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Abstract—The multi-tenancy in a cloud along with its dynamic and self-service nature could cause severe security concerns, such as
isolation breaches among cloud tenants. To mitigate such concerns and ensure the accountability and transparency of the cloud
providers towards their tenants, verifying cloud states against a list of security policies, a.k.a. security auditing, is a promising solution.
However, the existing security auditing solutions for clouds suffer from several limitations. First, the traditional auditing approach, which
is retroactive in nature, can only detect violations after the fact and hence, often becomes ineffective while dealing with the dynamic
nature of a cloud. Second, the existing runtime approaches can cause significant delay in the response time while dealing with the
sheer size of a cloud. Finally, the current proactive approaches typically rely on prior knowledge about future changes in a cloud and
also require significant manual efforts, and thus become less practical for a dynamic environment like cloud. To address those
limitations, we present a novel proactive security auditing system, namely, ProSAS, which can prevent violations to security policies at
runtime with a practical response time, and yet does not require prior knowledge about future changes. More specifically, ProSAS first
establishes its models (e.g., dependency relationships between cloud events, and critical events) through learning from historical data
(e.g., logs); it then predicts future critical events which would likely follow a received event by leveraging the dependency relationships;
afterwards, it proactively verifies the impacts of those future events, and prevents those events which can cause violations of security
policies. ProSAS is integrated into OpenStack, a popular cloud management platform, and we provide a concrete guideline to port
ProSAS to other popular cloud platforms, such as Google Cloud Platform, and Amazon EC2. Our experiment results using both real
and synthetic data demonstrate the improvement of efficiency (i.e., reducing response time to 1,450 nanoseconds at best and 8.5
milliseconds on average for a large-scale cloud with 10,000 tenants) and level of automation (i.e., learning more than 20 new critical
events spanning 100 days) in proactive security auditing by ProSAS.

Index Terms—Security Auditing, Runtime Enforcement, Cloud Security, Proactive Auditing, Continuous Auditing, OpenStack.
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1 INTRODUCTION

Multi-tenancy in cloud is a double-edged sword that may lead

to various security concerns in spite of its transformative contribu-

tion to resource optimization [1], [2]. Such security concerns are

evident from a wide range of attacks reported in both the literature

(e.g., [3], [4], [5]) and the industry (e.g., [6], [7]). As a result,

the accountability and transparency of cloud service providers

often become questionable to cloud tenants [1]. To defend against

security threats and build the trust of users, verifying security

policies using formal verification methods, a.k.a. security auditing,

has been a standard practice for years in the industry (e.g.,

Delloite [8] and KPMG [9]) and is a desirable solution for clouds.

However, security auditing in clouds presents several unique

challenges. First, the dynamic and self-service nature of clouds

means any auditing result may become obsolete very quickly

and therefore, a runtime security auditing process is desirable for

ensuring continuous protection against security threats. Second,

the sheer size and high operational complexity of clouds means a

runtime solution must be highly efficient and scalable in order to

ensure a practical response time to users. Finally, the co-existence

of a large number of tenants and users with different needs implies
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that an auditing solution cannot assume users’ behaviors to follow

any fixed or previously known patterns.

The existing security auditing approaches still fall short to

overcome such challenges. First, the retroactive approaches (e.g.,

[10], [11], [12]) catch violations of security policies after the fact

by verifying cloud states (e.g., configurations and logs). As a

result, they cannot prevent security breaches from propagating or

causing potentially irreversible damages (e.g., leaks of confidential

information or denial of service). Second, the intercept-and-check

approaches (e.g., [13], [14], [15], [16]) audit the impacts of each

change request to the cloud before granting them, which leads

to a substantial delay to users’ requests. Third, the proactive ap-

proaches in [13], [14] verify potential user requests in advance, by

assuming a known sequence of user requests, namely, the change

plan; however, such an assumption about fixed change plans might

not always be realistic, especially considering the diverse and fast

evolving needs of cloud tenants and users. Through the following

example, we further motivate towards our solution.

Motivating Example. Fig. 1 depicts three timelines (showing

different steps of typical retroactive and intercept-and-check ap-

proaches, and our proactive solution, respectively) with a sequence

of three cloud events. Among those events, the update port is

a critical event, which can potentially breach a security policy.

In this example, we consider a security policy that audits anti-

spoofing mechanisms in the cloud; which can be violated by real

world vulnerabilities (e.g., OpenStack [17] vulnerability, OSSA-

2015-018, [18]). We highlight the major limitations of the existing
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approaches and position our solution as follows.
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Fig. 1: Comparison of the execution time of our solution with the

typical intercept-and-check and retroactive approaches

• A typical retroactive auditing (as shown in the first timeline) is

conducted periodically (e.g., at time t2 and t3) within a certain

interval. Due to its after-the-fact nature, it allows attackers to

exploit the vulnerable systems for a considerable amount of

time (e.g., seconds to minutes for a medium to large scale

cloud [10], [11]) with potentially irreversible damages (e.g.,

information leakage, data corruption, and DoS).

• A typical intercept-and-check approach (as shown in the sec-

ond timeline) overcomes the above-mentioned limitation of

retroactive auditing. However, as it starts the verification only

after the update port event occurs, this approach can result in

a significant delay (e.g., four minutes as reported in [13]).

• Our approach (as shown in the last timeline) performs security

auditing in a proactive manner, i.e., it prepares for the critical

event (update port) ahead of the actual occurrence of that event,

and consequently it can ensure a much shorter response time.

Moreover, unlike existing proactive approaches (not shown in

the timeline), we do not assume events will follow a fixed

future change plan (e.g., the fixed sequence create port, create

VM and update port), as will be detailed in later sections.

More specifically, we present a proactive security auditing

system for clouds, namely, ProSAS. First, ProSAS learns a list of

cloud events (namely, critical events) that may violate a security

policy by utilizing a formal verification method on the cloud state

(e.g., logs and configurations). Second, it learns various (e.g.,

structural, probabilistic and temporal) dependency relationships

between cloud events from historical data (e.g., logs). Third, it

proactively verifies the future critical events, which are predicted

based on their dependency relationships with the current event,

against security policies, and prepares a list of allowed parameters

(namely, watchlist) for those events. Finally, when a critical event

actually occurs, ProSAS utilizes and recycles those verification

results to efficiently enforce the security policies. Thus, our ap-

proach can be regarded as a “synthesis” of the three existing types

of approaches (retroactive, intercept-and- check, and proactive)

so that it can utilize the bests of each world (e.g., high accuracy

of retroactive, runtime enforcement capabilities of intercept-and-

check, and high efficiency of proactive) while avoiding their major

limitations (e.g., after-the-fact nature of retroactive, significant

delay of intercept-and-check, and lower accuracy of proactive).

Specifically, ProSAS ensures that: (i) proactive becomes more

accurate through learning new critical events using a retroactive

method, (ii) retroactive is only used in an offline learning so that

its after-the-fact nature does not affect the runtime enforcement

capability of ProSAS, and (iii) intercept-and-check can respond

in a few milliseconds with the help of a proactive approach. We

implement and integrate ProSAS into OpenStack [17]. We also

provide a concrete guideline outlining the major steps to adapt our

system to other popular cloud platforms (e.g., Amazon EC2 [19],

Google GCP [20], and Microsoft Azure [21]). Our experimental

results using both real and synthetic data confirm the efficiency,

accuracy, and scalability of our approach.

The main contributions of our paper are as follows.

• To the best of our knowledge, ProSAS is the first efficient and

scalable proactive security auditing system for clouds that can

reduce the response time to a practical level for a large-scale

cloud (e.g., 8.5 milliseconds to audit 10,000 tenants).

• We are the first to propose an approach to learn critical events

from historical data. Our method can assist human analysts

to more effectively identify critical events, which could in

turn improve the accuracy of proactive security auditing. Our

experimental results show the learning of more than 20 new

critical events spanning 100 days.

• The practicality of the proposed system is confirmed through

its integration into the popular cloud platform OpenStack, the

experiments using real cloud data, and the concrete guidelines

for adapting the system to other major cloud platforms.

The preliminary version of this paper has appeared in [22],

which proposes the basic approach of proactive security auditing.

In this work, we significantly extend this approach in the proposed

ProSAS system, while focusing more on the system aspects, such

as improving the level of automation for various components, and

improving both the accuracy and efficiency of the overall system.

Specifically, our major extensions are as follows: i) we design and

implement a new system component for automatically learning the

inputs (e.g., critical events and dependency models) to reduce the

required manual efforts and improve the accuracy (Section 3.2);

ii) we design and implement a new system component to sig-

nificantly improve the response time through preserving recent

actions and results (Section 3.4); iii) we design and implement

a new system architecture to integrate those new components

into the ProSAS system based on OpenStack [17] (Section 4);

iv) we provide a concrete guideline to port ProSAS to other major

cloud platforms (e.g., Amazon EC2, Google GCP, and Microsoft

Azure) (Section 4); and v) finally, we evaluate both efficiency and

accuracy of ProSAS through a new set of experiments (Section 5);

which demonstrates significantly improved performance over our

previous solution [22].

The paper is organized as follows. Section 2 describes the

threat model and the dependency models. Section 3 details our

methodology. Section 4 provides the implementation details, and

Section 5 presents the experimental results. Section 6 discusses

different aspects of our approach. Section 7 summarizes related

works and compares them with our approach. Section 8 concludes

the paper providing future research directions.

2 MODELS

This section defines our threat model and dependency models.

2.1 Threat Model

Even though the high-level idea of proactive auditing can po-

tentially be applied to various IT infrastructures, the design and

implementation required for realizing such an idea would heavily

depend on various aspects of the targeted infrastructures such

as the logging systems, interception methods, event types, event
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dependencies, etc. In this paper, we focus on the specific context of

cloud management operations (e.g., create VM, create tenant, etc.)

in an Infrastructure as a Service (IaaS) cloud management plat-

form. We assume that the cloud management platforms: (a) may

be trusted for the integrity of the management operations, their

notifications, and database records (existing techniques on trusted

computing and remote attestation may be applied to establish a

chain of trust from TPM chips embedded inside the cloud hard-

ware, e.g., [23], [24], [25], [26]), and (b) may have implementation

flaws, misconfigurations and vulnerabilities that can be potentially

exploited by malicious entities to violate security policies specified

by cloud tenants. The cloud users including cloud operators and

agents (on behalf of a human) may be malicious. Any threats

directing from the cloud management operations is within the

scope of this work. Therefore, any violation bypassing the cloud

management interface is beyond the scope of this work. Also, our

focus is not to detect specific attacks or intrusions, even though

our framework may catch violations of specified security policies

due to either misconfigurations or vulnerabilities. In this work, we

mainly support structural policies that involve cloud management

operations (e.g., creating a tenant, creating a VM, granting a

role, and assigning VMs to physical hosts) and as long as those

operations are covered in our dependency models in Section 3.2.

We rely on security experts to define the policies based on

literature, security standards, and other requirements of a tenant.

We assume that before our runtime approach, an initial verification

is performed and potential violations are resolved. However, if our

solution is added from the commencement of a cloud, obviously

no prior security verification is required. Moreover, we rely on

the selected offline auditing tools (e.g., formal methods) and the

accuracy of our learning method can only be as accurate as those

tools. To make our discussions more concrete, the following shows

an example of in-scope threats based on a real vulnerability.

Running Example. A real world vulnerability in OpenStack [18]

can be exploited to bypass security group rules (which are fine-

grained, distributed security mechanisms in several cloud plat-

forms including Amazon EC2 [19], Microsoft Azure [21] and

OpenStack [17] to ensure isolation between instances). Fig. 2

shows the attack scenario to exploit this vulnerability. In this

example, the owner of the VM127 is malicious, and VM207 and

Port788 are legitimate. The exploit consists in changing the

device owner (step 3 in Fig. 2) of an instance’s port to a string

starting with the word network, right after the instance is created

(steps 1 & 2) and just before a security group gets attached to it

(race condition) [18]. As a result, the security group rules of the

compute node are not applied to that port, since it is treated as a

network owned port. Consequently, a malicious tenant can launch

IP, MAC, and DHCP spoofing attacks (step 4) [18].
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Fig. 2: An exploit of a vulnerability in OpenStack [18], leading to

bypassing security group rules.

2.2 Dependency Models

This section first provides background on different dependency

relationships (e.g., structural, probabilistic and temporal) among

cloud events that our dependency model covers, and then formally

defines the model that will later be used in our system.

Structural Dependency. The structural dependency relationships

mainly indicate the structure (e.g., nodes and edges) of a depen-

dency model. The structural dependencies are derived mainly from

two different sources. (i) From the cloud design: this captures the

structure of the dependency that is imposed by the cloud platform

(e.g., OpenStack [17]). For example, in OpenStack, a subnet

cannot be created before there exists a network; which indicates

that the create subnet event depends on the create network event.

(ii) From the cloud behavior: this captures the structure of the

dependency that is derived from the behavior of a specific cloud

deployment. For example, by analyzing historical data (e.g., logs)

of a cloud, we learn all possible transitions which potentially

become the nodes and edges of our dependency model.

Probabilistic Dependency. The probabilistic dependency mainly

indicates the probabilistic behavior of a cloud. The probabilistic

dependencies are derived mainly from the cloud behavior. More

specifically, the probabilistic behavior of a cloud is learnt from the

historical data (e.g., logs) of a cloud deployment, and expressed in

term of probabilities. For example, if the transition from the create

network event to the create subnet event is observed five out of

ten times, then the probabilistic dependency is calculated as 0.5.

Temporal Dependency. The temporal dependency mainly indi-

cates the temporal behavior of a cloud. The temporal dependencies

are derived mainly from the cloud behavior. More specifically, the

temporal behavior of a cloud is learnt from the historical data (e.g.,

logs) of a cloud deployment, and expressed in term of intervals.

For example, if the transition from the create network event to the

create subnet event is observed to have an interval of five minutes

on average, then the temporal dependency for this transition can

be indicated as 5m.

The Definition of Dependency Model. For a given list of cloud

events events and the historical data of those events hist, our

dependency model is stated as a Bayesian network BN = (G,

P), where G is a directed acyclic graph in which each node

corresponds to a cloud event in events and each directed edge

between two nodes indicates that a transition between these two

nodes is observed in hist where edge is labelled with the list

of parameters P. In this paper, G in the dependency model is

obtained from the structural dependencies, and P is derived from

both probabilistic and temporal dependencies.

3 PROACTIVE SECURITY AUDITING SYSTEM

This section describes our proactive security auditing system.

3.1 Overview

Fig. 3 illustrates the high-level design of our proactive security

auditing system (ProSAS). ProSAS performs proactive security

auditing for clouds in three major steps: input learning, proactive

security verification, and verification result utilization. In Step 1

(detailed in Section 3.2), to establish its models, ProSAS first

learns critical events (that may potentially violate a security

policy), then learns dependency relationships (that will later be

leveraged in our proactive security verification) among cloud
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events, and finally initializes other inputs (e.g., identifying event

types and defining watchlist content) to ProSAS. In Step 2 (de-

tailed in Section 3.3), to proactively verify security policies, it

first intercepts each cloud event, then identifies future events using

the dependency relationships, and finally, builds watchlists (that

contain allowed parameters) for critical events. In Step 3 (detailed

in Section 3.4), to utilize the verification results, ProSAS preserves

the recent proactive verification actions (e.g., updating watchlists)

that are performed for non-critical events, then preserves recent

proactive decisions that are taken for critical events, and finally,

utilizes those actions/decisions to quickly respond to a runtime

event.

ProSAS

Cloud
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Learning Event 

Dependencies

Initializing Other 
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Security 

Policies

Proactive 

Parameters 

(Initial List)
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Utilizing Recent 

Actions/Results
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Intercepting Events
Identifying Future 

Events
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Fig. 3: An overview of ProSAS

3.2 Input Learning

The section elaborates on how ProSAS establishes its different

models, such as, critical events, dependency relationships, etc.

3.2.1 Learning Critical Events

ProSAS learns a list of critical events (which may violate a

security policy) for different security policies through an offline

and iterative process. This list will later be used in our proactive

security verification approach in Section 3.3. More specifically, it

follows four major steps as shown in Fig. 4 and described in the

following). Note that Steps 1-3 are automatically performed by

ProSAS and Step 4 requires the intervention of a security expert.

1) The first step is to detect violations of security policies using

an offline auditing tools (e.g., [10], [11]). More specifically,

ProSAS first collects the state (e.g., configurations) of a cloud

from different cloud services (e.g., computing and networking).

It then converts those configuration data into the format (i.e.,

first order logic) of an offline auditing tool (e.g., [10], [11]).

Afterwards, it applies that tool to verify the current cloud

configurations. Finally, ProSAS identifies any violation of a

security policy reported by the tool. Note that these offline tools

are chosen for this step, mainly because they consider the entire

state of the cloud and hence, are able to detect the violations

caused by new critical events that are not yet included in

our critical event list. For this work, we mainly rely on a

well-known formal method, constraint satisfaction problem

(CSP) solver [27], that have passed the proof-of-time as well

as provided theoretical accuracy proof (e.g., [28], [29], [30],

[31]). Additionally, our previous work [32] shows that various

other well-known formal methods (e.g., Datalog, access control

model) can also be leveraged for this step depending on the

nature of security policies.

2) The next step is to identify log entries for the period during

which a violation has occurred. More specifically, ProSAS first

finds the cloud service(s) (e.g., network, compute and storage)

related to the violated security policy. It then collects event

logs for that cloud service. Finally, ProSAS identifies the log

entries that occurred during the current iteration of the learning

critical event process.

3) The following step is to shortlist the candidate critical events

for the violation by eliminating irrelevant log entries from

the collected log entries. More specifically, ProSAS first in-

terprets the log entries from the output of the previous step

to identify their event types. For instance, the log entry

POST /v2/servers HTTP/1.1 indicates the event type

Create VM. It then filters out the irrelevant events that are

automatically generated by the system and not caused by

an event for a cloud management change. For example, the

log entry GET /v2/os-security-groups HTTP/1.1

is generated when a system lists all its security groups on

the interface. Thus, ProSAS prepares a shortlist of candidate

critical events for the next step.

4) The final step is to identify the responsible critical event for the

violation. This step involves a security expert, who identifies

the critical event that violates a security policy from the short

list (from the previous step) based on his/her discretion. Note

that this is the only step in the learning process which requires

human interventions.

Cloud
(t2-t1)

Auditing ToolConfig.

Violation at t2

Filtering

Expert

Identifying 

Crtical Event

Auditing

Shortlist of Candidates

Collecting 

Configurations
Collecting Logs

Step 1

Step 2

Step 3
Step 4

Fig. 4: The steps of learning critical events

Example 1 Fig. 4 depicts the steps of learning critical events.

For this example, we consider two iterations of this process at

time t1 and t2, respectively, where t2 > t1. First, ProSAS collects

the cloud configurations at time t1, and verifies the no bypass

policy using our offline auditing tool (e.g., [10], [11]). At time

t1, there is no violation of the policy, and hence, the further

steps are not required to perform. Second, ProSAS again collects

the cloud configurations at time t2 and verifies the same policy

using our offline auditing tool. At time t2, there is a violation and

therefore, ProSAS performs the following steps. It first collects

logs from the network service of the cloud for the period of t1-t2;

as it is certain that the critical event caused this violation happens

within this period. Afterwards, ProSAS filters out all events with

the GET requests, because those events are interface-generated to

show lists of different resources on the interface and not related to

cloud management operations. Finally, ProSAS presents a shortlist

of events to an expert, who finally identifies update port as the

responsible critical event for the violation of the no bypass policy.

Similarly, ProSAS learns critical events for different security

policies. The learnt critical events for both virtual-infrastructure-

related and access-control-management-related policies are shown

in Tables 1 and 2, respectively.

Through this step, ProSAS learns new critical events which

eventually contributes to prevent more security violations of poli-
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cies by ProSAS and thus, the effectiveness of the framework is

enhanced (as shown through the experiment results in Section 5.2).

Policy Critical Event (CE) Watchlist Event (WE) Watchlist per tenant

No bypass [33] update port (15,15)
create VM (16,17)

Ports except VM ports
create port (12,15)

Port consistency [33], [34] create vPort (21,20) create port (12,15) ports at tenant layer

No abuse of resources [33]

create VM (16,17),

create vNet (14,19)

create VM (16,17),

create vNet (14,19)
Counters for VM/vNet

delete VM (16,17),

delete vNet (14,19)

Common port owner-
ship [33]

attach port to a router (16,18) create router (3,18) router-tenant pair

Port isolation [33], [34] add vPort to vNet (19,20) create vNet (14,19) vNets in a subnet

No co-residency [33], [34]
create VM (16,17),
migrate VM (17,22)

create VM (16,17) Hosts with no conflicting
migrate VM (17,22) VMs

TABLE 1: Security policies supported by the cloud infrastructure

model shown in Fig. 5(a) with their corresponding critical and

watchlist events, and the watchlist contents.

Policy Critical Event Watchlist Event Watchlist per tenant

Common role ownership [33], [34] grant role (2,11)
create role (3,5)

roles in a tenant
delete role (3,5)

No cross-tenant token create token (3,6)
grant role (2,11)

user-tenant-tole tuple
create user (1,2)

Cardinality [35], [36] grant role (2,11)

delete role (3,5)

counter for each roledeny role (2,11)
grant role (2,11)

Role activation [33], [34] create token (3,6) grant role (2,11) user-role pair

Permitted action [33], [34] request an operation (8,9)
create token (3,6)

token-operation pair
grant role (2,11)

User-access validation [33], [34] request an operation (8,9)
create token (3,6)

token-operation pair
grant role (2,11)

TABLE 2: Security policies supported by the access control

management dependency model shown in Fig. 5(b) with their

corresponding critical events, watchlist-related events, and the

content of the watchlists.

3.2.2 Learning Dependency Relationships

ProSAS learns several dependency relationships among cloud

events. To this end, it first learns the structural dependency

between events by analyzing historical cloud data (e.g., logs) and

studying API documentations (e.g., [37]) of cloud platforms. It

then learns probabilistic and temporal dependencies from the his-

torical cloud data (e.g., logs). Later these dependency relationships

are leveraged to conduct the proactive security verification.

Building Structural Dependencies. ProSAS builds structural

dependencies among cloud events by following two main steps.

First, ProSAS adopts the automated structure learning process

(proposed in [38]). To this end, it collects logs from different

cloud services (e.g., compute, network and storage), processes

them to identify the sequence of different events from the logs,

and builds the structure of the dependency model from those

sequence of events; which is further described in LeaPS+ [38].

Second, it further learns missing structures by identifying the

dependency relationships that are imposed by the cloud design

through studying API documentations (e.g., [37]) from different

cloud services (e.g., Neutron, Nova, and Keystone) and Open

vSwitch [39] (similarly as in [13]).

Example 2 Fig. 5 illustrates the two dependency models that we

derive for an OpenStack-managed cloud covering virtual infras-

tructure (Fig. 5(a)) and user access control (Fig. 5(b)). For the

user access control model, we are inspired by the OSAC model

by Tang et al. [16]. To build the intuitions of these models, we

start by providing an example on how the cloud infrastructure

dependency model (see Fig. 5(a)) allows us to relate actual

management operations or events happening in the cloud to the

“no bypass” security policy presented in Section 2.1. The model

in Fig. 5(a) includes port (vertex 15) and VM (vertex

17). The vertex 16 is a specific vertex grouping a port and a

subnet pair. The update port operation is related to the entity

port (vertex 15 in Fig. 5(a)). As it can be seen in Fig. 5(a),

update port depends on other operations such as create

port (edge (12,15)) and create VM (edge 16, 17).

More precisely, create VM attaches a port (vertex 15) on a

subnet (vertex 14) to a VM (vertex 17). As the create

port and create VM operations are closely related to the

actual critical operation (update port), our model captures

this dependency relationship and later aids to avoid the security

violation.

Learning Probabilistic and Temporal Dependencies. To learn

both probabilistic and temporal dependency relationships, ProSAS

utilizes both Bayesian network and time-series model, respec-

tively, (similarly as Proactivizer [32]). To that end, ProSAS first

collects logs from different cloud services (e.g., compute, network,

and storage). Then, it processes them to identify the transitions of

events from those logs. Afterwards, it obtains the frequencies and

intervals of those transitions. Next, it utilizes those transitions and

their frequencies to obtain a probabilistic model (e.g., Bayesian

network). Finally, ProSAS feeds the intervals between transitions

and the Bayesian networks for that interval to the time-series

predictor (e.g, ARMAX [40]) to build the dependency models,

which will be leveraged in Section 3.3 for proactive verification.

3.2.3 Initializing Other Inputs

This section describes the initialization of other inputs of ProSAS.

More specifically, ProSAS maintains several tables for its proac-

tive verification step in Section 3.3.

• Event-operation: maps event types to operations in

different cloud environment to easily integrate different cloud

implementations.

• Model-event: relates each security policy with the ele-

ments of the dependency models and tenant inputs including

the types of events.

• policy-WL: stores the specification of the contents in a

watchlist for each security policy.

• policy-N-thresholds: maps security policies and

their associated thresholds (denoted as N-th), where thresh-

olds are security policy specific and inputs from the ad-

ministrators. A brief guideline on choosing this threshold is

provided in Section 6.

• Model-N-policy: stores all possible values of N (de-

noted as N-cp) for each policy.

To initiate those tables, it collects necessary data from different

cloud services (e.g., compute, network and storage), and to pre-

process the data to prepare the conditions for those tables. This

step also initializes the watchlist content with the current cloud

context.

Example 3 Fig. 6 shows the initialized inputs for the no bypass

policy. The Event-operation table shows that the create

port event corresponds to the neutron port-create op-

eration in OpenStack. The Model-event table stores an entry

indicating that the create port event is the watchlist event

(WE) for the no bypass policy and situates at the edge between

nodes 12 and 15 in the dependency model. Also, the critical event

update port for the policy with its position (i.e., the node 15)

in the dependency model is stored in this table. Other events of

type TE, such as create network and create subnet, are

not shown for brevity. The minimal distance from the critical event
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Fig. 5: Structural dependency models: (a) cloud infrastructure and (b) access control management

 Property         Event         Model    Type         

No bypass       create port    12->15    WE  

No bypass       create vm      16->17    WE       

No bypass       update port       15        CE

         Model-event

 Event             OP-OpenStack            OP-VMware  

 create port      neutron port-create      AddPortGroup               

 update port     neutron port-update    UpdatePortGroup  

 create vm          nova boot                  CreateVM_Task

        Event-operation

 Security Property                N-th         

        No bypass                         3  

  Property          Watchlist content          

No bypass   Ports not attached to VMs

Property-WL

 Property-N-thresholds

 Property             Path              N         

No bypass                3     5     

No bypass             3-12     4       

No bypass           3-12-14     3

No bypass         3-12-14-15     2

No bypass         3-12-16-17     1             

Model-N-property

Initialized watchlist

No anti-spoofing bypass

Port-ID  

788   

1187

 ...

Dependency model

3

13 12 18

17 14 15
16

Fig. 6: An excerpt of the initialized inputs for the no bypass policy

at which our solution should react is (N-th = 3), as shown in the

policy-N-thresholds table. The Model-N-policy table

stores all possible computed values of N taking into account the

security policy and the dependency model. Finally, the watchlist

is initialized for the no bypass policy based on data collected

from the cloud. For each tenant, the watchlist is populated with

the list of virtual ports that are not attached to a VM as in the

policy-WL table.

3.3 Proactive Security Verification

This section details how ProSAS conducts proactive security ver-

ification. To that end, ProSAS first intercepts runtime events, then

identifies the most probable future events by leveraging the de-

pendency models, builds watchlists (with the allowed parameters)

for those future events, and finally enforces the security decisions

(e.g., allow or deny) while checking the requested parameters

with the watchlists when a critical event actually occurs. In the

following, we elaborate on each of them.

3.3.1 Intercepting Runtime Events

At runtime, ProSAS intercepts all event instances performed

in the cloud. Usually, the intercepted event instances provide

implementation specific details. Therefore, with the help of the

Event-operation table, we identify the corresponding event

type (so that the remaining steps in ProSAS become cloud-

platform-agnostic). Table 3 shows an excerpt of such mapping. We

also identify the criticality (i.e., CE, WE or TE) of the intercepted

event type from the Model-event table. Only if the intercepted

event is critical, then we halt the event request till the verification is

performed. Otherwise, the event request is immediately processed.

Additionally, the position of the event type in the dependency

model is identified so that the next step can identify the most

probable future critical events.

OpenStack Event Instances Event Types of ProSAS

POST /v2/servers HTTP/1.1 Create VM

POST /v2/os-security-groups HTTP/1.1 Create security group

GET /v2/os-security-groups HTTP/1.1 Eliminated

TABLE 3: Examples of OpenStack event instances and converted

event types in ProSAS

3.3.2 Identifying the Most Probable Future Event

ProSAS identifies the most probable future events in two steps.

First, it calculates the probabilities of the occurrence of a

critical event from the current event using the dependency model.

More specifically, ProSAS first traverses the dependency graph

for each security policy from the edge corresponding to its critical

event backward until reaching the node for the current event in the

model. It then finds out all dependent events and entities. Finally,

it stores the probabilities for each possible configuration in the

Model-N-policy table. Note that, a configuration is an abstract

state that allows to determine whether the entities that the security

policies depend on, actually exist.

Example 4 In the following example, we populate the

Model-N-policy table for the no bypass policy with the

probabilities of the occurrence of the critical event update

port for different cloud configurations (using the dependency

model in Fig. 7). First, we consider the cloud configuration with

one tenant and without any network, subnet, ports, or VMs,

then the cloud configuration is considered to be on the vertex

3. The probability for the vertex 3 in the Model-N-policy

table indicates the probability of the occurrence of the critical

event update port from the current event create tenant.

Similarly, after the create network event occurs, the then

configuration is indicated as the vertices (3,12) and the probability

for this entry in the Model-N-policy table indicates the proba-

bility of the occurrence of the critical event update port from

the event create network. The similar steps are followed to

fully populate the Model-N-policy table.
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Fig. 7: Part of the cloud infrastructure dependency model anno-

tated with the probabilities of each transition that is relevant to the

no bypass policy

Second, it identifies the most probable future critical events

for different security policies. To this end, ProSAS first finds the

event type of the current event (similarly as in LeaPS+ [38]). If

the event type is non-critical, it then extracts the related contextual

data (e.g., corresponding tenant, network, subnet, etc.) from both

event parameters with the help of our interceptor middleware (as

detailed in Section 4.2) as well as cloud configurations (that are

usually stored in a database) to determine the path to be selected

from the Model-N-policy table. Finally, it marks those critical

events as the most probable future event, for which the probability

is bigger than the threshold.

Example 5 To identify the most probable event from the current

event (“POST /v2.0/ports.json HTTP/1.1”), ProSAS

first identifies its event type, create port. Second, as the

create port is non-critical for the no bypass policy (accord-

ing to Table 1), it extracts the current configuration, which is

3-12-14, and finds the corresponding probability, 0.8, from the

Model-N-policy table. Finally, as the probability is higher

than the threshold, it identifies the related critical event, update

port, as one of the potential future events.

3.3.3 Building Watchlists for Future Events

This step is to build watchlists (which is a list of allowed param-

eters for critical events) for each security policy that will later be

used for runtime security enforcement. To this end, ProSAS first

finds the condition for the watchlist of the future critical events

from the Tables 1 and 2. Second, it collects the parameters from

the cloud for which the condition is satisfied. Finally, it stores

those parameters along with their corresponding critical event and

security policy. Thus, ProSAS incrementally prepares a watchlist

with all allowed parameters for a critical event so that at runtime

we can simply check the requested event parameters against this

list and quickly take an enforcement decision.

Example 6 To build the watchlist for the future event update

port, ProSAS first finds that the watchlist of the critical event,

update port, must only include the ports that are not con-

nected to any VM. Second, it collects all such port IDs (2134,

1209, and 1187). Third, it stores all those port IDs in the

watchlist for the no bypass policy. For another consequent event

create vm with the port ID 1187, ProSAS removes the port,

1187, from the watchlist of this policy, because after the most

recent event, this port is now connected to a VM, and hence,

ineligible to remain in the watchlist.

3.4 Verification Result Utilization

ProSAS utilizes the proactive verification results (that are obtained

in the previous step) to enforce security policies on the cloud.

More specifically, ProSAS first maintains a list of actions that

are performed for recent non-critical events, then preserves the

verification results for recent critical events, and finally, utilizes

those actions/results to respond to the runtime events. Note that

our observation (as reported in Section 5) indicates that a cloud

deployment often experiences similar event requests and hence,

reusing recent actions/results can significantly improve the re-

sponse time of our solution (as demonstrated in Figure 10).

3.4.1 Preserving Recent Actions on Non-Critical Events

The first step of recycling is to preserve the recent most proactive

actions (e.g., finding most likely future events and the needed

update on their watchlists) taken by ProSAS for a non-critical

event. To this end, ProSAS stores the recently requested non-

critical events. It also marks if the event is a potential future event

(based on the outcome of the step in Section 3.3.2). Furthermore,

it preserves the proactive actions (if any) that have been taken for

that event (in the step in Section 3.3.3). For this step, ProSAS

maintains a table (which is implemented as a cache and detailed

in Section 4) with three attributes: Recent Events, N-cp < N-th,

and Actions Taken. We further demonstrate its usage through the

following example.

Example 7 Table 4 shows an excerpt of the list with the details

of three recent non-critical events. The create VM event is

observed first. Its distance from the critical event update port

is lower than the threshold, and hence, no proactive action is

taken. Second, the create port event occurs. Its probability

is smaller than the threshold and hence, an insertion into the

watchlist for the no bypass security policy is performed. Third,

similarly for the delete VM event, a parameter is removed from

the watchlist for another policy, named no_ downgrade.

Recent Events N-cp < N-th Actions Taken

Create VM No -

Create Port Yes Insert into no_bypass watchlist

Delete VM Yes Remove from no_downgrade watchlist

TABLE 4: An excerpt of preserving recent actions for non-critical

events

3.4.2 Preserving Recent Actions on Critical Events

The following step is to preserve the recent actions (e.g., updating

watchlists) taken by ProSAS for a critical event. To this end, it

stores a list of recently requested critical events. Additionally, it

preserves the newly added parameters to a watchlist (reported

from the output of the step in Section 3.3.3). Similarly, it also

stores recently removed parameters from a watchlist. For this step,

ProSAS maintains a table (which is implemented as a cache and

detailed in Section 4) with three attributes: Recent Events, Recently

Added, and Recently Removed. We further demonstrate its usage

through the following example.

Example 8 Table 5 shows an excerpt of the list with the updates

on the watchlists for three recent critical events. The Update

Port event is the most recent critical event, for which, 1257,

1421, and 1109 port IDs are recently added to the watchlist

and 2311, 1765, and 1321 port IDs are recently removed from
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the watchlist. Similarly, ProSAS stores the recent updates in the

watchlists for the Add Security Group Rule, and Delete

Security Group Rule critical events.

Recent Events Recently Added Recently Removed

Update Port Port IDs: 1257, 1421, 1109 Port IDs: 2311, 1765, 1321

Add Security Group Rule VM IDs: 1788, 2537, 1733 VM IDs: 1921, 2139, 1165

Delete Security Group Rule VM IDs: 1921, 2139, 1165 VM IDs: 1788, 2537, 1733

TABLE 5: An excerpt of preserving recent actions for critical

events

3.4.3 Utilizing Verification Actions/Results

The final step is to utilize these actions/results in taking proactive

measures or runtime enforcement decisions, respectively, depend-

ing on the type of the current event (e.g., critical or non-critical).

Utilizing Verification Actions. If the current event is a non-

critical event, then ProSAS utilizes the recent results for taking

proactive actions. To this end, it first searches the name of the

current event in the list, (if found) then records the action to be

taken for this event, and finally executes that action using the steps

described in Section 3.3.3. If the event is not found in the list of

recent events, then ProSAS decides about the proactive actions

by performing the steps described in Section 3.3.2. This step is

further illustrated in Example 9.

Utilizing Verification Results. If the current event is a critical

event, then ProSAS utilizes the recent results for taking runtime

enforcement decisions. To this end, it first searches the currently

requested event parameters in the recent updates of the watchlists

for this event, and (if found) takes enforcement decisions (e.g.,

allow or deny) depending on its presence in the list of "recently

added" or "recently removed", respectively. In case the requested

parameter is not found in the recent results, then ProSAS checks

the entire watchlist.

Example 9 For this example, we consider the recent results in Ta-

ble 5 and three runtime events: add security group rule

(2537), update port (1321), and delete security

group rule (2115). First, ProSAS allows the add

security group rule (2537) event by checking the veri-

fication cache, as the VM ID 2537 is present in the recently added

attribute. Second, ProSAS denies the update port (1321)

event, as the port ID 1321 is found in the recently removed

list. Third, ProSAS requires to check further in the entire watch-

list to verify the delete security group rule (2115)

event, as the VM ID 2115 is not in the recent results.

4 IMPLEMENTATION

This section describes how we integrate ProSAS into OpenStack.

4.1 Architecture

Fig. 8 shows a high-level architecture of ProSAS. ProSAS con-

sists of four major components: dashboard & reporting engine,

interceptor, learning engine, and verification engine. The dash-

board & reporting engine provides an interface to ProSAS users.

The interceptor is placed within the cloud as a middleware, in

between the cloud dashboard or command line interface and

different services (e.g., Nova, Neutron, Swift, etc. in OpenStack);

which intercepts all tenant initiated events and forwards them to

ProSAS, and enforces its security decisions (e.g., allow or deny).

Fig. 8: A high-level architecture of ProSAS

The learning engine first learns critical events using a formal

verification tool (e.g., Sugar [27]) on cloud configurations (e.g.,

OpenStack databases), then learns dependency models from the

logs of different cloud services (e.g., Nova, Neutron, Swift, etc.

in OpenStack) and Bayesian network and time-series model, and

finally initializes all other inputs of ProSAS. In the verification

engine, the event manager contains caches for both actions and

results, N-step evaluator measures N for each critical event from

the intercepted event using the current cloud context, and the

proactive verifier queries the caches or watchlist databases to

verify the parameters of the intercepted events.

4.2 Integration to OpenStack

This section discusses the implementation of ProSAS for Open-

Stack [17], which is an open-source cloud management platform.

Interceptor Middleware. The interceptor module, which is im-

plemented in Python, intercepts operations based on the existing

intercepting methods (e.g., audit middleware [41]) supported in

OpenStack. We intercept event instances requested to the Nova

service, as they are passed through the Nova pipeline, having the

ProSAS middleware inserted in the pipeline. The body of requests,

contained in the wsgi.input attribute of the intercepted requests,

is scrutinized to identify the type of requested events. Also, we

map all operations in OpenStack API [37] corresponding to the

events that are relevant to the monitored security policies. Finally,

the interceptor determines the criticality of the current event, and

forwards the intercepted event details (e.g., type and parameters)

to the following module.

Learning Engine. To learn the critical events (C.E.), the learning

engine periodically invokes the formal verification tool (e.g., [10],

[11]) to verify OpenStack configurations for the requested security

policies. Whenever, the verification tool finds any violation, the

C.E. learner collects event logs from the corresponding OpenStack

service (e.g., Neutron, Nova and Swift). Finally, this engine filters

out all system-initiated events (i.e., GET requests) and identify

event type of other requests (i.e., PUT, POST and DELETE)

based on its request body. Also, to learn the dependency model,

the learning engine first utilizes Logstash [42], a data processing

engine, and Python scripts to pre-process raw cloud logs and

obtain event sequences and their frequency and intervals. Next, it

leverages a Python Bayesian Network toolbox1 to derive the prob-

abilistic dependencies. Finally, the obtained Bayesian networks

are provided to a time-series predictor, ARMAX [40], which is

1. https://pypi.org/project/pgmpy/
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a widely used method in prediction of stochastic processes in

various fields. Algorithm 1 shows the learning steps as follows.

Algorithm 1: Learning Engine

procedure LEARN C.E.(policies, interval, CloudOS)
while true do

for each policy pi ∈ policies do
results= verifyOffline(CloudOS, pi)
if results= “Violated” then

deltaLog= collectLogs((currentTime-interval), pi)
Feedbacki= filterLogs(deltaLog)
consultExpert(Feedbacki)

Wait(interval)

procedure LEARN DEP. MODEL(Logs, Interval)
for each timePeriod ti ∈ T do

bayesianNetwork = prepareBN(Logsti )
Model = buildModel(bayesianNetwork, Intervals)

Event Manager. The event manager, which is mainly imple-

mented as a cache in Python, preserves recent proactive ac-

tions/results. We implement two types of caching mechanisms:

least recent update (LRU) and most recent update (MRU). Both

cache memories are implemented as hash maps, and the man-

agement of caches is maintained using doubly linked list. Hash

map maintains records of data in the form of key value pairs

in which data is stored in value, and key is the hash value.

If the value is found in the cache, then we utilize either the

results or the actions stored on the cache to skip the step to

check the entire watchlist, or figure out what proactive actions

to perform, respectively. Furthermore, to handle the concurrent

events, ProSAS leverages the Python library EventQueue2 so that

events are handled sequentially (in case). Algorithm 2 shows the

functionalities of the event manager.

Algorithm 2: Event Manager

procedure BUILDCACHE(cache-type, event , cache-algo)
if cache(cache-type) is full then

removeCache(cache-type, cache-algo)

updateCache(cache-type, event)

procedure SEARCHCACHE(cache-type, event)
if event-type is “critical” then

if event.type in cache & event.params in recently added then
return “allow”

else if event.type in cache & event.params in recently

removed then
return “deny”

else
proactiveVerify(event , policies)

else if event-type is “non-critical” then
if event.type in cache & N-cp > N-th then

return
else if event.type in cache & N-cp <= N-th then

performs actions mentioned in the cache
else

update-watchlist(WL, policies, event.params)

Proactive Verification Engine. Our proactive verification engine

is mainly implemented in Python, and our tenant-specific watch-

lists are in a MySQL database, which allows us to efficiently query

OpenStack cloud data. The initializer module first populates all

watchlist tables from Neutron, Nova and Keystone databases; this

step allows to capture the initial configurations into the watchlists.

Algorithm 3 further details the steps of the verification engine.

2. https://m7i.org/tutorials/python-event-queue-concurrency-modeling/

Algorithm 3: Proactive Verification Engine

procedure BUILDWATCHISTS(CloudOS, policy-WL)
for each policy pi ∈ Policies do

WLi= initializeWatchlist(pi, policy-WL, CloudOS)

procedure UPDATEWATCHISTS(WL, policy, parameters)
updateWatchlist(WL, policy, parameters)

procedure EVALUATENSTEP(Event , Policies, Model)
for each policy pi ∈ Policies do

Find N-th for pi from policy-N-thresholds
Find entities in Model related to p

context = CollectCloudData()
Find N-cp for pi and context from Model-N-policy

if N-cp=N-th then
updateWatchlist(pi, Event)

else if N-cp < N-th and Event .type=WE then
updateWatchlist(pi, Event)

procedure PROACTIVEVERIFY(Event, policies)
for each policy pi ∈ policies do

if Event.parameters in pi.watchlist then
Allow Event in the cloud

else
Deny Event in the cloud

Dashboard & Reporting Engine. We further implement the web

interface (i.e., dashboard) in PHP to place audit requests and view

audit reports. In the dashboard, tenant admins can initially select

different standards (e.g., ISO 27017 [34], CCM V3.0.1 [33], NIST

800-53 [36], etc.). Afterwards, security policies under the selected

standards can be chosen. Apart from the proactive enforcement

of compliance through the interceptor, the reporting engine of

ProSAS provides a detailed report on recent intercepted events.

Also, ProSAS dashboard provides a near real-time monitoring

interface showing most recent user-initiated events and their cor-

responding verification decisions taken by ProSAS. Moreover, our

reporting engine archives all the verification reports for a certain

period. Fig. 9 shows screenshots of the ProSAS dashboard.

4.3 Adapting to Other Cloud Platforms

We design ProSAS in a platform-agnostic manner so that we

can potentially adapt it to other major cloud platforms (e.g.,

OpenStack [17], Amazon EC2 [19], Google GCP [20] and

Microsoft Azure [21]). The main adaption effort includes de-

veloping platform-specific interfaces to interact with the cloud

platform (e.g., while collecting logs and intercepting runtime

events) through two modules: log processor and interceptor. In

the following, we elaborate on each of these efforts.

Building Interceptors. The responsibility of the interceptor is

to intercept runtime event requests sent to a cloud platform. The

interception mechanism may need to be implemented for each

cloud platform. In OpenStack, we leverage the WSGI middleware

to intercept and enforce the proactive auditing results so that

compliance can be preserved. Through our preliminary study, we

identified that almost all major platforms provide an option to

intercept cloud events. In Amazon using AWS Lambda functions,

developers can write their own code to intercept and monitor

events. Google GCP introduces GCP Metrics to configure charting

or alerting different critical situations. Our understanding is that

our framework can be integrated to GCP as one of the metrics

similarly as the dos_intercept_count metric, which intends to

prevent DoS attacks. The Azure Event Grid is an event managing

service from Azure to monitor and control event routing which
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Fig. 9: Screenshots of the ProSAS dashboard

is quite similar as our interception mechanism. Therefore, we

believe that our framework can be an extension of the Azure Event

Grid to proactively audit cloud events. Table 6 summarizes the

interception support in these cloud platforms.

Cloud Platform Interception Support

OpenStack WSGI Middleware [43]

Amazon EC2-VPC AWS Lambda Function [19]

Google GCP GCP Metrics [20]

Microsoft Azure Azure Event Grid [21]

TABLE 6: Interception supports to adopt our framework in major

cloud platforms

Developing Log Processors. The responsibility of the log proces-

sor is to interpret platform-specific event instances, and hence, is

required to be implemented for each platform. First, to interpret

platform-specific event instances to generic event types, we cur-

rently maintain a mapping of the APIs from different platforms.

Table 7 enlists some examples of such mappings. The rest of the

modules deal with the platform-independent data, and hence, the

next steps in ProSAS are platform-agnostic.

Generic Event Type OpenStack [17] Amazon EC2-VPC [19] Google GCP [20] Microsoft Azure

[21]

create VM POST /servers aws opsworks -region

create-instance

gcloud

compute

instances

create

az vm create

l

delete VM DELETE /servers aws opsworks -region

delete-instance

-instance-id

gcloud

compute

instances

delete

az vm delete

update VM PUT /servers aws opsworks -region

update-instance

-instance-id

gcloud

compute

instances

add-tags

az vm update

create security group POST

/v2.0/security-

groups

aws ec2

create-security-group

N/A az network

nsg create

delete security group DELETE

/v2.0/security-

groups/{security_

group_id}

aws ec2

delete-security

-group -group-name

N/A az network

nsg delete

TABLE 7: Mapping event APIs from different cloud platforms to

generic event types

5 EXPERIMENTAL RESULTS

This section first describes the experiment settings, and then

presents the experimental results with both synthetic and real data.

5.1 Experiment Settings

In the following, we describe both testbed and real cloud settings.

Testbed Cloud Settings. Our testbed cloud OpenStack version is

Mitaka with Keystone API version v3 and Neutron API version

v2. There are one controller node and 80 compute nodes, each

having Intel i7 dual core CPU and 2GB memory with the Ubuntu

16.04 server. Based on a recent survey [44] on OpenStack, we

simulated an environment with maximum 100,000 users, 10,000

tenants, 500 domains, 100,000 VMs, 40,000 subnets, 20,000

routers and 100,000 ports. We conduct the experiments for 10

different datasets varying the most important factors and fixing

others to the largest values, e.g., for the no bypass policy, both the

number of ports (from 10,000 to 100,000 with the gap of 10,000)

and the number of tenants (from 1,000 to 10,000 with the gap of

1,000) are varied, as the watchlist related to our example security

policy contains a list of ports belonging to different tenants. For

the common ownership3 policy, the number of tenants is varied

from 1,000 to 10,000 with the gap of 1,000 having five roles in

each tenant. We repeat each experiment 100 times.

Real Cloud Settings. We further test ProSAS using data collected

from a real community cloud hosted at one of the largest telecom-

munications vendors. To this end, we analyze the management

logs (size more than 1.6 GB text-based logs) and extract 128,264

relevant log entries for the period of more than 500 days. As

Ceilometer (which is the telemetry service of OpenStack) is not

configured in this cloud, we utilize Nova and Neutron logs that

increases the log processing efforts.

5.2 Experimental Results with Testbed Clouds

The objective of the first set of experiments is to measure the effect

of the ProSAS result utilization on the response time. Fig. 10

shows the hit ratio (i.e., number of hits
total number of tries

) and the effects of our

result utilization applying two different caching mechanisms, i.e.,

least recent update (LRU) and most recent update (MRU), by

varying the size of the cache. Fig. 10(a) illustrates the hit ratio

for both LRU and MRU caches while increasing the size of the

cache. Expectedly, the hit ratio increases with the size of the cache

and reaches up to 0.93 for the 45,000 cache entries. Fig. 10(b)

shows the average response time (in nanoseconds) required when

there is a hit (i.e., intercepted event is found in the cache). In such

cases, ProSAS responds in maximum 4,000 nanoseconds for the

smallest cache size. Even though the response time for the MRU

cache drops significantly for two cache sizes (10K and 25K),

otherwise the response time for both cache types remains quite

similar. Fig. 10(c) illustrates the delay (in nanoseconds) incurred

to ProSAS due to a miss (i.e., intercepted event type is not present

in the cache). The delay remains quite similar over the different

cache sizes, and the maximum delay is 2,000 nanoseconds for the

largest cache size. As similar as in Fig. 10(b), the cache with 25K

entries results the lowest delay.

The second set of experiments is to compare the time required

to process a user request individually by OpenStack and ProSAS.

Fig. 11(a) shows the time (in seconds) to process different event

3. This policy allows users to hold only the roles that are defined within
their domains [33], [34].
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Fig. 10: Evaluation of result utilization: (a) hit ratio ( number of hits
total number of tries

) for both least recently used (LRU) and most recently used (MRU)

caches; (b) average response time (in nanoseconds) by ProSAS when the intercepted event is found in the cache for both LRU and

MRU caches; and (c) delay (in nanoseconds) caused by a miss for both LRU and MRU caches. In all cases, we vary cache size (in the

number of entries) from 1,000 to 45,000, and verify the no bypass security policy.

types by OpenStack and ProSAS. Note that the processing time

measured for OpenStack remains unaffected with or without

ProSAS. The obtained results show that OpenStack requires seven

to ten seconds to process the considered event types. In contrast,

ProSAS takes maximum 0.0082 second to process the delete

security group rule event type. We observe two major findings

from this set of experiments. Firstly, Fig. 11(a) shows that ProSAS

causes a negligible delay in comparison to the response time of

OpenStack. Secondly, the period when OpenStack processes a

request may be utilized to handle single-step violation without

resulting a significant delay; which is considered as a potential

future work.

The objective of the third set of the experiments is to measure

the accuracy gain and time requirement of our input learning

engine. Fig. 11(b) shows the number of new violations ProSAS

catches over 100 days after introducing the learning engine in it for

both common ownership and no bypass security policies. During

the first two months, we observe the highest gain. In the last 20

days, there is no new security violation. Fig. 11(c) measures the

time (in seconds) to learn critical events for the common ownership

and no bypass security policies while varying the number of

tenants up to 10,000. The critical event learning for the common

ownership and no bypass policies takes maximum 5.55 seconds

and 7.88 seconds, respectively, for our largest dataset. Note that

the reported time only includes the time to perform automatic steps

(Steps 1-3 in Section 3.2.1).

The fourth set of experiments is to demonstrate the time effi-

ciency of our proactive verification steps. Intercepting operations

to identify the type of operation, which is the minimum time we

need to block for all operations (CE and WE, and all others), is

taking constant time (0.266 ms) (INT in Fig. 12(a)). Moreover,

calculating N-step (NSE in Fig. 12(a)) completes in constant time

(0.133 ms for the largest datasets) for the no bypass (NB) policy,

and in quasi constant time (varying from 0.773 ms to 0.794 ms)

for the common ownership (CO) policy. The violation detector

blocks only critical operations for a maximum delay of 8.2 ms

(VD in Fig. 12(b)) for the largest dataset. Fig. 13(a) shows that

pre-computing the watchlists for both no bypass and common own-

ership policies take 5,000 ms and 5,400 ms, respectively, for our

largest dataset. As expected, the watchlist pre-computation step,

which involves access to the cloud databases, requires compara-

tively longer time. However, this step is performed only during the

initialization phase. Any later update of the watchlist is performed

incrementally, and takes few milliseconds. Fig. 13(a) depicts the

execution time for the largest dataset (10,000 tenants and 100,000

ports), and shows that preparing watchlist is comparatively time

consuming and beneficial to perform proactively, as we spend

about 5,400 ms in preparing watchlist during initialization. On

the other hand, the subsequent enforcement takes only 8 ms per

critical operation call at run-time.

In the fifth part of the experiments, we measure the memory

cost for the watchlists. Fig. 13(b) depicts that the memory require-

ment increases quasi linearly with the dataset size. We are able

to restrict the watchlist size in few MBs by choosing the content

of the watchlist carefully. Therefore, we show that our approach

improves the execution time without excessive memory costs.

We store role names and corresponding tenants for the common

ownership policy, and only port IDs for the no bypass policy.

Finally, Table 8 compares the execution time of ProSAS and

our alternative implementation of two existing intercept-and-check

methods [13], [15] for the common ownership (P1) and no bypass

(P2) security policies. Both policies show quite a similar nature.

Weatherman [13] causes around five seconds for our largest dataset

mainly due to its runtime effort on the entire cloud configuration.

Majumdar et al. [15] adopt an incremental approach and take up to

182 milliseconds for the largest dataset. In contrast, ProSAS expe-

riences maximum response time of 8.5 milliseconds. Furthermore,

utilizing caching, the response time in ProSAS can be reduced to

3,000 nanoseconds on average (as reported in Fig. 10(b)).

5.3 Experimental Results with Real Clouds

Table 9 summarizes the obtained results for the real cloud dataset,

which logs 5,279 event instances for the period of 506 days. For

all experiments with real data, the cache size remains 25K, and

we utilize the MRU caching technique. In these experiments, we

measure the time for different steps of ProSAS and the hit ratio

of the cache. Note that the obtained results are shorter due to the

smaller size of the community cloud compared to our much larger

simulated environment.

6 DISCUSSIONS

In this section, we discuss different aspects of ProSAS.

Reliance on Cloud Management Platforms.

ProSAS is primarily designed and implemented for cloud

management platforms (e.g., OpenStack). In the following, we
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Fig. 11: (a) Time (in seconds) required to process different requests by OpenStack and ProSAS, (b) the accuracy gain (measured in

terms of the number of new violations detected) by our learning engine over 100 days with the 10,000 tenants and (c) time (in seconds)

required to learn a list of critical events while varying the number of events for the common ownership and no bypass security policies.

Policy Number of Ports 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

P1
Weatherman [13] 585 817 1,392 1,801 2,415 3,112 3,823 4,231 4,546 5,177
Majumdar et al. [15] 85 87 92 101 115 112 123 131 146 177
ProSAS 5.928 6.09 6.916 7.016 7.496 7.815 8.024 8.14 8.453 8.501

P2
Weatherman [13] 578 785 1,129 1,711 2,289 3,443 3,837 4,545 4,991 5,555
Majumdar et al. [15] 66 78 98 107 121 126 138 149 168 182
ProSAS 5.63 6.23 6.66 6.99 7.11 7.15 7.52 7.64 8.03 8.2

TABLE 8: Comparing the execution time (in ms) between ProSAS and two existing intercept-and-check methods [13], [15] for the

common ownership (P1) and no bypass (P2) security policies

Policies Hit Ratio Pre-Compute Learning Verification (W) Verification (C) Delay
No bypass 0.71 2,500ms 5,270ms 6.2ms 1,250ns 890ns
Common ownership 0.721 1,700ms 3,150ms 5.5ms 1,000ns 810ns

TABLE 9: Summary of the experimental results with real data. The reported delay is the additional time required in ProSAS verification

for a miss in the cache. Note that Verification (W) and Verification (C) indicate the time required for verification through watchlist and

verification through cache, respectively.
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Fig. 12: Time duration (in ms) for different modules (INT: Inter-

ceptor, NSE: N-step evaluator, VD: Violation detector) of ProSAS

for the common ownership (CO) and no bypass (NB) security

policies by varying the number of tenants. The number of ports

is also varied from 10,000 to 100,000, and each tenant contains

five roles. Time required for the steps: (a) intercepting operations,

evaluating N-step, and (b) detecting violations.

discuss how different steps of ProSAS are specifically designed

for the cloud context. First, all of our steps during learning inputs

(in Section 3.2) are based on configurations and logs at the cloud

management level; where the contents and formats of both con-

figurations and logs are heavily dependent on cloud management

platforms (e.g., OpenStack, Microsoft Azure). Consequently, the

obtained list of critical events and dependency models from these

steps only include cloud management operations. For instance,

cloud configurations for different services (e.g., computing, net-

working) in OpenStack are stored in different databases (e.g.,

Nova, Neutron), respectively, and configurations for each cloud

element (e.g., tenant, VM, network, subnet, etc.) are stored in
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Fig. 13: (a) Time required (in ms) for preparing watchlist for

different policies varying the number of tenants at the initialization

step. (b) Memory requirement (in MB) for watchlists processing

for different security policies by varying the number of tenants.

Number of ports is also varied from 10,000 to 100,000 , and each

tenant contains five roles.

various tables. Therefore, ProSAS collects and processes configu-

rations from those various databases and their tables, and converts

them into the format of the learning tools (e.g., CSP solver for

offline auditing and Bayesian network for learning dependency).

Additionally, logs in OpenStack are segregated among different

services (e.g., computing, networking) and log entries are stored

as a REST APIs (e.g., the log entry POST /v2/servers

HTTP/1.1 indicates the event type create VM). As a result, we

obtain cloud-specific critical events (as shown in Tables 1 and 2)

and dependency models (in Figure 5).

Second, all major steps for our proactive security verification

(in Section 3.3) and verification result utilization (in Section 3.4)

are based on runtime events at the cloud management level;
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where both interception mechanisms and formats (e.g., event types

and parameters) of runtime events are solely dependent on cloud

management platforms. Consequently, watchlist contents are also

in the cloud context where it stores various cloud elements (e.g.,

VM IDs, port IDs, etc.) depending on the security policies. There-

fore, we require to design specific methods that can intercept,

interpret, and block (if needed) runtime events to conduct proac-

tive security verification. For instance, in OpenStack, ProSAS

intercepts management operations (e.g., create VM, create tenant,

add network) requested to different cloud services (e.g., Nova,

Neutron), as they are passed through a service pipeline having the

ProSAS middleware inserted in the pipeline. Additionally, ProSAS

maintains a mapping between operations in OpenStack API (e.g.,

POST /v2.0/ports.json HTTP/1.1) and generic cloud

event types (e.g., create port) to interpret intercepted events. As

a result, our watchlists also contain cloud-specific data, e.g., port

IDs except VM ports for the No bypass policy. Moreover, ProSAS

enforces verification results (e.g., allow/deny) on OpenStack by

leveraging the aforementioned middleware.

Challenges in Adapting to Other IT Systems. Even though the

high-level idea of proactive security auditing in ProSAS might be

potentially applicable to many other IT management systems, the

research challenges involved in its each step are still not explored.

For instance, the logging systems (including abstraction level of

logging information and log formats) significantly vary depending

on targeted systems. Additionally, dependency models and secu-

rity policies along with their corresponding watchlist contents and

critical events require to be identified for each system. Moreover,

runtime operation interception and security enforcement depend

on the design of a system. Furthermore, there might be additional

unknown challenges for each system that need to be addressed to

enable proactive security auditing in a system.

Effects of Change in Cloud Design. As our experiment results

shown in Section 5, ProSAS can verify security policies for large

size cloud in only few milliseconds at runtime. There could be

certain cases where the pre-computed information used at runtime

needs to be updated. For instance, when a change in the cloud

dependency or in the cloud management API specifications occurs,

or when including a new security policy, the ProSAS initialization

must be repeated. Even though this re-initialization may take

several minutes, this task can be executed in parallel with runtime

verification. Also above-mentioned changes are not frequent by

nature.

Correctness of Our Approach. The correctness of our au-

diting approach can be derived from the underlying constraint

satisfaction problems (CSP) solving technique, which is a well-

established formal verification technique whose correctness has

been extensively discussed in the literature (e.g., [28], [29], [30],

[31], [45]). Specifically, a CSP solver is guaranteed to produce

sound results in the sense that any violation of a policy can

be identified as long as the provided inputs contain supporting

data of a violation [28], [45]. ProSAS leverages a CSP solver

to learn critical events (in Section 3.2), which are later used in

proactive security auditing to prevent future security breaches

and any false positive or false negative resulted from those tools

would be inherited and led to wrong or missing critical events,

respectively. Particularly, using a CSP solver, ProSAS mainly

performs incremental verification (which verifies security policies

on a system data for a specific time period as described in

Section 3.2.1). The incremental verification of a given security

policy involves instantiating and solving the policy predicates for

the affected elements in the supports of the involved relations.

Therefore, any modification to the system data resulted from cloud

events (e.g., create VM, create tenant, grant role, delete role, etc.)

would not directly change the security policy expression itself

although the corresponding support may need to be changed.

For example, if a role is granted, the only change is that the

relationships involving the entity role in the model would include

a new element in their supports. Similarly, if a role is deleted, the

relations involving the entity representing the deleted role would

have their supports decreased by the tuples including that role.

Consequently, any modification to the system data (in the relation

supports) only leads to an increase or decrease of the number

of predicates instances to be solved to verify the entire system

without affecting its soundness.

Supporting Operational Policies. The policies involving ses-

sion/context specific data are not considered in this work. In our

running example, if the malicious tenant can somehow success-

fully bypass the firewall rules and launch a spoofing attack, our

solution cannot yet detect such spoofing attacks. As our solution

relies on the information reported through the management in-

terface, any verification by extracting the information from the

actual infrastructure components (e.g., virtual or hardware) is

not covered in this paper and considered as a potential future

work. Additionally, resolving any conflicts or other issues (e.g.,

ambiguous, incomplete) in a policy description is beyond the

scope of this work and considered as a potential future work.

Dealing with One-Step Security Breaches. The proactive au-

diting mechanisms fundamentally leverage the dependency in a

sequence of events. In other words, proactive security auditing is

mainly to detect those violations which involve multiple steps.

However, there might be violations of the considered security

policies with a single step. Such violations cannot be detected

by the traditional steps of proactive auditing with the same

response time as reported in Figure 12(b), and may be detected by

performing all auditing steps at a single point in several seconds

(e.g., around six seconds for a decent-sized cloud with 10,000

tenants as shown in Figure 13(a)); which is still faster than any

other existing works, e.g., [13], (which responds in minutes).

However, this response time might not be very practical. To

reduce the response time or at least not to cause any significant

delay, we perform a preliminary study as follows. Our initial

results conducted in the testbed cloud show that OpenStack takes

more than six seconds to perform almost all user requests; which

implies the possibility of not resulting in any additional delay

by ProSAS even for a single-step violation. Additionally, during

our case studies, we observed that OpenStack performs several

system events to complete a user request. We may leverage this

sequence of system events corresponding to a single user request

to proactively perform ProSAS steps. We will elaborate those two

ways of tackling single-step violations in our future work.

Choosing the Threshold Value. As presented in Section 3,

ProSAS triggers the proactive verification when the probability

(N-cp) from the current intercepted event to a critical event is

greater than a threshold value (N-th). The ProSAS users (e.g.,

security experts and/or tenant admins) choose the value of N-th.

Within the range of 0 to 1, choosing a lower value may allow

ProSAS more time to perform the proactive verification. However,

it may cause less accurate predictions (i.e., less predicted events

will actually appear in the reality) and hence, less portion of the
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precomputed results can be useful. On the other hand, choosing

a higher N-th may allow a precise precomputed result. However,

in that case, ProSAS may not get enough time to perform the

proactive security verification step before the critical event occurs.

7 RELATED WORK

In this section, we first compare existing solutions with ProSAS,

and then discuss several categories of related works.

7.1 Comparison between Related Works

Table 10 summarizes the comparison between existing works and

ProSAS. The first and second columns enlist existing works and

their verification methods. The next two columns compare the

coverage such as supported environment (cloud or non-cloud) and

cloud layers (virtual infrastructure and/or user-level). We mark

‘both’, if a work supports both virtual infrastructure and user-

level cloud layers. The next six columns compare these works

according to different features. The proactive feature is checked

when a solution supports proactive verification. When a solution

enforces the verification results on the cloud at runtime, we check

the runtime enforcement (runtime-enforce.) feature. The utilizing-

results feature is checked, when a work optimizes its verification

computation by storing previous results. The queuing feature

refers to handling concurrent events for runtime solutions, and we

mark this feature as ‘N/A’ for the works that do not support the

runime feature. The expressive feature is checked for the works,

which utilize well-known expressive policy languages (e.g., first

order logic, and declarative logic) to express policies. The model-

learning feature refers to the works which automatically establish

their models. In the last four columns of the table, we compare the

works based on their supporting cloud platforms. The adaptable

field is checked if a work supports multiple cloud platforms or

describes how it can be ported to other platforms.

In summary, ProSAS mainly differs from the state-of-the-art

works as follows. Firstly, ProSAS is the first proactive auditing

approach, which automatically learns its models (e.g., event de-

pendencies and critical events). Secondly, ProSAS is the only

proactive auditing solution, which utilizes the recent verification

computations and results and reduces the response time to few

hundreds nanoseconds. Thirdly, unlike other proactive solutions,

ProSAS can handle concurrent events by maintaining an event

queue. Finally, the ProSAS methodology is cloud-platform agnos-

tic. However, there are still few limitations in ProSAS. ProSAS is

less expressive than other general purpose formal verification ap-

proaches. ProSAS partially rely on an initial list of critical events

provided by tenant admins or security experts. In the following,

we discuss existing works from several related categories.

7.2 Cloud Security Auditing

In the following, we discuss the existing solutions in cloud security

auditing under three major categories: retroactive, intercept-and-

check, and proactive.

Retroactive Auditing Approach. Auditing security compliance

in the cloud has recently been explored. For instance, Solonas

et al. [51] detect illegal activities in the cloud only based on

collected billing data in order to preserve privacy. In [10], [11],

formal auditing approaches are proposed for security compliance

checking in the cloud. Unlike our work, those approaches can

detect violations only after they occur, which may expose the

system to high risks.

VeriFlow [52] and NetPlumber [53] monitor network events

and check network policies and policies at runtime to capture

bugs before or as soon as they occur. They rely on incremental

calculations to achieve the runtime verification. These works focus

on operational network policies (e.g., black holes and forwarding

loops) in traditional networks, whereas our effort is oriented

toward preserving compliance with structural security policies that

impact isolation in cloud virtualized infrastructures.

Various mechanisms and concepts for designing security

service-level-agreement-based cloud monitoring services have

been discussed in [54]. CloudSec [55] and CloudMonatt [56]

propose VM security monitoring. Our work covers a larger spec-

trum of policies (beyond the scope of VMs) that require collecting

data from various sources. In addition, unlike intercepting security

measurements, we intercept multiple kinds of events and assess

their impact on the cloud system before applying them. In [57], a

host-based secure active monitoring mechanism, where protected

hooks into untrusted VMs are installed to intercept malicious

events, is proposed. Once a malicious action is intercepted, the

control is transferred to security tools running on a trusted VM.

They detect unwanted operations initiated by malicious software;

whereas, our contribution is at a higher level covering events

initiated by potentially untrusted users.

Intercept-and-Check Approach. Existing intercept-and-check

approaches (e.g., [13], [14]) perform major verification tasks while

holding the event instances blocked, and usually cause significant

delay to a user request. There are several other works (e.g., [52],

[53]) monitoring network events and checking network policies

at runtime. Weatherman [13] and OpenStack Congress [14] offer

security verification of virtual infrastructure using the intercept-

and-check approach. These works focus on operational network

policies (e.g., black holes and forwarding loops) in traditional

networks, whereas our effort is oriented toward preserving com-

pliance with structural security policies that impact isolation in a

virtualized infrastructure.

Proactive Auditing Approach. Existing proactive auditing ap-

proaches (e.g., [13], [14], [49] perform the major steps of an

auditing in advance. Weatherman [13] and Congress [14] offer an

offline proactive auditing approach, where the auditing process is

performed on a future change plan provided by tenant admin. Un-

like those works, LeaPS [49] and PVSC [22] automatically predict

future critical events to conduct proactive auditing. However, both

LeaPS and PVSC rely on manual identification of critical events

and redo all proactive and runtime steps even for recurring events.

Whereas, ProSAS overcomes all those limitations by learning

its inputs (e.g., dependencies and critical events), and utilizing

previous results.

7.3 Other Proactive Security Approaches

Proactive security analysis is explored for software security en-

forcement through monitoring programs’ behaviors and taking

specific actions (e.g., warning) in case security policies are vi-

olated. Many state-based formal models are proposed for those

program monitors over the last two decades. First, Schneider [58]

models program monitors using an infinite-state-automata model

to enforce safety policies. Those automata recognize invalid be-

haviors and halt the target application before the violation occurs.
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Doelitzscher et al. [46] Custom Algorithm Cloud Virtual Infr. - - - • N/A - • - - •

Ullah et al. [47] Custom Algorithm Cloud Virtual Infr. - - - • N/A - • - - -

Majumdar et al. [11] CSP Solver Cloud User-level - - - • N/A • • - - -

Madi et al. [10] CSP Solver Cloud Virtual Infr. - - - • N/A • • - - -
Majumdar et al. [15] CSP Solver Cloud User-level - • - • - • • - - -

Ligatti et al. [48] Model Checking Non-Cloud N/A • • - - • • N/A N/A N/A N/A

PVSC [22] Custom Algorithm Cloud Both • • - - - - • - - -
LeaPS [49] Custom + Bayesian Cloud Both • • - - - - • - - •

Weatherman [13] Graph-theoretic Cloud Virtual Infr. • - - • - - - - • -

Congress [14] Datalog Cloud Both • - - - • - • - - -
Patron [50] Custom Algorithm Cloud User-level - • • - • • • - - -

ProSAS Custom Algorithm Cloud Both • • • • • ◦ • - - •

TABLE 10: Comparing existing solutions with ProSAS. The symbols (•), (◦), (-) and N/A mean fully supported, partially supported,

not supported and not applicable, respectively. The (◦) symbol is used when a work supports a feature partially, but less than other

works that support the same feature fully.

Ligatti [59] builds on Schneider’s model and defines a more gen-

eral program monitors model based on the so called edit/security

automata. Rather than just recognizing executions, edit automata-

based monitors are able to suppress bad and/or insert new actions,

transforming hence invalid executions into valid ones. Mandatory

Result Automata is proposed by Ligatti et al. [48], [60] that

can transform both actions and results. Narain [61] proactively

generates correct network configurations using the model finder

Alloy. Our work further expands the proactive monitoring into

cloud environments differing in scope and approach.

8 CONCLUSION

The continuous auditing with scalability and practical response

time is important to both cloud providers and their tenants. In

this paper, we proposed a proactive security auditing system,

namely, ProSAS, which significantly reduces the response time

and enforces the auditing results on the cloud before any violation

can take effect. More specifically, ProSAS first established its

models (e.g., dependency model and critical events). Second, it

conducted proactive security verification by leveraging its models.

Finally, it utilized those verification results to enforce security on

the cloud at runtime. We integrated ProSAS to OpenStack, one

of the most popular cloud management platforms, and provided

guidelines to port it to other major cloud platforms. Furthermore,

we evaluated the efficiency and accuracy of our method, and

showed that the response time is reduced to a practical level.

However, there exist several limitations in ProSAS, which we

consider as future works. First, the current method of learning

critical events needs a manual inspection, which could be further

automated by using machine learning techniques to select the final

candidate. Second, a single-step violation is not yet efficiently

handled in ProSAS. An efficient runtime approach might help to

address this concern.
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