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Abstract—Due to the recent development in the deep learning
community and the availability of state-of-the-art models, medical
practitioners are getting more interested in computer vision
and deep learning for diagnosis tasks. Moreover, those medical
diagnostic models can also increase the reliability of conventional
findings. As radiology images can convey a lot of information for
a patient’s diagnosis task, the problem is that such medical data
may contain sensitive private information in their content header.
De-anonymization (i.e., removal of sensitive header information)
does not work well due to the re-identification risk, which may
link those images to essential details (e.g., birth date, SSN,
institution name, etc.), and such an approach can also reduce
utility. In the medical domain, utility is significant because
a less accurate diagnosis may lead to the wrong course of
treatment and/or loss of life. In this paper, we developed a
differentially private approach that can generate high-quality and
high dimensional synthetic medical image data with guaranteed
differential privacy. It can be used to create sufficient quality data
to train a deep model. Moreover, we used W-GAN for bounded
gradient guarantee, which eliminates the need for an extensive
clipping hyperparameter search. We also added noise selectively
to the generator to maintain the privacy-utility trade-off. Due to
a noise-free discriminator and such selective noise addition to the
generator, high-quality and reliable generated radiology images
can be utilized for diagnosis tasks. Moreover, our approach can
work in a distributed system where different hospitals can contain
their private images in the local server and use a central server
to generate synthetic radiology images without storing patient
data.

Index Terms—Privacy, medical imaging, synthetic data, gen-
erative adversarial network (GAN), synthetic data generation,
Renyi differential privacy, re-identification

I. INTRODUCTION

The popularity of deep-learning models’ computation power
encourages medical professionals to solve many diagnosis
problems. Particularly, some medical sectors require a lot of
time and huge human resources to do their job. For example,
identifying some diseases needs to analyze the previous history
of patients, so it takes a lot of time. Wherever ones need
to calculate any sequence of diseases, they have to wait a
few days or months due to limited diagnostic tools. Because
of the high proficiency and computation power, in modern
days, machine learning is taking part in this sector so that
it can solve disease analysis problems in much reduced time
and more efficiently. It is also reducing the necessity for a
huge workforce and experienced professionals. One problem

is that medical datasets are difficult to use in modeling as they
are associated with personal information and preserving such
health data’s privacy is crucial [3, 9, 47].

However, in our study, we focus on privacy concerns for
using sensitive datasets—e.g., magnetic resonance imaging
(MRI), computerized tomography (CT) scans, X -rays, or
breast cancer datasets, which can also have a marker indi-
cating who the real person could be—in medical research.
Though deep-learning techniques show tremendous outcomes
for pneumonia or Coronavirus Disease 2019 (COVID-19) de-
tection, medical institutes are still not supportive of providing
enough data due to privacy issues. Users are not willing
to provide sensitive information in public. X-ray images in
DICOM (digital imaging and communications in medicine)
files are structured so that the cover sheets baked into such
DICOM files include patients’ sensitive information for iden-
tification purposes. They may include the patient’s date of
birth, sensitive diagnosis information, the name of clinical
institutions, etc. Sometimes, hospital databases use patients’
social security numbers (SSNs) to identify those files in the
system. Such sensitive information leakage could link them to
another sensitive dataset using those identifiers. This kind of
privacy breach will be harmful to the patients. Medical data
privacy is underestimated in most computer vision and privacy
research, but such harmful consequences should be addressed
soon. US federal law restricts ones from using patients’ private
data, but such deep models need as much data as possible.
They follow some de-anonymization approaches or content
removal approaches (e.g., skull stripping for MRI data), which
removes such identifying attributes from the image header in
X-ray images. But, as the protocol for X-ray images differs
worldwide, standardizing such an approach is not feasible.
Moreover, adversary models can detect another X-ray image
of a similar person that matches that de-identified X-ray image
containing all the sensitive information. Such images can be
re-identified using deep learning models with 95.55% accuracy
[34]. Such de-identification and content removal also reduce
model utility.

These models can even identify the person using that re-
identified image. On the other hand, deep-learning models are
data-hungry; as long as ones provide enough data, the model
can learn efficiently. In these circumstances, our goal is to
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build a generative model where generated data will efficiently
diagnose radiology images and X-ray images using synthetic
data without having any direct dataset from the medical insti-
tutes. The authority will only provide a deep generative model
trained from their pneumonia detection datasets. Depending
on this trained model, we will synthesize the X-ray images,
and using this synthetic data, we will train our final predictive
model. During training, we will use a regularized model so that
it cannot memorize the synthetic data, as previous works [39]
indicated that regularization can reduce membership inference
attacks also. We expect to develop realistic synthetic data that
preserve all statistical contents of real data and develop an
efficient and reliable predictive model that can yield satis-
factory performance on such diagnoses using our generated
data. Our main motivation is that our approach should need a
simple model and the generator only to generate data for that
predictive model, which will not cause any privacy leakage.
Our generator itself is differentially private, and the used
artificial data does not belong to any real patients. In our
framework, we add noise to the generator’s gradient only but
not to the discriminator so that generated data is differentially
private. Such private modeling will ensure that data privacy is
preserved. The model’s features or weights cannot be accessed
by third party for exploiting learned weights to reconstruct
original source data. Reverse engineering utilizing that privacy
preserving model will not be feasible anymore because the
noise will be injected into the encoded weights, so the model
itself is private. Such an approach will encourage medical
institutions to share more data, and such synthetic data are
less expensive to collect and can be larger in quantity than
real data.

Previous differential private generative adversarial networks
(GANs) [7, 16, 29, 43, 48] recent performance encouraged us
to use GANs for deferentially private synthetic data generation
using deferentially private stochastic gradient descent. But,
most of those approaches (e.g., DP GAN, PATE GAN) do not
work well for high dimensional data generation. They per-
formed generation task for simple MNIST, F-MNIST dataset
where the images are not that complex to learn and such ap-
proach’s data generation quality deteriorates with higher noise.
We took an approach to reduce the noisy data problem where
we will ensure a private generator not a private discriminator
as in reality. We need to release the trained generator for public
use. And, if we can ensure a more reliable discriminator where
most of the gradient information is preserved then we can
ensure high fidelity data generation with differential privacy
guarantee. We adapt W-GAN [4], which uses Wasserstein loss
with 1-Lispchitz condition to ensure that gradient norms are
within a value range of 1. So, such implicit gradient clipping
with bounded sensitivity reduces the need for clipping param-
eter tuning for GAN. In previous approaches, choosing the
clipping bound was a very difficult task as it is also sensitive
to other hyper parameters, like batch size, learning rate etc. In
contrast, we solve this problem by using W-GAN where the
implicit theory behind W-GAN’s 1-Lispchitz condition ensures
that the gradient of the generator is bounded by 1 value without

explicitly searching for clipping hyperparameter.
Our key contributions of this paper include:
• We designed a differentially private approach to generate

both reliable and private radiography image with selective
noise addition (via W-GAN-based architecture) for the
first time, ensuring 76% accuracy, which is satisfactory
(close to real data).

• Our approach can preserve higher utility by applying
selective gradient sanitization. We apply sanitization only
to the generator and not to the discriminator like previous
approaches to ensure more stable training with reliable
data.

• We ensure implicit noise clipping and sensitivity bound
of training using Wasserstein loss property of W-GAN
[4, 20] that guarantee the gradient is within a limit of 1
(due to 1-Lipschitz condition). It eliminates the need to
search for a perfect clipping value that is sensitive and
may cause bias.

• We utilize a simple notion of privacy, ensuring that the
deeper architecture can be trained with a feasible privacy
budget. So, such notion will allow researchers to exploit
deeper models for private data generation.

• Our novel synthetic and private medical data generation
method works both in federated and distributed setting
under untrusted server assumptions. It ensures that we can
also use such an approach if we do not trust a centralized
server to store the client’s private data and the client only
receives the noisy gradient, so the dishonest client cannot
access other clients’ data via model weights.

The remainder of this paper is organized as follows. Next
section gives background and related works. Section III de-
scribes our approach for generating privacy preserving syn-
thetic medical data. Evaluation results are shown in Section IV.
Conclusions are drawn in Section V.

II. BACKGROUND AND RELATED WORKS

A. Background

In this section, let us review a few definitions: Generative
adversarial networks (GANs), differential privacy (DP), Renyi
DP, and Gaussian noise.

Generative adversarial networks (GANs) [7, 16, 29, 43,
48] are the approach to formulate generative task using deep-
learning models. There will be an encoder based generator,
which will perform the generative tasks. The generative model
will learn the image features from training data and generate
realistic looking synthesized data from random noise. There
will be a discriminative model that will try to determine
whether the data is fake or real. In this way the criticism for the
generate data will be backpropagated and used to update the
model. In this two-player game of generator and discriminator,
the generator will improve over time to fool the discriminator
and the discriminator will become more expert in classifying
fake or real data and it will be rewarded or penalized based on
its performance. This adversarial game like Eq. (1) will help
us to learn a good mapping of the real data. It tries to minimize
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the loss of the generator G so that it generates real like image
and at the same time tries to maximize the discriminator D’s
loss so that it cannot distinguish between real and fake data.
In the beginning of the game, generator G is not that good,
and it gradually improves over time while the discriminator
D’s parallel classification task’s improvement forcefully lead
to high quality image generation incrementally:

min
G

max
D

Ex∼pdata(x)
[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (1)

For all data sets P and P’, if they differ on at most one
training example, any randomized algorithm K (for a set S
of outcome where any S ⊆ Range(K)) gives ε-differential
privacy (DP) [15]. In practice, we add δ term as a failure
probability to Eq. (2), which ensures (ε, δ)-privacy:

Pr[K(P ) ∈ S] ≤ eε × Pr[K(P ′) ∈ S] + δ (2)

Here, DP algorithm considers epsilon ε, which indicates
the upper bound of privacy loss. Particularly epsilon ε is the
metric for privacy loss due to change in the data by one
record. Lower epsilon value indicates better privacy budget but
limited utility. We have to choose ε value wisely to maintain
the utility-privacy trade-off. δ is used to relax the notion. δ
is the estimated probability of breaching the constraints of
differential privacy [15]. Here, we used differential Privacy
in the context of Machine Learning problem and K is the
generative model. Machine learning models are data hungry,
the more the data they use for training, the more accurately
they perform. In the same time in spite the availability of data,
it is also important to ensure privacy of the system against
the leakage of sensitive information. It ensures that model’s
predictive behaviour does not differ when the model has to
predict training data or test data.

Differential privacy has a tremendous contribution in current
machine learning advancement preserving privacy for data
usage. However, it also brings issues for system maintenance
cost. Machine learning model training is an iterative process
and it adds privacy cost sequentially. As a result privacy budget
restriction is becoming the major issue for developing machine
learning model. Renyi Differential Privacy (RDP) [31] solves
this issue by bringing more relaxation in DP algorithm. It
increases the accuracy of the algorithm and it also reduces
the computation cost for calculating privacy loss:

Dα(P ||P ′) =
1

α− 1
log

(
Ep′(x)

(
P (x)

P ′(x)

)α−1
)

≤ ε (3)

This equation calculates Renyi divergence of order α of a
distribution P from the distribution P’. Instead of using log
likelihood to measure privacy loss, this method equips Renyi
divergence to measure privacy loss. It will be described in
more details in Section III.

To make our generator deferentially private, we have to
ensure that each example may not have any significant impact
on the model’s encoded weight. To limit the impact of each
example on the back propagated gradient we need to add
some noise to the gradient. If D and D′ are two adjacent

dataset, then we need to add some noise to the output of a
mechanism M . If f(D) is the query function, then it will
add N noise which is parameterized by σ,C. The noise is
added to modify the distribution in 0 with standard deviation σ
following Eq. (4). In our case, we have to run the training
for multiple iterations and Gaussian noise can be a good
choice due to its additive property which will be efficient in
our method:

M(D) ≃ f(D) +N (0, σ2C2I) (4)

B. Privacy Preserving Learning

Deep learning is gaining popularity in predictive tasks. But
such models are data-hungry, and they use different types of
data scraping to collect data from all possible sources. Data
have also been collected from various hospitals. These models
are fundamental in the medical sector because they can make
the diagnostic more reliable, but they need a large amount
of data to perform well. However, using such sensitive data
from hospitals and health databases can easily cause alarming
privacy breaches. Still, previous works [2] proved that it is
possible to enforce privacy in deep neural networks with a
limited privacy budget. They introduced a differential private
variation of common stochastic gradient descent with moment
accountant technique [1], which helped to keep track of
privacy using each of the moments other than mean, variance,
and picks the tightest bounds. They clipped the gradient and
added noise, limiting the information learned from any given
example. Clipping bound C is a hyperparameter that needs to
be tuned, which is a complex process and it can cause bias.

Pepernot et al. [35] introduced a teacher and student model
concept in their PATE mechanism, which added noise to
the outcome rather than during the training process, and it
trained an ensemble of models based on multiple disjoint
datasets. So, the privacy budget increased with iteration, and
the model itself is not private. But, to make the model itself
with encoded weight differentially private, To overcome the
drawback of PATE, they proposed a new G-PATE mecha-
nism [36] where they used Gaussian distribution instead of
Laplacian distribution using Renyi differential privacy. The
student played the role of private discriminator so that the
student could learn how to extract the feature of unlabeled
public data through the adversarial battle with the pre-trained
generator. Still, the gradient needs to be subdivided into bins
manually to cope with the framework in such a method. Due
to the higher dimensionality of gradients, the noise added to
the gradient increases the privacy budget, which needs to be
minimized using unsupervised dimensionality reduction. So,
to solve those exponential privacy budget increment problems
and lower quality noisy data generation problems, we came
up with a new approach. Our approach can reduce the need
to select a proper clipping parameter and the expense of
unsupervised dimensionality reduction. DP-GAN [45] solved
the problem of privacy leakage due to training via real data-
based training, and here, this approach started to clip weight
rather than gradients. Kunar et al. [27] proposed DT-GAN
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for generating tabular synthetic data with privacy analysis by
differential privacy against membership and attribute inference
attacks. Tantipongpipat et al. [41] utilized differential privacy,
and it ensures a private synthetic data generation process that
can generate both data and label. Another approach utilized
conditional GAN [43], which provides partial privacy. We
were inspired by [10] paper’s W-GAN usage technique. But,
most of such methods targeted MNIST datasets where the
learning task is much easier than complex medical datasets.
They still have the problem of coming up with excellent
clipping value. We eliminated the need to search for an ap-
propriate clipping value using W-GAN. We also utilized high-
dimensional radiology images, and our model can generate
high-quality synthetic medical data in both centralized and
distributed settings. DP-Fed AVG GAN [5, 30] works under
the trusted server assumption. Still, it is difficult to assume
that a centralized server is trusted because we also have to be
prepared when the server becomes dishonest. Our approach
ensures a federated system where the server only receives
noisy gradients, so he cannot exploit the real data. So, it also
works under the untrusted server assumption.

C. Generative Models in the Medical Field

Most deep learning models are data-hungry, so they require
a lot of data. Directly using those public medical data creates
privacy issues. Most of those data contain a tag/header or iden-
tifier that includes the patient’s sensitive information, diagnosis
history, and hospital name. So, people are getting more into
synthetic data because synthetic data does not have private
information, and those data do not belong to any actual patient.
GAN [17] has already performed significantly well in data
generation tasks in different domains; author Skandarani et al.
[40] studied whether GANs can also work well in the medical
data sector where the generated data should be reliable enough.
Authors applied a range of generative architectures ranging
from simpler DCGAN [18, 32, 37] to heavier style GANs
[24] on cine-MRI, liver CT scan, and retina images. The study
indicated that good-performing models could develop realistic
data with higher FID scores and satisfactory performance
with U-net [38]trained on generated data for segmentation.
Bermudez et al. [8] used GAN to synthesize high-quality 2d
axial slices of MRI in an unsupervised manner also supported
by image denoising, which proved the power of deep learning
in synthetic data generation. Dai et al. [13] developed a unified
framework for generating synthetic images for multimodal
MRI. Motion in the images causes quality degradation because
of image blurring or artifacts. Johnson et al. [23] proposed
a GAN model that can predict quality brain images from
corrupted data. Lei et al. [28] presented a method that can gen-
erate synthetic computed tomography (CT) images based on
dense cycle-consistent generative adversarial networks (cycle
GAN). In the case of a skin lesion for skin image analysis, a
considerable amount of labeled and high-quality data for deep
learning is lacking. Baur’s [25] framework using progressive,
growing generative model was able to generate high-quality
synthetic data compared to GAN, DCGAN [37], and LAP-

GAN [14]. Chuquicusma et al. [12] performed visual Turing
test using radiologists to check the quality of their generated
lung nodule samples. Their implicit assumption was that if
they could learn to generate realistic data using DC-GAN and
if it could fool the discriminator, then the model had known
enough discriminative embedding. Some other works also
exploited different generative methods to generate synthetic
medical data of different type. [6, 19, 33, 44]Some previous
works indicate that our radiology image generation approach is
feasible and can lead to a satisfactory solution, but those works
do not consider the privacy of the data. At the same time,
our system can work with a differential privacy guarantee.
Torfi et al. [42] addressed medical data privacy problems by
generating synthetic data with acceptable quality and standard.
Their framework used convolutional autoencoders to encode
the features and generative adversarial networks to preserve the
semantic information in the generated dataset. One positive
side of their work is that- in the case of data generation,
they followed robust method—Renyi differential privacy—
to ensure and assess the privacy confidence of a system
using such mathematical foundations, which also motivated
us. Their model yielded better performance than state-of-the-
art models based on publicly available benchmark data sets.
Still, their model does not work well under higher noise for
high-dimensional image type data. Choi et al. [11] handled
binary and count feature-based electronic health record-based
synthetic data generation using a specialized medGAN, which
does not work for images. In their framework, they incorpo-
rated autoencoder and generative adversarial networks. One
big problem in artificial data generation, mode collapse, is
a common problem that this article successfully addressed
using minibatch averaging, and it was able to ensure limited
privacy risk. But, such little privacy cannot provide patient’s
sensitive data protection properly. So, in our approach, we
incorporate relaxed differential privacy that can still generate
high fidelity image data (high-dimensional) despite a high
noise multiplier, and our artificial data can ensure higher
accuracy using simple Resnet18 model [21] also. Our approach
solves the problem of mode collapse using Wasserstein loss,
which works much better than regular binary cross-entropy
loss, and it also ensures private data generation. Mode collapse
indicate a situation where the generator can only generate a
single or small set of output, which reduces diversity among
generated images.

III. OUR PRIVACY PRESERVING SYNTHETIC MEDICAL
DATA GENERATOR

We designed a privacy-preserving method to generate syn-
thetic data. In our case, we have utilized Wasserstein GAN
for a specific purpose. Some of the previous approaches
[11, 19, 44, 46] tried to generate medical data but without
a privacy guarantee and yielded low-medium utility. Some
methods are developed using DP-SGD using generative archi-
tecture. But, they used gradient clipping for both discriminator
and generator. But We used a different approach to exploit the
gradient in the generator to ensure privacy-preserving data.
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Instead of using a regular optimizer, We have used DP-SGD
optimizer following previous techniques. We also used fully
convolutional architecture instead of Multi Layer Perceptron to
capture sensitive medical images’ semantic and spatial infor-
mation. We used W-GAN as it works slightly better to battle
mode collapse. We utilized the implicit 1-Lipschitz distance
property of W-GAN to avoid the crucial hyperparameter tuning
for gradient clipping. A proper hyperparameter C helps set the
gradient clipping bound, but it sometimes causes bias and takes
time to develop an optimal value. But, 1-Lipschitz continuity
in our GAN helps keep the gradient norm within a range of 1,
which implicitly ensures gradient clipping during the training
process without explicitly setting a proper clipping the value.
So with the synergy of Renyi differential privacy and such
gradient penalty based on the unique property of WGAN, our
GAN can generate high-quality synthetic medical data. Using
fake and real image-based comparative loss instead of binary
cross-entropy and other techniques also helped increase the
variation of the trained data, which allowed the target classifier
models to generalize well.

A. Renyi Differential Privacy Implementation

In previous ε-DP approaches, the model creates some prob-
lems due to noise accumulation using strong composition [15].
As deep learning is an iterative process, noise upper bound
gets multiplied with several training epochs. As we subsample
images for micro-batch, subsampling also leads to high noise
upper bound. Such loose upper bound increases the overall
privacy cost. Generating data with privacy requires tracking the
privacy budget and preserving the privacy of the generated data
as each iteration requires adding noise. Hence, such an iterative
learning process leads to a high privacy budget. But we need to
minimize the privacy budget, and such an exponential increase
in privacy budget may lead to a loose privacy upper bound.
Such an upper bound with high noise deteriorate the quality of
the image. So, we need to use the Gaussian method to preserve
privacy and keep the privacy bound more tightly under the
composition mechanism. Such a Gaussian mechanism with
a higher spread and lower peak helps maintain noise bal-
ance, but (ε, δ)-privacy does not allow usage of the Gaussian
mechanism. To exploit the Gaussian mechanism and ensure
a tighter privacy upper bound, we used a simple notion of
differential privacy, which satisfies and provides a strict upper
bound. Instead of looking at the log ratio of probabilities,
this privacy mechanism looks at the distance. This privacy
technique ensures a strong guarantee under composition, and
it is well suited to the Gaussian mechanism. Gaussian dis-
tribution has a less sharp peak, and 95% of the data stays
within two standard deviations of the distribution, ensuring the
upper bound could be much more compact and tight. Such a
strict upper bound reduces the exponential parameter growth
problem under iterations. This also satisfies ε-DP privacy when
λ = ∞. (λ, ε)-RDP ensures (ε+ log(1/δ)

λ−1 )-DP privacy. Using
such relaxed privacy helped us avoid overestimating privacy
loss during multiple iterations as Renyi differential privacy
supports the composition of different mechanisms where the

budget does not grow exponentially. We can consider D and
D′ as two distributions, and Pr(M(D′)) is the probability
of D after applying the generative mechanism M . λ is a
parameter of that equation. Here, different epoch’s generation
task is considered as different mechanisms:

Dλ(M(D)||M(D′(x)))

=
1

λ− 1
logEx∼M(D)

(
Pr(M(D))

Pr(M(D′))

)λ−1

≤ ε (5)

B. GAN Implementation

If G is the generator, it takes random noise z as input and
generates an image G(z) as output. In the usual case, we
provide the features, and the classifier classifies whether it
is fake or real. But, in generator G, we provided the label y
information, and a random Bernoulli or Gaussian noise z to
generate the features x̂, which are pixel values of the X-ray
image. To create variation in data, we can alter the noise z,
which will generate different pixel intensity values leading to
a slightly separate X-ray image. In the generation process, the
discriminator plays a vital role, so we kept the gradient of the
discriminator D, intact and noise-free. A reliable discriminator
is necessary as it can provide information regarding how
accurate the image is. The discriminator that takes generated
image G(z) as input and D(G(z)) produces 0 if it is fake
and one if it is real, so D simply acts as a binary classifier.
But, the confidence probability value of the generator D(G(z))
indicates how fake or real the data is so that such meaningful
error can be corrected in the second iteration. In the case of D,
we generally use binary cross-entropy to calculate the criticism
feedback; then, the feedback is backpropagated through the
generator so that generator can learn whether the generated
image x̂ is realistic or not. The generator and discriminator
have been trained simultaneously so that both models become
experts. But, the generator must not become superior to the
discriminator. Because an overfitted discriminator becomes so
accurate that it provides confidence value at the highest or
lowest level, which cannot give any meaningful feedback to
improve the generator. So, we updated the discriminator five
times per one generator iteration. If x is the input data, it tries
to minimize the following loss in Eq. (6). So, the loss function
in Eq. (6) consists of θD and θG parameters for discriminator
D and generator G and gt from Eq. (8) is the loss for generator
and discriminator:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (6)

min
G

max
D

Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))] (7)

So, we decided to use Wasserstein loss following Eq. (7)
instead of binary cross-entropy loss. It approximates the earth
mover distance between a real and fake distribution. So, it
helps to remove the ceiling of 0 and 1 of loss, which helps to
fight the vanishing gradient problem, and continuous feedback
helps to keep the learning with feedback consistent:

gt = ∇θL(θG, θD) (8)
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We used Wasserstein loss with a clipping bound of 1. Usual
approaches clip the gradient before updating parameters. So,
if the gradient vector is g and the L2-norm of the gradient is
||g||2 then we do the clipping by following g/g(max(1, ||g||2

C ).
This process helps to ensure that ||g||2 ≤ C where C is the
clipping parameter. But we mentioned that we eliminated the
need to set the C value as we are using the Wasserstein loss,
which measures the statistical distance between fake and real
image distribution. 1-L continuous condition ensures the norm
of the gradient ||g||2 ≤ 1. So we try to enforce such 1-L con-
tinuity during training. We can do it by using wight clipping
by setting a maximum or minimum allowed weight range but
enforcing clipping reduces the limited learning capability of
the discriminator. So, in the case of a discriminator, we will use
gradient penalty to keep the sensitivity bounded like Eq. (9).
We will calculate the loss as the distance between the real
image x from the P distribution, and the fake image y from
the Q distribution. In the loss term, we add a regularization
term for calculating the loss for interpolated images from fake
and real, multiplied with λ, a gradient penalty term. In such a
way, we sample some points by interpolating between fake and
real examples to get an interpolating image using a random
number α. We deduct one from the gradient of discriminator’s
norm ∇D in Eq. (10), which ensures that the discriminator’s
gradient norm are bounded within a range of 1. This ensures
clipping value as one without extensive hyperparameter tuning:

LD = −Ex∼P [D(x)] + Ex̂∼Q[D(x̂)]

+λE[(||∇D(αx+ (1− α)x̄|| − 1)2] (9)
LG = Ez∼pz(z)[D(G(z))] (10)

C. Privacy Preserving Training with Santization
At this moment, by sanitization, we indicated refining

the sensitive value by clipping and adding noise. The main
learning mechanism of the machine learning model and deep
learning depends on backpropagation. First, we provide a
sample to the model, and it generates the output and calculates
loss by comparing it with the real output. Then it uses loss for
each sample to update the model per iteration. Our strategy
is to add noise to the gradient so that updates regarding
one single example cannot impact the overall learning. It
follows the notion of differential privacy so that one individual
sample cannot impact the overall dataset. Previous approaches
applied sanitization on both discriminator and generator. Still,
following some recent works [10], we decided to add noise to
the gradient of the generator G in Eq. (14) only. We will not
clip and add noise to the discriminator D in Eq. (13) because
we are going to release the generator for data generation. If
grtG is the gradient of the generator G we apply gradient
clipping and noise adding mechanism Mσ,C(gr

(t)
G ) to get that

the modified gradient g̃rtG so that each example cannot have
a huge impact on dataset as in Eq. (11). Mσ,C(gr

(t)) adds
noise from Gaussian distribution with variance σ. We will
not provide the discriminator to the client, and discriminator
gradient,gr(t)D will remain unchanged, and it will be kept in a
secure server. If we have to provide the discriminator, we will
consider the federated learning scenario where we will have
multiple discriminators for each client, which will be stored in
client devices and will not breach privacy because each client
will train their discriminator separately.

grt = Mσ,C(gr
(t)) (11)

θ(t+1) = θ(t) − η.gr(t) (12)

θ
(t+1)
D = θ(t)D − η.gr

(t)
D ;

{Discriminator : g̃r
(t)
D := gr

(t)
D } (13)

θ
(t+1)
G = θ(t)G − η.gr

(t)
G ;

{Generator : g̃r
(t)
G := Mσ,C(gr

(t)
G )} (14)

We applied a selective sanitization approach, which will
clip the gradients of the initial layers of the generator and
not apply it to the local layers because local layers are not
getting exposed to private data. Our plan is that- we will
not add noise to the discriminator’s gradient, but we will
add noise to the generator’s gradient. Our idea is that as the
discriminator provides feedback on the X-ray image’s quality,
the discriminator’s noisy update cannot identify the difference
between fake and real data. But as we are not releasing
the discriminator, a noise-free discriminator helps preserve
more gradient information of the discriminator, leading to high
fidelity image data despite the noise multiplier’s value. In the
medical domain, image quality plays a crucial role because the
semantic information of the image dictates a critical decision
related to the disease. So, we tried to make a trade-off that can
ensure both image quality and privacy, which is later proved by
the satisfactory performance mentioned in our result section,

According to Fig. 1, there are two parts to the generator’s
gradient. One part is local, that is going downwards, which
comes back to the generator, and one part is coming upwards,
which is not local because it comes back from the discrimina-
tor and is affected by real data. So, Instead of sanitizing the
whole network’s gradient, we decided to sanitize the gradient
that is directly relevant to the noisy input. Following the chain
rule, we can identify that upward gradient,grG is directly
impacted by real data, so we decided to sanitize this part
of the gradient only so that local gradient,grG can preserve
implicit gradient information, which is free from the impact of
real data. The generator is updated twice during the training
process. In GAN, when we update the generator, we keep the
discriminator fixed and then update the discriminator and keep
the generator fixed. According to the figure, the generator’s up-
dates back-propagated during discriminator evaluation are the
upward gradient directly impacted by the real image. Hence,
we decided to clip and add noise to the upward gradient. But
during the downward gradient update, the gradient contains
only relevant local information, which is not directly related
to real data, so we do not sanitize the local gradient according
to Fig. 1. In such a way, applying such selective noise addition
by breaking down the chain rule helps us preserve important
gradient information. So, it leads to high-quality synthetic
data where reliability is critical as the spatial features of the
images will be used for medical diagnosis tasks. In Fig. 1 red
arrow indicates the sensitive gradient and green arrow indicates
sanitized gradient. The red X ∼ D indicates the real X-ray
image data, which is sensitive so the gradient coming back
from discriminator, D’s loss is indicated with red arrow. The
green arrow going out to generator,G from Mechanism,M is
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Fig. 1. Santiziation work flow

green gradient because mechanism M is used to sanitize the
gradients.

We use the WGAN, which has a special condition is that
it should be 1-Lipschitz continuous that is the slope of the
gradient of the discriminator should always be 1. According
to the theory of 1-Lipschitz continuity it automatically bounds
the value of gradient.

D. Federated Approach

We also ensured a Federated learning approach where there
will be a ND number of discriminators that are trained in
N client computers. Real data (x, y) will be exposed to the
clients (hospitals) where they do not need to release sensitive
data. Instead, they can train the lightweight discriminator
on their personal computer. And the 1-Lipschitz property of
Wasserstein helps to ensure implicit gradient clipping without
performing sanitization. All of the discriminator’s updates will
be sent back to the central server’s generator in Eq. (15) and
the generator will be updated based on the accumulation of all
gradient information. We need a reliable and accurate discrimi-
nator to stabilize the training and ensure high fidelity synthetic
data. We followed a pre-trained starting approach where the
discriminators will be previously pre-trained in different client
computers for such an approach. During training, the pre-
trained discriminator will ensure that generators are updated
from the start of the training so that we can generate data
using fewer epochs. During the generator update, noise and
gradient clipping are applied to the upward gradient, similarly
to the centralized approach. The iterative process increases
the privacy budget, so a pre-training will also help reduce the
privacy budget. It will require fewer iterations to decrease the
privacy budget with fewer iterations.

The main advantage of this approach is that if someone
wants a private discriminator, this approach will also ensure
it. Because the discriminator will be stored in the client’s
computer, it will only have access to that specific client’s
corresponding X-ray images. There are other risk factors that

we did not ignore. For example, if the client cannot trust the
server, the client needs privacy protection from the server.
But we tackled such a condition also because the client’s
gradient information that will be passed to the server will be
sanitized, and so the encoded noisy weight cannot convey any
information related to the client’s real data to the server:

θ
(t+1)
Di=1...N

= θ(t)D − η.g
(t)
D ; {Discriminator : ĝ

(t)
D := g

(t)
D } (15)

IV. EXPERIMENT

For medical purposes, we considered Kaggle Chest X-
ray Images (Pneumonia) [26] and also used MNIST dataset
for qualitative and quantitative comparison purpose. Because
most of the previous privacy based data generation models
used MNIST for study purpose to compare generated image
based data. This is the first time we have exploited a real
high stake domain’s x-ray image dataset to generate synthetic
images. One problem with synthetic medical X-ray dataset
is reliability. So to ensure reliability and to defend mode
collapse we used W-GAN, which is famous for its high fidelity
data synthesis performance. In each iteration, we generated
different Bernoulli or Gaussian noise depending on user’s
choice to preserve the diversity of the dataset. Observed from
Table I, our approach’s performance in terms of CNN is
much closer to real data. In experimental setting we trained
our model on 24000 generated synthetic data and to avoid
class imbalance we generated 12000 Normal patient data and
12000 Pneumonia patient’s data. As the GAN training is
computationally expensive, we resized the image to 64×64
size and with such a low resolution still we were able to
get upto 76% accuracy, which is within a satisfactory range.
In MNIST, it also gained 77% accuracy, which is also good
according to Table I. Observed from the figure, despite of
high noise multiplier of 0.07/1.02, our approach can generate
quality images whereas previous models generate blurry and
unclear images. In case of X-ray images it also gained really
good result with MLP: 74.4% accuracy. We used a highly
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TABLE I
EXPERIMENTAL COMPARISON (ACCURACY %)

Data Algorithm CNN (0.07) CNN (1.02) MLP

MNIST

Real 99 97 98
G-PATE 51 49 25

DP-SGD GAN 63 60 52
Our approach 78.2 76 77.2

X-ray
Real 71.56 74.78 76

DP-SGD GAN 60 58 40
Our approach 76.172 76.245 74.484

Fig. 2. Normal (first 2 columns)-Pneumonia (last 2 columns) with noise
multiplier 0.07 (1st, 3rd column) vs. noise multiplier 1.02 (2nd, 4th column)

regularized CNN model to train using our synthetic data and
such regularized model also will help to make it free from
membership inference attack. Using such a simple ResNet18
model for X-ray images, it gained accuracy of 76.245% using
CNN on synthetic image, which is close to 74.78% accuracy
for real image (according to Table I). In case of MLP, it also
gained 74.484% accuracy based on artificial radiology data,
which is really amazing and it is closer to the model’s accuracy
of 76% using real image. In our case, we used synthetic data
in training set and real data in test set so I believe such a
higher and comparable accuracy may validate that our model
can generate reliable radiology images, which can be used
for diagnostic modeling. In Table I, the row for G-PATE is
missing for x-ray image because G-PATE is not applicable for
our dataset type.

To analyze the impact of privacy parameters like noise
multiplier we performed some experiments with varying noise
level. In Fig. 2, we showed our model’s data quality con-
cerning the noise multiplier. The first two columns indicate
the standard patient images where the first column’s data is
generated with a noise multiplier of 0.07 and 1.02. Similarly,
the third and fourth column shows the pneumonia patient’s
data. Here, the third column’s pneumonia patient’s data is
generated using a noise multiplier of 0.07, and the fourth
column’s pneumonia patient’s data is developed with a noise

Fig. 3. Generated Normal Patients data with noise multiplier 0.07

Fig. 4. Generated Pneumonia Patients data with noise multiplier 0.07

multiplier value of 1.02. From that part, we can observe
that adding high noise of 1.02 still yields high-quality X-
ray image data. In previous approaches, image quality usually
gets destroyed after the noise multiplier value of 0.1. But we
are glad to mention that our approach yielded 76% accuracy
with data generated via a 1.02 noise multiplier, which is
satisfactory. For qualitative analysis of the result, we also
showed the generated average patient’s images in Fig. 3,
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Fig. 5. Modified diffGAN (top) vs. ours (bottom)

TABLE II
TABLE-PRIVACY COMMUNICATION

Method epsilon ϵ delta δ CT bytes

FedAVGGan 9.99× 106 1× 10−5 3.94× 107

Ours 7.89× 102 1× 10−5 1.95× 105

which is developed with ε value of 10 and noise multiplier
0.07. We also displayed the generated pneumonia images in
Fig. 4. Observed from those two grid views, our model can
differentiate between normal and pneumonia patients based
on semantic structure. We used a sampling rate of 1

1000 and
we considered number of iterations to be 2000. According to
experiment in worst case, our highest privacy budget for 24000
data and 2000 epoch is 3.194× 104.

Previous approaches did not use high-resolution images
for high stake domains, like – the medical radiology image
classification task, so we had some trouble comparing with
baselines. We used the scaled-down images and modified
the diffGAN [42] architecture to generate X-ray images to
compare with our model. We had to change the generator,
encoder, and decoder architecture to support three channel
images with higher resolution. However, the generated image
with noise multiplier 0.07 is blurry, and there is mode collapse
occurring in the images. Most of the X-ray images look alike.
In contrast, our generated image is much sharper and more
precise compared to previously generated images from Fig. 5.

In our federated approach, it ensured much efficient com-
munication cost than previous approaches. Communication
cost indicates how many bytes it consumes to perform one

generator step by transferring gradient to the server. It takes
less bytes, as we followed a previous approach and decided
to transfer only the gradient with respect to real samples and
as the local discriminator models are contained within local
clients only. Table II shows that Fed AVG GAN’s total ε value
was 9.99× 106 with CT bytes 3.94× 107. In contrast, in our
approach, ε value was 7.89 × 102 and CT bytes 1.95 × 105.
It has much higher gains in gradient communication in terms
of CT bytes. Fed-AVG GAN cannot perform well with noise
multiplier value that is more than 0.1 whereas we have used
1.02 for noise multiplier value and still our approach is able
to generate quality data.

A. Architecture Design

We configured a latent dimension of size for Generator
z dim of size 64. We used four layers of transpose convolution
layer with the following z dim × 16, z dim × 8, z dim ×
14, z dim× 2, 3 channels with a kernel size of 4, stride of 2,
and padding of 1. only in the first layer, we used padding
of 0, the stride of 1. Initially, we converted the noise of
64, and in each layer, the transposed convolution up-sampled
the image size following the sequence of the image was
4×4, 8×8, 16×16, 32×32 and 64×64.64×64 is our required
image size with three channels. We need to expand the noise
to generate pixel intensity values of the image. So, we used
transpose convolutional layers. We used tanh activation to
ensure a high fidelity image in the last layer.

For the discriminator, we used four layers of transpose
convolution layer with the following z dim × 2, z dim ×
4, z dim × 8, z dim × 8 with a kernel size of 4, the stride
of 2, and padding of 1. Here, in the first convolution layer,
we used padding of 1 and stride of 2 with kernel size 4.
For classification and diagnosis tasks, we have used regular
ResNet18, a straightforward architecture. We used Batch Norm
[22] in each layer so that the model is highly regularized so
that it does not suffer from membership inference attacks.

V. CONCLUSIONS

In this paper, we designed a differentially private GAN
architecture to generate synthetic X-ray images, which sup-
ports both central and distributed radiology data generation
processes for the first time. Our main goal was to add noise
only to the generator part, which is exposed to real data.
We kept the discriminator intact, ensuring high-quality image
generation. We need to release the generator only, and the
generator part of our final model works as a private black-box
model so that it will be diferentially private. Our approach
guarantees the user data privacy also if we want to release the
discriminator, but in that case, each client has to use and store
their discriminator model locally and there will be a generator
in the central server; it also ensures that any third party will not
be able to reconstruct source data exploiting already learned
weights because the encoded weights are noisy. We also used a
highly regularized model to test the utility of generated data so
that it can fight against inference attacks also. Our evaluation
results demonstrated that our approach ensured higher-quality
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private X-ray images, ensuring a feasible privacy budget with
more profound architecture. Using selective noise addition
and W-GAN’s implicitly clipping property helped to make it
possible. We hope it will work as a steppingstone that will
create awareness to protect medical data privacy and motivate
other researchers to conduct more research in this medical
image data field, which will help to ensure privacy in this
domain. This study showed that it is possible to generate
high stake medical data with differential privacy, which is also
reliable despite high noise addition.

As future work, we explore a better model for classification
and a higher resolution image can ensure higher utility.
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