 7,061 686 7,747 70,897 62,156 133,053 All
D10: Mixed-levels 85,245 63,315 148,560 10,671 7,899 18,570 10,520 805 11,325 106,436 72,019 178,455 All

Total 715,833 495,111 1,210,944 89,477 61,891 151,368 89,393 6,193 95,586 894,703 563,195 1,457,898
��

��

TABLE 3: Statistics of the original real data (from May 2017
to March 2020) including the # of log entries for each service

Size # of services Heat Nova Neutron OvS # of event types
47.5G 10 951,053 1,977,847 3,957,313 2,950,495,169 164

4.2 Datasets
Table 2 summarizes all the datasets used in our ex-
periements. In total, we obtain 26,356 unique event se-
quences, and generate 894,703 consistent pairs (i.e., two event
sequences corresponding to the same user-level request) and
563,195 inconsistent pairs.
Real Data. We have collected around three years of Open-
Stack logs from a real cloud hosted at a major telecommuni-
cations vendor with hundreds of users. Table 3 shows some
statistics of the original data, which we have processed to
obtain the datasets D6, D7, D8, and D10 shown in Table 2
following the approach described in Section 3.4. In doing
so, we processed 47.5G of raw data and obtained 164 event
types from four different services, i.e., Heat (orchestration
service), Nova (compute service), Neutron (networking ser-
vice), and OvS (Open vSwitch). To obtain realistic test-
ing datasets, the inconsistent pairs in testing datasets are
generated based on real-world bug patterns (where the
inconsistency is caused by OpenStack implementation bugs)
and denied event sequences in the real data (where the
inconsistency is caused by a policy violation). Among all
the processed raw data, 2∼8% of the data corresponds to
denied user-level operations in different services. Therefore,
we inject inconsistent pairs following the similar percentage.
Following the standard approach of cross-validation, we
split the prepared dataset in a random fashion into three
subsets for training, validation, and testing purposes. By do-
ing so, we can evaluate the ability of CiT towards handling
unseen event sequences.
Data Generation in the NFV Testbed. We have imple-
mented an NFV testbed to collect synthetic datasets from
the NFV stack, including the Orchestration Level (L1) which
is not present in our real data. In Table 2, datasets D1
through D5, and D9 are obtained from the NFV testbed. We
developed Python scripts to automatically generate Topol-
ogy and Orchestration Specification for Cloud Applications
(TOSCA templates to deploy NFV entities, such as VNFs
and VNF forwarding graphs (VNFFGs). In total we have
deployed 31 types of VNFs (e.g., with auto-scaling policies,
dedicated subnet, floating IPs, etc.), and 7 variations of
VNFFGs to create sufficient diversity in the corresponding
event sequences. We have also randomized some impor-

tant parameters in the template description, such as 1) the
number of virtual network ports per VNF, 2) the number of
deployment units per VNF, 3) the node flavor specification
for each VDU, 4) the number of VNFs for each Network
Forwarding Path (NFP), 5) the order of VNFs for each NFP,
6) the flow-classifier criteria for each NFP, and 7) the number
of NFPs for each VNFFG.
Generating Datasets with Ground Truth. As described
in Section 3.4, in the dataset generation, two event se-
quences corresponding to the same user-level operation are
assigned with the consistent label, and vice versa. During
data generation in the NFV testbed, we preserve the user-
level operations, which can be utilized to create consisten-
t/inconsistent pairs. For example, event sequences from the
same operation but at different levels, such as create VNF,
are labeled as consistent pairs. Unfortunately, the user-level
operation is missing from the real data we obtained. To
address this issue, we applied the model trained based on
the data collected from our testbed to predict the user-level
operation for the real data. All the predicted labels are then
validated by two domain experts to ensure the correctness
of the labeling.
The Relationships between Different Datasets. The Open-
Stack services operate together and enable orchestration,
resource provisioning, management, and implementation of
the NFV system. Therefore, these services exhibit different
kinds of functional relationships between each other such
as, association, collaboration, composition, and dependency.
Specifically, the association relationship refers to a service
complementing or enhancing the capabilities of another
service (e.g., Neutron-OvS). The collaboration relationship is
established when two services work together to accomplish
a common task (e.g., Neutron-OvS). Composition relationship
is created when a single entity acts as a combination of func-
tionalities provided by multiple entities (e.g., Heat-Nova &
Heat-Neutron). Finally, dependency relationship means one
service completely relies on another service to perform
specific, essential tasks (e.g., Tacker-Heat).

4.3 Inconsistency Detection Evaluation

In this section, we evaluate the accuracy of CiT and its three
variants. First, we compare CiTs (Siamese network applied
to both levels) to a well-known traditional method for
sequence classification, Support Vector Machine (SVM) [57]
with the TFIDF feature set [58], [59] (which is usually used
to extract text features for anomaly detection and failure pre-
diction [60]) based on all the 10 datasets including both real
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(j) D10

Fig. 9: The ROC evaluation results of CiTs based on all the 10 datasets

and testbed data. Second, we compare the three variations
of CiT, i.e., CiTs, CiTtm, and CiTts in terms of accuracy.

4.3.1 CiTs vs. SVM

We select Support Vector Machine (SVM) as a baseline to
compare to CiTs since SVM is a widely used anomaly
detection technique (as reported in several surveys [61],
[62]) which has particularly been applied in many sequence-
based detection works for anomaly and malware detec-
tion [63]–[67]. Specifically, these studies have employed
SVM for sequence-based anomaly and malware detection
across different domains, including Linux system calls [66],
opcode sequences [64], and system call sequences on IoT
devices [65], [67] and home routers [63]. We evaluate the
SVM model (implementation from scikit-learn) based on
five kernels in which kernel rbf performs the best followed
by poly, and linear. Thus, we only present the results gener-
ated from kernel rbf (γ = 1.0, c = 1.0), which achieves the
best AUC, in comparison to CiTs (Siamese network applied
to both levels) to study the discriminative power of TFIDF
features and deep learning generated features (embedding).

Model Training. In this set of experiments, the training, val-
idation and testing datasets follow the statistics presented in
Table 2. We use 10 datasets to train CiTs up to 200 epochs.
We implement early stopping [68] to avoid overfitting. We
choose the loss value of the corresponding validation dataset
as the performance measure with the trigger parameter
set to patience=3. While training the model, loss will be
monitored as it is calculated after each epoch, and if there is
no improvement in the loss value for 3 epochs, the training
stops. Other hyperparameters, such as the dimensions of the
event embedding and the dimension of sequence embed-
ding, are set to 256 and 200, respectively (a more detailed
study of hyperparameters is presented in Section 4.5).

The training dataset for the SVM model is the same as
that for CiTs. The implementation of TFIDF features is from
scikit-learn, which converts raw text inputs into a matrix of
TFIDF features. We set the dimension of the feature sets to
300 following the literature [59] in Figure 9. We also evaluate
the performance of SVM under small feature dimension
(max features = 5) and large feature dimension (max features

= 1000). Compared to 300 dimensional TFIDF feature sets,
small feature dimension performs worse, while large feature
dimension does not show stable improvements.

Inconsistency Detection Results for CiTs. We then eval-
uate the accuracy of CiTs using the corresponding testing
datasets of D1 to D10 that include real bugs and denied
event sequences. For the testbed datasets, the AUC value
of CiTs for inconsistency detection increases for all the
datasets from D1 (AUC = 94.06%) to D5 (AUC = 100%).
Note that datasets from the higher level services, such as D1
(Figure 9a) and D2 (Figure 9b), generally consist of longer
event sequences, e.g., Tacker service generates orchestration
events that could be implemented with multiple lower level
services; therefore, CiTs only achieves AUC = ∼95%. On
the other hand, D3 (Figure 9c) to D5 (Figure 9e) consist of
lower level service events, which generally have less events
and shorter event sequences, and thus CiTs achieves AUC
≥ 97.76%. Notably, the OvS service has only one event,
flow mods, to implement the requested flows from the Neu-
tron service. Thus, the inconsistency detection is relatively
easy for both CiTs and SVM (both reaching ∼100%). In
general, the value of AUC increases as the complexity of the
datasets decreases due to event sequences from only lower-
level services. It is worth mentioning that the relationship
types between different services (as explained in Section 4.2)
do not have any notable impact on the detection accuracy.

For the real data, CiTs performs well with D6 (Figure 9f)
and D8 (Figure 9h), i.e., AUC increases from 98.27% to
100%, which leads to a similar conclusion drawn from
the testbed datasets. However, the inconsistency detection
with D7 (Figure 9g) results in only 85.21%. This is mainly
because the complexity of this dataset is significantly higher
due to the increased diversity of network-related events in
real data, e.g., one event sequence from Heat service could
be implemented in various ways based on user chosen
templates. As shown later, this result will be significantly
improved with CiTts and CiTtm since translation helps to re-
duce the detection complexity as explained in Section 4.3.2.
However, CiTs still demonstrates good detection ability for
both the mixed testbed data and real data, (AUC = 95.72%
and 97.68%). AUC is slightly lower for the testbed dataset
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because the long sequences from orchestration level (D1
and D2), which are missing in the real dataset, increase its
complexity.

Comparison with SVM. After the models of CiTs and SVM
are trained, we use the same testing datasets to evaluate
both. In general, the comparison between the two models
in terms of detecting inconsistencies shows similar results
across different datasets. We can observe that for all datasets,
the ROC curves corresponding to CiTs are closer to the left-
hand and top border than SVM models, which indicates
our model generally has a better accuracy. The majority
of our models yield an ROC-AUC value higher than 94%,
while SVM stays around or less than 85% for six of the
10 datasets (D1, D2, D6, D7, D9, and D10). Comparing to
SVM, the improvement of CiTs is more significant when
tackling the datasets with longer or more diversified event
sequences. This observation confirms that the embedding
and deep learning algorithms are more capable of handling
complicated event sequences.

4.3.2 CiTs vs. CiTtm vs. CiTts
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Fig. 10: The ROC evaluation results of the three variations
of CiT based on four datasets

In this set of experiments, we compare the three variants
of CiT to evaluate the improvement of accuracy (AUC)
due to additional translation involved in CiTtm and CiTts.
Recall that CiTts applies LSTM to translate event sequences
before applying Siamese network on the embedded event
sequences at the same level for detection, whereas CiTtm

translates event sequences but then performs detection
based on the Manhattan distance, as described in Section 3.4.
For these experiments, we use the datasets (D1, D2, D7, and
D9) for which CiTs achieves relatively lower AUC (<96%).

Comparison of Inconsistency Detection Results. We
present the ROC curves for the aforementioned four
datasets for three variants of CiT in Figure 10. We ob-
serve that CiTtm, detecting inconsistencies based on Man-
hattan distance, achieves satisfying results (AUC>94.51%).
Moreover, CiTts, combining LSTM and Siamese network,

achieves AUC = ∼100% in three datasets (D1, D2 and
D9) shown in Figure 10a, 10b, and 10d. With the help of
translation, the AUC in D7 improved from 85.21% to 94.51%
(CiTtm) and 96.03% (CiTts), respectively. These results show
that the translation module can significantly improve the ac-
curacy of inconsistency detection and overall, CiTts achieves
the best results.

4.4 Robustness Evaluation

We conduct three experiments to evaluate CiT’s robustness.

4.4.1 Training and Testing with Different Systems
Since a well-known challenge in applying machine learning
to security is to obtain attack-free training data (esp. from
real production systems), we evaluate the feasibility of
training CiT using one NFV system (e.g., a testbed deployed
in a controlled environment), and then applying the learned
models for detection in another NFV system (e.g., a real pro-
duction system). In particular, we apply the inconsistency
detection models trained on our testbed dataset D9 to test
the real-world dataset D10. These two datasets are obtained
from two very different NFV systems (e.g., different Open-
Stack release and configurations), with one implemented by
ourselves for experimental purposes, and the other hosted at
a major telecommunications vendor with hundreds of real-
world users. Therefore, this experiment represents a stress
test that evaluates the robustness of CiT.

Results. The experimental results in Figure 11a show that,
even under a challenging scenario with two significantly
different datasets (e.g., differing in event types), CiTs still
achieves an acceptable AUC (=73.58%). Aligned with Sec-
tion 4.3, Figure 11a shows that the extra translation step
helps to improve the AUC to 80.03% (CiTtm) and 83.46%
(CiTts), respectively. These results confirm the robustness of
CiT as well as the feasibility of training CiT in a controlled
environment and applying it to a real world NFV system.

4.4.2 Real-World Inconsistency Detection
To investigate how CiT detects real world inconsistencies,
we conduct the following experiment using event sequences
including both real-world bugs and denied operations
found in our real data. Specifically, the sequences are com-
pared to the normal sequences from the same user-level
request for inconsistency detection. As shown in the Table
in Figure 11b (third column), most of those bugs and denied
operations have a direct implication on security or privacy,
with six bugs corresponding to existing CVE vulnerabilities.
The table also shows the comparison between CiT and
NFVGuard [69] in detecting real-world bugs and denied
operations, which we explain in Section 4.7.

Results. Table in Figure 11b summarizes the results of this
case study including a detailed description of the bugs or
denied operations and their corresponding similarity scores.
As we can observe, majority of the sequences are assigned
with a lower similarity score (<0.5). Meanwhile, three of
these obtain a comparatively higher similarity score (>0.7).
Our investigation shows that this is mainly due to the fact
that these sequences are relatively shorter (with less events)
and the bugs do not introduce significant differences to
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# Description Security Implication Sim. Score CiT NFVGuard
Bug#1527658 Block Device Mapping is Invalid Implementation Error 0.003811 Y Y
Sequence#1 ValueError: ⟨name⟩: nics are required after microversion ⟨Version #⟩ Configuration Error 0.01496 Y Y
Bug#1653164 CinderVolume ⟨name⟩ Stack ⟨name⟩ [id] timed out Denial of Service (CVE-2015-5162) 0.1791 Y Y
Sequence#2 NotFound: resource with id <id> not found Gain Information (CVE-2012-4403) 0.2003 Y Y
Sequence#3 Resource CHECK failed Implementation Error 0.2395 Y Y
Bug#1517355 Conflict: Port ⟨id⟩ is still in use Denial Of Service (CVE-2019-9735) 0.2436 Y Y
Sequence#4 OverQuotaClient: Quota exceeded for resources By Pass (CVE-2017-0887) 0.33677 Y Y
Sequence#5 Error: Volume in use Resource Saturation (CVE-2013-1664) 0.4380 Y Y
Sequence#6 Resource CREATE failed: You are not authorized to use resource types ⟨name⟩ Privilege Escalation (CVE-2016-7404) 0.7047 N Y
Bug#1833455 Forbidden: rule ⟨event⟩ is disallowed by policy Violation of Policy 0.7396 N Y
Bug#1808112 Forbidden: resources. Offline rule ⟨event⟩ is disallowed by policy Violation of Policy 0.7969 N Y

(b) CiT vs. NFVGuard [69] on detecting real-world bugs and denied operations

Fig. 11: Robustness evaluation of CiT. The model in Figure 11a is trained in testbed dataset and tested with real data. The
bugs and the denied operations in Figure 11b are real event sequences we gathered from the real data.
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(b) Loss vs. # of epochs

Datasets

Em D9 D10
CiTs CiTtm CiTts CiTs CiTtm CiTts

50 93.14 95.04 97.72 95.42 96.01 98.16
100 93.63 96.49 98.29 95.65 96.55 98.82
150 94.88 97.70 98.81 95.92 97.13 99.59
200 95.42 98.11 99.49 96.33 97.35 99.73
250 95.72 98.78 99.67 97.68 98.36 99.92

(c) AUC (%) vs. event embedding dimensions (U = 256)

Datasets

Type D9 D10
CiTs CiTtm CiTts CiTs CiTtm CiTts

LSTM 95.72 98.78 99.67 97.68 98.36 99.92
GRU 93.73 95.76 94.33 93.81 95.82 96.78
RNN 92.54 93.24 93.64 93.66 94.78 96.45

(d) AUC (%) vs. network hidden unit types (U = 256/Em = 250)

Datasets

U D9 D10
CiTs CiTtm CiTts CiTs CiTtm CiTts

32 93.24 95.37 96.77 94.55 96.49 97.76
64 93.87 96.16 97.46 95.61 97.24 98.07
128 94.81 96.86 98.12 95.85 97.64 98.55
192 95.12 97.38 98.73 96.36 97.99 99.38
256 95.72 98.78 99.67 97.68 98.36 99.92

(e) AUC (%) vs. event seq. embedding dimensions (Em = 250)

Fig. 12: The impact of different hyperparameters of CiT. Figure 12a and Figure 12b are evaluated based on the corresponding
validation datasets, and others are evaluated on the testing datasets.

the events. For example, the event sequence correspond-
ing to Bug#1808112 is creatingport createport stackcreatefailed,
whereas the normal sequence is creatingport createport stack-
createcomplete, i.e., only one event is different, and both
are relatively short sequences. We may overcome such a
situation by extending CiT with a weighted similarity score
measure (e.g., [70], [71]) to focus more on the important
events, e.g., stackcreatefailed (which indicates the requested
operation has failed due to an error); which will be consid-
ered as a future work.

4.4.3 Label Translation for Real Data

Our real data does not include the corresponding user-level
requests, which are needed as labels to form consistent and
inconsistent sequence pairs. It is infeasible to label these
manually considering that there are 8,192 unique event se-
quences in total in real data. Thus, we utilize the translation
module of CiT to translate the corresponding labels (user-
level requests) of event sequences from our real-world data
by feeding them as testing dataset.

Correctness of the Label Translation. The translated labels
are randomly selected (∼10%) and cross-validated by two
domain experts to ensure the correctness of the labeling.

Results. The label translation results are presented in Ta-
ble 4. We only show the most commonly occurring user-
level requests for each service and their corresponding

TABLE 4: Sequence label translation for the real data, (%)
indicates the percentage of correctly translated labels

Service (%) Event Sequence Label (%) Description

Heat (∼94)

CreateServer (100) Creating a VM
CreateStack (84) Multiple operations
CreateCinderVolume (94) Creating a Cinder Volume
DeleteServer (100) Deleting a VM
DeleteStack (89) Multiple operations

Neutron (∼75)
CreatePort (100) Creating a virtual port
CreateFloatingIP (100) Creating a floating IP
UpdateFlowRuleStatus (70) Updating OvS flow rules

Nova (∼88)
CreateServer (100) Creating a VM
OSServerExternalEvents (85) Attaching a floating IP
OSSecurityGroupRules (100) Assigning a security group

accuracy of label translation. Our translation module can
correctly label up to ∼94% of the events for the Heat service
followed by the Nova (∼88%) and Neutron (∼75%) services.
Also, most of the events are labeled with 100% accuracy
except a few. Particularly, the CreateStack event sequences
of Heat service achieve a success rate of ∼84%. Upon
investigation, we find that the real event sequences that fall
under CreateStack category include multiple create, update
and delete event types since a “stack” executes multiple
requests at once. These event sequences are not correctly
labeled by the model trained based on the testbed data, since
D9 contains only create event type for the label CreateStack.
Furthermore, the Neutron service achieves comparatively
the lowest success rate of ∼75%. The reason is that the event
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(d) CiT translation time
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(e) CiT detection time

Fig. 13: CiT efficiency study. The results in Figure 13a to Figure 13c are obtained based on LSTM with Em = 256 and U =
250. All the results shown in the figures are the training time per epoch. Figure 13d and Figure 13e show the testing time
for CiT.

sequences labeled with UpdateFlowRuleStatus in D9 contain
the Tacker service events, which are not included in dataset
D10. The overall results again confirm the robustness of CiT
in applying its trained models to a different system. The
results also show CiT can serve as a tool for recovering
missing information (e.g., user-level requests in our case)
in real-world datasets.

4.5 Hyperparameter Selection
In this section, we evaluate the impact of hyperparameters
in training CiT. Specifically, we first study the AUC and loss
metrics in terms of number of epochs using five datasets
(D1, D2, D7, D9, and D10), and then investigate the impact
of (both event and sequence) embedding dimensions and
network hidden unit types based on the mixed datasets (D9
and D10) for all three CiT variations.
Number of Epochs. Figures 12a and 12b show the results
of AUC and loss metrics for translation training on the
aforementioned five datasets, respectively. We train the
translation model for 200 epochs and evaluate the model
after each epoch. The curves of both AUC and loss metrics
become flat after 20 epochs for 4/5 datasets (only D7 re-
quires around 50 epochs to become stable, as the complexity
of the dataset is higher). We can also observe that the early
stop implemented in each model stops around 20 epochs. In
summary, we conclude that 20 epochs could be enough to
obtain a good model in CiT.
Event and Sequence Embedding Dimension. We study the
impact of event embedding dimension (Em) and sequence
embedding (U, the number of LSTM network units) in
Figures 12c and 12e, respectively. D10 achieves better results
with all three variations than D9, which aligns with the
results we presented in Section 4.3. We conclude that embed-
ding dimensions, for both event and sequence embedding,
contribute positively to the accuracy of the models.
Other Deep Learning Algorithms. As the last part of the
hyperparameter study, we conduct experiments on three
types of neural networks including LSTM, Gated Recurrent
Unit (GRU), and simple Recurrent Neural Network (RNN).
As shown in Figure 12d, LSTM outperforms both GRU and
RNN, while GRU and RNN perform similarly. Therefore,
in our implementation, all the CiT approaches are trained
based on LSTM to achieve the best detection results.

4.6 Efficiency and Scalability
In this section, we study the efficiency and scalability of CiT
by first analyzing the training time for its three variations

with five datasets (D1, D2, D7, D9, and D10), and the impact
of hyperparameters with D9 and D10. Then we investigate
the testing time for both translation and detection. We also
evaluate the cost incurred by CiT in terms of log processing,
bandwidth, and resource consumption.

Training Time. Figure 13a shows the training time of CiT
on the five datasets. For fair comparison, we take the same
number (50,000) of input pairs from each dataset. In general,
CiTts (with both LSTM and Siamese) requires the longest
training time. The color separation of the bars shows the
training time for both translation and detection for this
variation. However, in practice the translation and detection
models can be trained in parallel to reduce the overall train-
ing time. We can also observe that the corpus size and the
length of sequences both affect the training time. Since the
total number of input pairs is the same for different datasets,
the corpus size becomes the main factor that impacts the
overall training time. For instance, the corpus size in D7
is smaller and with shorter sequences, the training time
is shorter than other datasets. Figure 13b studies how the
size of training dataset affects the training time for the three
variations. In general, training time increases when the size
of the dataset increases. The longest time needed for training
the largest dataset is 49 minutes per epoch in CiTts. Parallel
training for both models at the same time will reduce the
overall training time to 38 minutes per epoch. The training
time for network hidden layer types is shown in Figure 13c.
We observe that LSTM requires longer training time than
RNN and GRU due to its complexity (which also helps
achieve better accuracy).

Testing Time. We investigate the testing time of CiT for both
translation and inconsistency detection. Figure 13d shows
the translation time required for each dataset. Generally,
longer sequences naturally require longer translation time;
however, our results show that even the longest sequence
only takes 0.12s to finish translation. In Figure 13e, we eval-
uate the execution time of similarity score calculation versus
the number of input event sequences by testing the trained
CiTs model with pairwise input sequences. In the zoomed-
in chart, we can observe the detection time is around 4ms
for a single event sequence pair. Furthermore, the detection
model only takes 1.5s to calculate similarity scores for 10,000
pairs of inputs. In contrast, according to our real-world data,
a user-level operation would take OpenStack around 77
seconds on average to execute in a real cloud. Therefore,
we conclude that CiT is an efficient solution for detecting
inconsistency attacks.
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(a) Nova and Neutron Logs
vs. Time

(b) Tacker and Heat Logs vs.
Time

Fig. 14: The log processing time in different NFV levels
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(b) Memory Cost

Fig. 15: The CPU and memory cost: CiT vs. Falco & Suricata

Log Processing Cost. Figure 14 studies the log processing
time at two different NFV levels: the implementation-level
in Figure 14a and the orchestration-level in Figure 14b.
In general, the orchestration services, Tacker and Heat,
contain diverse event sequences with rich semantic context
leading to longer processing times. Nevertheless, it only
requires around 10s to process 100MB of Tacker log data.
On the other hand, the implementation-level with Nova
and Neutron takes less than one second to extract the event
sequences for CiT. For instance, it is reported that an Azure
tenant with over 100,000 users generates about 2MB of audit
log data per minute [72], which can be processed in less
than 0.4 seconds based on our experiments. These results
demonstrate that CiT has negligible log processing costs
even for large-scale cloud deployments.
Bandwidth Cost. The bandwidth cost depends on the sys-
tem’s components and their corresponding technical archi-
tecture. Specifically, the NFV-level audit logs are generated
by Tacker, which is the intended integration point for CiT
as it compares the actual NFV implementation to the user
specification. Therefore, collecting NFV-level audit logs does
not incur any additional cost. Additionally, collecting logs
from the cloud-level (e.g., Heat, Nova, Neutron) will only
result in additional network bandwidth cost if they are de-
ployed on a remote OpenStack controller that is located on
a different node from where CiT is located. However, such
services are usually co-located with OpenStack controller in
a real world deployment [73].
Resource Consumption. Figure 15 presents the results of
CPU and memory utilization for CiT compared to Falco and
Suricata, two state-of-the-art real-time intrusion detection
tools, across the event detection ranging from 1000 to 5000
incidents. We chose Falco [74], a cloud-native host intrusion
detection system (HIDS) for Linux systems, which employs
custom rules on kernel events to provide real-time alerts.

Falco is proved to outperform Auditd, a native feature
to the Linux kernel for monitoring system calls, in terms
of resource consumption [75]. In addition, we also evalu-
ated Suricata [76], a high-performance network intrusion
detection tool (NIDS), which can be used as a VNF in
OpenStack deployments [77]. Both Falco and Suricata were
evaluated with their default configurations (including the
pre-configured set of rules) against CiTs. To perform these
experiments, we follow a similar system specification that
Falco used (a system with 8 CPU cores and 4GB RAM,
operating with Ubuntu 22.04) in their evaluation against
Auditd.

As shown in Figure 15a, Suricata outperforms both Falco
and CiTs in the CPU consumption by utilizing only about
5% constantly. Conversely, the CPU consumption of CiTs

increases from about 12% to 19% for 1000 to 3000 events,
subsequently maintaining this level while achieving a de-
cent performance. Figure 15b shows that Falco shows the
lowest memory consumption (0.9%) while CiT outperforms
Suricata with about 3% as its highest usage.

Given that CiT is an anomaly-based detection solution,
it is expected to consume more resources than rule-based
solutions such as, Falco and Suricata. This is a trade-off that
allows CiT to potentially detect unknown (0-day) attacks
(that are reflected in the event sequences) which will not be
detected by any rule or signature-based solution.

4.7 Limitations
To evaluate the potential limitations of CiT, we perform a
comparison with NFVGuard [69], a formal verification tool
to verify consistency of an NFV system. Table in Figure 11b
shows the comparison of CiT and NFVGuard on detecting
real-world bugs and denied NFV operations. As shown in
the last two columns of the table, NFVGuard successfully
detected all inconsistencies, thus showing better accuracy
than CiT . This is expected and can be explained by the
fact that NFVGuard relies on collecting the configuration
(system state) data after the NFV operations (or the attack)
are completed. In contrast, CiT performs the inconsistency
detection at runtime, which allows it to uncover the incon-
sistencies faster, with some limitations in the accuracy.

In terms of efficiency, the execution time for CiT only
takes around 0.12s for the longest sequences (as shwon
in Figure 13d and Figure 13e), while NFVGuard requires
1∼5s to verify the consistency properties. Given that CiT
is an online tool, such efficiency is more important due to
the impact on the timeliness of online detection. Regarding
resource consumption, NFVGuard utilizes 18% to 21% of
the CPU and occupies 0.8% to 1.2% of the memory to verify
1000 to 5000 VNFFGs. On the other hand, CiT only requires
around 10% of the CPU and maximum 2% as the memory
usage. It means that CiT shares a similar memory cost and
requires less CPU compared to NFVGuard. Nonetheless,
the overhead in resource usage incurred by CiT persists
constantly as it runs continuously, whereas NFVGuard runs
on demand, resulting in temporary resource consumption.

5 DISCUSSION

Motivation for NMT. As we observed in our study, one
event sequence from NFV level usually corresponds to
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multiple event sequences from another level. Even a sim-
ple operation, CreateVNF, could generate at many as 11
different event sequences depending on different system
states at NFV level (e.g., available VMs, subnets, ports).
Our experiments show that, on average, at least three dif-
ferent implementation-level event sequences could match
each NFV-level event sequence. To put this into perspective,
considering only 15 operations of 14 services, a rule-based
approach would require at least 15×11×3×

(14
2

)
= 45, 045

rules. With more operations/services in real NFV systems,
it would be practically infeasible to manually create and
maintain an exhaustive ruleset. This limitation motivated
us to adopt an NMT-based approach to automatically learn
the cross-level mapping between event sequences.

Training and Retraining. A well-known challenge faced
by machine learning-based security solutions is to gather
attack-free data for training. As shown in Section 4.4, the CiT
models trained using data collected from our experimental
testbed provided satisfactory results when tested on data
from a completely different, real-world system. Such results
confirm the feasibility of training CiT under a controlled
environment and then applying it to a real-world NFV
system (the training system could be made more similar to
the real system than in our case, which will further improve
the accuracy). We also recommend retraining to ensure high
accuracy when there is a major system upgrade that intro-
duces new event types, e.g., Tacker version 9.0.0 deprecated
some legacy events and introduced new event types in
OpenStack 2023.1 Antelope release [78]. Furthermore, since
major upgrade or change typically happens periodically
(every 6 months in case of Openstack [79]), retraining will be
practically feasible and may not introduce service downtime
as it is done offline. Nonetheless, our experiments (trained
with both real and testbed datasets in Figure 11a) show that,
even when the systems are several generations apart, the
accuracy is still acceptable.

False Positives. Additionally, like any NMT-based applica-
tion, CiT ’s model needs to be retrained or refined periodi-
cally or upon major changes made to the cloud infrastruc-
ture. Otherwise, CiT may misclassify certain benign events
(such as load balancer events, telemetry log collector events,
accounting events, monitoring events, and non-malicious
flow redirects) as malicious, if such events are not included
in the training data. We can also adjust the detection
threshold to a lower value to accommodate such unforeseen
events to tackle this issue. But we recommend retraining the
model instead of adjusting the threshold as the latter may
introduce a risk of potentially allowing malicious events to
go undetected.

Cross-level Detection. In an NFV stack (see Figure 2), the
Service Orchestration level (also known as the NFV-level
in our examples) is the user specification of the system
and all the underlying levels are the actual deployment
of this specification. Therefore, we focus on the pair-wise
consistency between the NFV level (user specification) and
every underlying level (actual deployment) to address NFV
tenants’ concerns. However, assuming ”transitivity” of con-
sistency (i.e., if underlying levels are consistent with the
NFV level then those levels must also be consistent among
themselves), detecting pair-wise inconsistency between ev-

ery underlying level and the NFV level would enable us to
identify inconsistency between multiple levels of the NFV
stack. We consider this as a future work.
Evasion Attacks. Since CiT detects cross-level inconsisten-
cies, the only way for attackers to evade detection is by gen-
erating a lower-level event sequence that exactly matches
the corresponding higher-level event sequence. This is only
possible if the attacker has total control of the lower-level
events’ logging mechanism (which is out-of-scope according
to our threat model given in Section 2.4). Note if an attacker
modifies a higher-level event sequence to match the lower-
level ”attack” sequence, then the attack would no longer be
stealthy (visible to end-users).
Adapting to other NFV Platforms. Most of the modules
of CiT are platform agnostic. Thus, it can potentially be
adapted to other NFV platforms (e.g., OSM [80] and OP-
NFV [81]) for inconsistency detection, since it has been
designed based on the generic NFV architecture and de-
ployment model.

6 RELATED WORK

This section reviews existing approaches to NFV security,
anomaly detection, and translation-based security solutions,
and compares them to our work.
NFV Security. Most existing solutions in NFV for incon-
sistency detection (e.g., [15]–[18], [20], [21], [82]) verify
the cloud-level configuration information (e.g., flow rules
and flow classifier) while focusing on one particular level
(mostly SFC). ChainGuard [17] and SFC-Checker [18] both
verify the correct forwarding behavior of SFCs. vNFO [20]
and SLAVerifier [21] verify a wide-range of SFC functionali-
ties (e.g., performance and accounting). Wang et al. [16] pro-
pose a framework to detect the dependencies and conflicts
between network functions. Unlike those approaches which
rely on configurations, CiT is an event-based approach
which means it can potentially catch an attack before it
incurs any damage.
Anomaly Detection on Sequential Data. There exist many
works (e.g., [29], [30], [60], [83]–[85]) that conduct anomaly
detection on sequential data (e.g., event logs, credit card
transactions, and network traffic). Particularly, DeepLog [60]
and Brown et al. [85] leverage RNNs to detect anomalies
in system logs. Jurgovsky et al. [84] use the LSTM-based
classification to detect anomalies in credit card transactions.
Radford et al. [29] utilize LSTM to learn and predict commu-
nications between two IPs for anomaly detection. Similarly,
Xiao et al. [30] utilize the semantic information of system call
sequences for Android malware detection. Besides focusing
on a different context (NFV), CiT applies the additional
translation step before detection, which outperforms tradi-
tional anomaly detection (see Section 4.3).
Translation-based Security Approaches. Most of the exist-
ing solutions that leverage NMT (e.g., [28], [30], [86]–[88])
focus on binary code analysis, e.g., to support multiple
hardware architectures like x86 and ARM. In particular,
SAFE [88] leverages GRU RNN [89] and learns function
embedding automatically where each assembly instruction
is considered as a word and each sequence of instructions
as a sentence. To find similar functions from binary code,
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INNEREYE [86] leverages LSTM and considers assembly
instruction with its operands as a single word and the basic
block as a sentence. Xu et al. [87] and Asm2vec [28] apply
neural networks to translate binaries for code similarity
detection. Although in a different context, those works show
the potential of applying neural machine translation to
security, and have inspired us for our work.

In summary, though inspired by those existing works,
CiT differs from them due to its special focus on NFV, event-
based approach, and use of neural machine translation for
inconsistency detection.

7 CONCLUSION

In this paper, we proposed an event-based, Neural Machine
Translation (NMT)-powered detection approach, namely,
CiT, for cross-level inconsistency attacks in NFV. Specifically,
we leveraged the Long Short-term Memory (LSTM) model
to translate the event sequences between different levels
of an NFV stack. We applied both similarity metric and
Siamese neural network to compare the translated event
sequences with the actual sequences to detect inconsistency
attacks. As a proof of concept, we have integrated CiT
into OpenStack/Tacker and conducted extensive experi-
ments using both real and synthetic data to demonstrate
the efficiency, accuracy, and robustness of our solution.
The main limitations of our work are as follows. First,
since CiT relies on the cloud provider for collecting event
sequences, a malicious provider could potentially mislead
the detection mechanism by tampering with the input data.
How to ensure the integrity of such data (e.g., through
trusted computing techniques) is a future research direc-
tion. Second, we have not considered malicious attacks on
CiT using adversarial machine learning techniques which
could potentially aid an attacker to evade detection or
disrupt retraining by introducing anomalous training data.
Addressing this issue in the particular context of NFV is a
potential future direction. Finally, CiT currently relies on the
access to events at different levels, and anonymizing such
events to avoid privacy concerns while still allowing the
translation and detection is an interesting challenge.
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[48] M. Creutz, T. Hirsimäki, M. Kurimo, A. Puurula, J. Pylkkönen,
V. Siivola, M. Varjokallio, E. Arisoy, M. Saraçlar, and A. Stol-
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