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ABSTRACT

This paper presents a human activity recognition (HAR) sys-
tem with wearable devices. While various approaches have
been suggested for HAR, most of them focus on either 1)
the inertial sensors to capture the physical movement or 2)
subject-dependent evaluations that are less practical to real
world cases. To this end, our work integrates sensing in-
puts from physiological sensors to compensate the limitation
of inertial sensors in capturing the human activities with less
physical movements. Physiological sensors can capture phys-
iological responses reflecting human behaviors in executing
daily activities. To simulate a realistic application, three
different evaluation scenarios are considered, namely All-
access, Cross-subject and Cross-activity. Lastly, we propose
a Hierarchical Deep Learning (HDL) model, which improves
the accuracy and stability of HAR, compared to conventional
models. Our proposed HDL with fusion of inertial and phys-
iological sensing inputs achieves 97.16%, 92.23%, 90.18%
average accuracy in All-access, Cross-subject, Cross-activity
scenarios, which confirms the effectiveness of our approach.

Index Terms— PPG, ACC, EDA, HAR, Deep Learning

1. INTRODUCTION

Nowadays, wearable devices embedded with heterogeneous
sensors can recognize human behaviors outside the labora-
tory setting through health, emotion and activity monitoring.
This paper focuses on human activity recognition (HAR) with
wearable devices, which is one of the most eminent areas
because of a great potentiality to be extended in many dif-
ferent domains, such as ambient assisted living and human-
computer interaction [1]. Despite the availability of physio-
logical sensors embedded in wearable devices, most of works
in HAR only exploited the sensing input from inertial sensors,
such as accelerometer (ACC), gyroscope, and magnetometer,
to infer human activity. For example, [2] exploits the ACC
signals from the wearable device to distinguish self-harming
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activities from other activities, whereas [3] extracts the char-
acteristics of peaks detected from the ACC signals to predict
human activity. There are also works considering the fusion
of multiple sensing modalities, such as merging the ACC and
gyroscope [4], or the ACC, gyroscope and magnetometer [5],
or the ACC and acoustic signals [6], to enhance the perfor-
mance. However, not many works adopt the fusion of inertial
and physiological sensors for the stable and accurate system.

Physiological sensors, such as photoplethysmography
(PPG) and electrodermal activity (EDA), can capture physi-
ological responses of an individual towards a stimuli event.
While inertial sensors are useful in capturing the human ac-
tivity with motions, some activities are either too similar in
terms of physical movements or involving less motions. For
example, driving and cycling are different activities, but both
of them display similar physical movements. Those activities
involve sitting state, but one is sitting on a bike and the other
is sitting inside a car, which is difficult to be distinguished by
inertial sensors. However, the physiological sensors can cap-
ture the inner physiological responses with respect to these
two activities: driving requires high concentration that may
vary the heart rate measured by the PPG, whereas cycling
is an intense activity which may change the sweat condition
captured by the EDA. There have been several attempts to
develop the HAR system by fusing the inertial and physio-
logical sensors. Early work in [7] integrates the ACC and
PPG data, whereas [8] merges the PPG, ACC and gyroscope.

Most of these works rely on hand-crafted features to rec-
ognize human activities. G. Biagetti et al. [7] uses the singu-
lar value decomposition and truncated Karhunen-Loeve trans-
form with the Bayesian classifier to distinguish the activi-
ties, whereas [8] employs a wavelet packet transform with
the Random Forest (RF) to build the HAR system. While
deep learning [9, 10, 11] and hierarchical classification [12]
have been exploited in wearable-based HAR with inertial sen-
sors, there are no works that combine both ideas with a fusion
of physiological and inertial signals to infer activities. Also,
even if all these works show the promising results in their ap-
plications, the various simulation scenarios are not considered
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at the same time which is important for real applications. The
original contributions of this work are summarized as follows:

* Investigating the effectiveness of the ACC, PPG and
EDA for HAR system. Compared to the ACC, the PPG
and EDA are not well-known but some activities can be
recognized better with them.

» Experimenting three different scenarios (All-access,
Cross-subject, Cross-activity) to follow the real world
applications. Latter two scenarios follow the cross-
validation which excludes some subjects and activities
during training and only considers them during testing.

* Developing the Hierarchical Deep Learning (HDL)
model to build the stable and accurate HAR system.
This model is based on hierarchical tree structure with
deep learning networks.

2. DATABASE

In this work, PPG-DaLiA database [13] has been used since it
contains multimodal sensing modalities from both inertial and
physiological signals collected when performing the closed
to real life activities. This database was recorded with two
different devices: RespiBAN Professional (chest-worn) and
Empatica E4 (wrist-worn). For HAR, we focus on the ACC,
PPG and EDA from wrist-worn device because of great ac-
cessibility and applicability. In PPG-DaLiA dataset, there are
15 subjects and sampling rate is fixed at 32 Hz for the ACC,
64 Hz for the PPG and 4 Hz for the EDA. In addition, 8 differ-
ent activities are considered which is covered in Table 1 and
there is a transient period between the activities for preparing
the next activity. Only subject 6 has the hardware issue which
results in missing three activities: lunch, walking, working.
We select this database since it has activities with similar and
small motions (ex. sitting/working/lunch) which are hard to
be classified well but valuable to evaluate our HAR system.

3. METHODOLOGY

3.1. Sensing Modality

We experiment three different modalities to investigate the
effectiveness of recognizing the human activities. First, we
consider the ACC [14] which is the most well-known data
to detect human movements because it can measure the ac-
celeration forces in three axes according to the motions from
activities. Next, we use the PPG [15] which optically cap-
tures the changes in blood volume from heart activity. There
are some activities (ex. sitting/working/lunch) which do not
include diverse motions and thus, it is hard to be distinguished
by the ACC. In this case, the PPG can be useful since there
can be different heart activities. Last, we investigate the EDA
[16] which is the variation of the electrical conductance of the
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Fig. 1: Example of each modality with sliding window. (a-c)
ACC, PPG, EDA. The length of window is different because
of different sampling (ACC: 32 Hz, PPG: 64 Hz, EDA: 4 Hz).

skin according to sweat condition. As the PPG, EDA is not
considerably researched for HAR but it could be helpful to
classify human activities with different sweat secretion.

Table 1: Details of all activities in PPG-DalLiA database.

Activity Detail Duration (min)
Sitting Sitting still with reading. 10
Stairs Climbing up and down. 5

Table Soccer Playing 1 versus 1. 5
. 2 km length with
Cycling varying road conditions. 8
.. Performing on streets
Driving and country roads. 15
Queuing and fetching food,

Lunch eating and talking at the table. 30

. Walking back from
Walking the canteen to the office. 10
‘Working Mainly, working on computer. 20

The main reason to use three modalities is to build the ro-
bust and accurate HAR system even in activities with small
motions. All these modalities are currently collected from
wearable device and thus, they are suitable to apply in the
real world. We employ the sliding window technique [17]
over each modality with 8 seconds length and 2 seconds shift
[18] which is empirically found to be proper for our appli-
cation. The overlapped window is applied for increasing the
size of data for training and testing, and for closer exploration
of the temporal changes [19]. Figure 1 demonstrates the ex-
amples of data with sliding window where the PPG and EDA
are normalized and resized to make all modalities in similar
range to concentrate on the patterns and the shape of signals.
Later, the generated inputs from window are utilized in the
classification model to distinguish the activities.

3.2. HAR Models

Four models are considered to find the best suitable approach
for HAR where key hyperparameters are covered in Table 2.
HDL Model: We develop this model which is composed
of Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) with hierarchical tree structure. The
hierarchical structure employs the stack of models to pro-
vide the specific understanding at each level of data hierar-
chy which helps to improve accuracy [12]. Here, CNN gives
the feature representations of the modalities and then, LSTM
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Table 2: Key hyperparameters in all models.

Hyperparameters ‘Values
Number of trees 200
RF, XGBoost Maximum depth 13
Learning rate (Only for XGBoost) 0.3
Dimensionality of the first and second layers 128, 64
HHAR-net Dropout rate for the first layer 0.3
Learning rate (ADAM optimization) 0.001
Width x Height x Depth of kernels in every CNNs | 9x1x64
HDL Hidden unit of every LSTMs 256
Dropout rate for every CNNs 0.5
Learning rate (RMSprop optimization) 0.001

Used Modalities in Each Node

(1) All Data with Only ACC

(2) All Data with PPG+ACC

(3) All Data with PPG+ACC+E) n-\

First Level
(Parent Node)

Stationary
(1) ACC

(2) PPGFACC
(3) PPGFACC

Second Level
(Child Node)

ge®

Fig. 2: The tree structures in HDL model. There are differ-
ent used modalities in each node ((1)-(3)) depending on the
contained modalities in the system. The reason for these dif-
ferences are to boost the stability and accuracy of system.

models the temporal dynamics of that representation [20, 21,
22]. As Figure 2, there are two level classifications where
the first level discriminates the stationary, semi-stationary and
non-stationary activities, and the second level finds the spe-
cific activities in each parent node. Assigned activities in each
node are explained in Figure 2. In parent level, each node has
4 CNNs with 3 LSTMs while in child level, each node con-
sists of 3 CNNs with 2 LSTMs. Parent node has more layers
since it has data with more diverse labels. Dropout is applied
in every layers while ReLu is only used in CNNs.

Baseline Models: We compared with conventional mod-
els suitable for resource-constrained device that we consider.

First, we experiment the RF which builds the multiple de-
cision trees and merges them to get an accurate and robust
predictions. Our RF model follows the similar structure as
[17]. Second, we consider the eXtreme Gradient Boost-
ing (XGBoost) which is an elaborate version of the RF by
adding a gradient boosting idea. This model is chosen to un-
derstand the ability of recent developed tree model for HAR.
Last, we adopt the HHAR-net which applied the hierarchical
classification with the NN [12]. This approach has a hier-

Table 3: Details about three different scenarios. In all cases,
there is no overlap between train and test sets.

Details
Extract train (80%) and test (20%) sets from each activity
in all subjects. Access all activities and subjects for training.
12 subjects for training and 3 subjects for testing.

Sequentially process (i.e. first test set is subject 1,2,3

and the second one is 4,5,6 while remained subjects

are for train set). Average 5 trials (cross-validation).
Randomly exclude two activities in each subject for testing
while others for training. Average 4 trials (cross-validation).

All-access

Cross-subject

Cross-activity
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Table 4: Overall performances according to different modal-
ities, models and scenarios. A, P and E mean the ACC, PPG
and EDA. The performances are described as ACR (F1 score).

All-access Cross-subject Cross-activit

A P+A P+A+E A P+A P+A+E A P+A P+A+E

RF 94.13% 94.16% 93.95% 88.91% 88.85% 89.13% 87.23% 87.1% 87.27%
(78.71%) | (78.25%) | (77.84%) || (56.99%) | (56.7%) (58%) || (50.65%) | (49.98%) | (50.83%)

XGBoost 95.82% 95.72% 95.63% 89.62% 90.07% 90.64% 87.92% 88% 88.6%
(84.6%) | (84.35%) | (84.02%) || (59.86%) | (61.9%) | (65.09%) || (53.41%) | (54.36%) | (57.49%)

HHAR-net 92.56% 92.42% 92.45% 88.05% 88.46% 89.27% 86.75% 86.86% 87.07%
(73.1%) | (72.39%) | (71.85%) || (53.76%) | (56.11%) | (58.95%) || (48.67%) (49%) (49.80%)

HDL 95.92% 97.16% 95.74% 91.05% 92.23% 92.01% 89.79% 90.18% 89.84%
(85.95%) | (90.63%) | (86.47%) || (68.76%) | (713.48%) | (711.91%) || (61.99%) | (64.07%) | (62.62%)

Table 5: Comparison of performances in same database. F1
is not shown because [17] did not cover the overall F1 score.

[17] Ours
Scenario All-access All-access
Modality electrocardiogram, ACC, PPG, PPG, ACC

EDA, respiration, body temperature
8 seconds window

Input with Fourier transform 8 seconds window
Model RF RF HDL
ACR 92.8% 94.16% ‘ 97.16%

archical tree structure as our HDL model and thus, we can
see the effect of using the CNN and LSTM. In addition, [12]
only considered the activities with obvious movements while
HDL includes the semi-stationary categorization to improve
the performances for activities like eating and working.

4. EXPERIMENTS AND RESULTS

In this work, we cover the experimental results according to
different modalities, models and scenarios. All the simula-
tions are considered as multi-class classification since we are
concurrently discriminating all activities.

4.1. Experimental Scenarios, Modalities and Metrics

Three different scenarios (Table 3) are considered, namely
All-access, Cross-subject and Cross-activity. In All-access
case, we access all subjects and activities to train the model
while in other two cases, we exclude some subjects and ac-
tivities during training and only use them for testing. Latter
two scenarios follow the realistic scenarios because our HAR
system can be evaluated in the unseen subjects and activities.
Nevertheless, All-access is useful to understand the effect of
overlapped window when comparing with the other scenarios.
Previously, Cross-activity is less considered even if it has its
practical value. For example, in PPG-DaLiA [13], subject 6

Table 6: Comparison of results in different databases. [12,
23] used a dataset [24] from the smartphone and smartwatch.

[23] [12] Ours
itting/sl i lying down/
st 4 P Y svifies i
Activities exercise/walking running/walking/bicycling 8 activities in Table 1
Scenario All-access All-access All-access
Modality ACC, gyroscope, ACC, gyroscope, watch compass, PPG, ACC

magnetometer, watch compass
Features from

location, audio, phone state
Features from

Input 20 seconds window 20 seconds window 8 seconds window
Model XGBoost HHAR-net XGBoost | HHAR-net HDL
95.72% 92.42% 97.16%
ACR (F1) 86.8% (60%) 92.8% (87.42%) §435%) | (1239%) | (90.63%)
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Table 7: Results in each activity according to models and scenarios with the PPG+ACC.

Each cell denotes as ACR (F1 score).

Cross-subject

Cross-activity

RF XGBoost | HHAR-net

HHAR-net

BB88% | 91.04%

Siting | 23.479%) | 40.18%)

©0.12%
(40.02%)
o1

°04.19% | 94.71%

Stairs | (57.95%)

Table

©7.18%
Soccer %

(68.19%

(70.23%)

©7.08%
(65.84%)

Cyecling saT

©7.53%

Driving

(83.48%)
B

Lunch

Walking (59.07%)

§3.08%

Working | 47.75%)

(49.75%)

(40.07%)

(29.87%) | (29.38%)

(24.71%)

Table 8: Confusion matrix according to different modalities with the HDL in Cross-subject scenario.

ACC_HDL PPGHACC_HDL

Actual

Actual

PPG+ACC+EDA_HDL Actual

Sitting _ Stairs__ Soccer _Cycling_Driving__ Lunch _ Walking_Working Stairs

Soccer__Cycling _Driving__ Lunch

Walking_Working Siting__Stairs__Soccer__Cycling_Driving__Lunch__ Walking_Working

Sitting sitting [ 195 0 T

9 & 2 51 154 0 T 0 7 53 25

133 T 0 T [ 5 T 70

Stairs 77 0 g 0 g 36 T Stairs 0 172 0

0 7 27 T T 72 0 0 0 3 at T

Soccer 0 2 106 T 6 13 2 T Soccer 0 T 115

4 17 2 T 110 2 3 I 2 T

Cydling [0 T 214 T 0 T

Cyeling [0 T T

T T 0 T 0 T T 211 0 T 0 T

Driving [ 6 T 7 353 a1 2 20 9 T g

Driving

Predicted
Predicted

365 3% T 23 0 5 3 341 23 T 20

Predicted

36 5 3 546 30 3 T 7

50 578 B 2 31 55 590 39 197

T 0 0 [ 237 3

0 21 249 3 T 24 0 0 0 [H 217 3

59 T 3 El 178

23 187 3 2 3 3 33 194 B 314

does not have three activities because of hardware issue, and
the Cross-activity scenario can simulate this case.

In addition, we tested unimodal and multimodal HAR sys-
tems. For unimodal, only ACC is utilized while for multi-
modal, PPG+ACC or PPG+ACC+EDA is used. In both sys-
tems, inputs are concatenated in 1 channel (ex. ACC: [256,
3]1=1[768, 1]) for the baseline models while they are stacked
on multi-channels (ex. PPG+ACC: [256, 4]) for the HDL.

Three different metrics are applied to evaluate the perfor-
mance, namely accuracy (ACR), F1 score and confusion ma-
trix. ACR is the number of correctly classified data accord-
ing to the total number of data which is suitable in even data
distribution. In the real world, this is unusual and we addi-
tionally consider F1 score, the weighted average of precision
and recall. This metric is more appropriate in uneven data
distribution. Confusion matrix represents the predicted class
of data with respect to the actual class. It is useful to analyze
the distribution of miss-classified data in each activity.

4.2. Results and Discussion

Overall Evaluation: Table 4 shows the overall performances
with different modalities, models and scenarios. Compare
to the All-access, other two scenarios show the decreased
performances which reveals the difficulty of recognizing the
unseen subjects and activities. This aspect also confirms that
the overlapped window has minimal effects on training the
model. We can notice that our developed HDL enhances
the results, especially when combined with the PPG+ACC.
The fusion of the EDA shows a substantial improvement for
cross-validation scenarios in baseline models. In Table 5, we
compare the performances with different approach in same
database. Unlike [17], we only consider the PPG and ACC
but get a better result with same RF model. Thus, including
more modalities cannot promise the increase in performance.
In Table 6, we compare the results with same models in
different databases. Although it is not perfect way to com-
pare the performances but we can understand whether our
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approach is compatible to the recent works. Even with less
modalities, XGBoost with our approach shows better result
to distinguish more diverse activities. HHAR-net with our
method gives worse performance than [12], but we consider
more various activities and use a short length of window,
which requires the short time to recognize the activity. In
both Table 5 and 6, it is obvious that our HDL gives the best
performances. To understand the model’s ability deeply, we
introduce Table 7 which represents the result in each activity
with the PPG+ACC in Cross-subject and Cross-activity cases.
From Table 7, HDL gives the best performance in terms of F1
score in all activities even with different scenarios. Thus, our
proposed HAR system is stable and accurate in all activities.

Cross-subject Evaluation: In Table 8, we cover the con-
fusion matrix with different modalities to analyze the effect
of each modality. When including the PPG with the ACC,
most activities are classified better, except for stair and cy-
cling conditions. This result comes from the ability of PPG to
capture different heart activities in each condition. When we
compare the middle and right matrices, the EDA gives bet-
ter distinguishable features for lunch and working conditions,
meaning it is useful to address the semi-stationary activities.

Cross-activity Evaluation: In a practical scenario, some
subjects might fail to provide the required activities for train-
ing purposes. This is especially true with our chosen database
where subject 6 failed to provide the data for 3 activities. Ta-
ble 7 verifies that most of the trained models attain reasonable
performances when encountered such scenario and our HDL
achieves the best result.

5. CONCLUSION

This work focuses on the fusion of inertial and physiological
sensors from smartwatches to build a HAR system. To im-
prove the robustness, we suggest a HDL model evaluated on
three realistic scenarios. Our developed system achieves the
eminent results which outperform other state-of-art works.
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