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Abstract—The recent pandemic has brought tremendous
changes to everyone’s life, causing stress about losing loved
ones, losing jobs, and having changes in sleep or eating habits.
This study investigates the feasibility of utilizing Electrodermal
Activity (EDA) collected from wearable devices to detect people’s
stress. EDA can quantify the changes in sympathetic dynamics by
measuring sweat produced by our sweat glands. Currently, the
adoption of EDA sensors to commercially off-the-shelf smart-
watches is still in the infancy stage, and only a few brands
have the EDA sensors implemented into their smartwatch. To
facilitate our feasibility study, we need the datasets that contain
the EDA signals collected from wearable devices. This paper
uses two publicly available datasets containing the EDA signals
collected from research-grade wearable devices. We cast the stress
detection problem as a binary classification problem and trained
the classifiers with three popular machine learning methods:
K-Nearest Neighbor, Logistic Regression, and Random Forests.
According to experimental results, Random Forests achieves an
accuracy of 85.7% to classify stress from non-stress status. The
results verified that wearable devices with EDA sensors have the
potential to predict stress status.

Index Terms—Electrodermal activity, Stress Detection, Wear-
able Device, Smartwatches, Machine Learning, KNN, Logistic
Regression, Random Forest.

I. INTRODUCTION

All aspects of people’s livings have undergone tremen-
dous changes, since the global spreading of the COVID-
19 pandemic in early 2020. According to a survey released
by World Health Organization (WHO) in October 2020, the
pandemic has caused the interruption or cessation of crucial
mental health services in 93% of countries worldwide, and
people’s needs for mental health have increased significantly
during the same period [1]. Some preventive measures, such as
lockdowns and social distancing, aim to combat the spread of
COVID-19. Unfortunately, many people may still face prob-
lems such as increased alcohol and drug use, insomnia, and
anxiety due to mental stress. Research exposed that suicides
over 65 years old increased by 30% in Hong Kong during
the Severe Acute Respiratory Syndrome (SARS) epidemic in
2003 [2].

Mental health is the foundation of overall health and well-
being. Therefore, researchers from all fields and societies are
calling for increased investments in mental health. However,
the attention and investment should not be limited to the
intervention and treatment of existing apparent symptoms,

but more importantly, it should also consider the not-so-
obvious stress. Considering the pervasiveness of wearable
devices, this paper studies the feasibility of using the Elec-
trodermal Activity (EDA) data collected from smartwatches
to detect human stress. An EDA sensor measures the change
in skin conductance. Since skin conductance can reflect the
human body’s emotions and physiological response, EDA is
often used as a physiological indicator to measure emotional
changes. A few commercially available wearable devices (e.g.,
Fitbit sense) have integrated EDA sensors to deliver emerging
applications, such as emotion monitoring to prevent excessive
tension and anxiety [3].

Although EDA is a promising approach for stress and
emotion monitoring, many wearable-based industries have yet
to include it in their smartwatch designs. Unlike the medical-
grade EDA sensors that need to be fixed at a specific position,
wearable devices, especially smartwatches, are always worn
on the human wrist with uncertain motion. Such dynamic
motion by humans creates challenges to detect human stress
with EDA sensors integrated in wearable devices. To verify
the feasibility of EDA sensors for the above purposes, we
explore two public datasets that provide EDA signals collected
from wearable devices. The WESAD and VerBIO datasets
contain various sensing modalities from wearable devices.
In this work, we focus on the EDA signals. We applied
three machine learning methods: K-nearest neighbors (KNN),
Logistic Regression, and Random Forest, to compare their
performances on classifying stress and non-stress status. In
addition, the classification results of training with all features
and selected features are examined. We verified that the EDA
data collected by the wearable device can be used to detect
stress status and can be utilized for further study.

The main contributions of this paper are summarized below:

• Our work focuses on the feasibility of using EDA data
collected from wearable devices to detect stress.

• The stress classification in this study is based on a data-
driven approach and achieved an accuracy of 85.7% when
Random Forest is used.

• The reliability of training with extracted statistical and
EDA-related features from EDA signals was assessed.

The rest of this paper is organized as follows: Section II
includes a literature review. Section III introduces the system
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Fig. 1: A general stress detection pipeline of this study.

overview and related concepts. Section IV presents the meth-
ods we adopted for the experiment. Section V analyzes the
performances of the methods and the observations from the
results. Section VI summarizes this work.

II. RELATED WORKS

EDA has been applied to assess emotion and stress re-
sponses in several scenarios. In [4], they designed an exper-
iment to explore if EDA is a helpful indicator of emotional
responses when people are working alone, collaborating, and
competing with others. The experiment results showed that
higher EDA occurred when participants attended the collabo-
rative task than the competitive task. Another experiment in [5]
found a strong relation between EDA signals and the self-
reported arousal scores given by the participants who were
asked to read emotional content aloud. On the other hand, the
feasibility of using EDA to detect the stress arousal of people
who are in underwater situations has been examined in [6]. All
these experiments have proved the feasibility of using EDA
for stress monitoring. However, they have not examined the
feasibility of using EDA data collected from wearable devices.

The use of EDA was examined in different scenarios target-
ing different groups of users. For example, EDA was used to
evaluate the construction workers’ perceived risk when they
were on site [7]. EDA was used to detect stress for patients
who were going to have surgeries in [8]. In [9], they examined
the stress responses of drivers via multiple electrocardiogram
(ECG) and EDA data when they were driving in a simulator
with different car setups. In [10], again with drivers, they
used Fisher projection and linear discriminant analysis to
detect drivers’ stress levels based on EDA data collected under
different driving conditions, and the methods had a recognition
rate of 81.82%. In [11], they concluded that adolescents who
have a major depressive disorder (MDD) showed noticeable
low EDA during continuously recording periods, which in-
dicates a dysfunctional regulation of the sympathetic part of
the autonomic nervous system with the adolescent with MDD.
Unfortunately, none of the above work targets general users
of all ages undergoing a regular daily life routine. Our work

focuses on EDA on wearable devices because these devices
can be worn in all scenarios to detect human stress without
intruding on human daily life activities.

When it comes to COVID-19, the psychological stress of
medical workers during the COVID-19 pandemic are dis-
cussed in [12], [13], were calling for active intervention
strategy to help medical workers relieve stress. A summary of
the physiological metrics which can be utilized to monitor the
physical health and mental well-being of COVID-19 positive
individuals and the front-line workers is shown in [14], and
the authors are calling for adopting wearable devices with
physiological sensors to assist in alleviating the negative
mental impacts brought by COVID-19.

To this end, our study verified the feasibility of filling the
gap by using a wearable device and machine learning methods
to detect stress based on EDA signals. It provides a direction
for the industries and fastens their process in adopting EDA
sensors to their smartwatches for real-world use cases.

III. SYSTEM OVERVIEW

In this study, we use the EDA data collected by wearable
devices and utilized the EDA data to test the feasibility of
detecting stress status. The proposed framework is illustrated
in Fig. 1. It consists of the EDA signals collected from
wearable devices and will be exported to a computing device
for further analysis. This section presents the characteristics
of EDA signals and the wearable device, along with a brief
description of the two public datasets we used in this paper.

A. EDA signal characteristics

Since EDA refers to changes in skin conductance in re-
sponse to sweat secretion (usually a small amount), it can be
measured with an EDA device, which records the electrical
signal by electrodes applied to the skin. EDA signal is com-
posed of two main components: the general tonic level and
the phasic level, shown in Fig. 2.

The general tonic level EDA is correlated to the signal’s
slow-acting components and background characteristics. The
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Fig. 2: Components of EDA signals.

slow-acting components feature slow climbing and slow de-
clining over time according to the individual’s response, skin
dryness, or autonomous adjustment ability. The measurement
of the tonic component is the skin conductance level (SCL),
and changes in SCL are considered the general changes in
autonomic arousal.

The phasic component refers to the fast changes in the
EDA signal called the skin conductance response (SCR) [15].
The phasic response is above the tonic level, with more
significant changes and faster speeds, displayed as a burst
or peak. SCR is sensitive to specific emotional stimulation
events. Event-related skin conductance responses (ER-SCRs)
will burst within 1 to 5 seconds after the emotional stimulation
occurs; non-specific skin conductance responses (NS-SCRs)
spontaneously occur in the human body and do not relate to
any stimuli. The event-related SCRs are the main focus when
analyzing EDA data since they can reflect the arousal and
engagement of the subjects. The four indicators that can be
used to characterize a typical SCR are shown in Fig. 3. These
four indicators can be summarized as the following four EDA
features:

• Skin conductance level (SCL): Tonic level of skin’s
electrical conductivity.

• Skin conductance response (SCR): Phasic change in
skin’s electrical conductivity.

• Non-specific SCR (NS-SCRs): Rate of NS-SCRs that
occur in the absence of identifiable stimuli over time.

• Event-related SCR (ER-SCR): SCRs that can be at-
tributed to a specific eliciting stimulus.

B. Wearable device

Wearable devices use software and hardware components to
achieve powerful functions through data and cloud interaction.
In particular, these devices combine technologies such as
multimedia, sensors, and wireless communication with daily
wear to realize hardware terminals with functions such as user
interaction, entertainment, and physiological monitoring.

Medical treatment will be one of the main directions of
wearable devices’ development among these functions. Since

Fig. 3: An example of the features of EDA signals.

the advancement of science and technology, people have
paid more attention to their health and hope to get their
health information anytime and anywhere. EDA is one of the
physiological signals that need to be monitored. Table I shows
the wearable devices that currently have EDA sensors.

C. Data collection

In order to evaluate the individual EDA characteristics of
respondents, their EDA activity should be collected during a
neutral baseline period [16]. In this condition, no stimuli are
presented. Respondents sit comfortably in a relaxed position.
The recorded EDA activity reflects the spontaneous variability
of the signal, consisting only of the tonic level and non-specific
skin conductance responses (NS-SCR) only. After the baseline
period, the respondents will receive variable stimuli. As EDA
peaks occur within 1 to 5 seconds after the onset of a stimulus,
researchers certainly want to present any material long enough
for respondents to process its content. Furthermore, placing
cool-off stimuli of appropriate duration between the stimuli of
interest might be helpful to allow the EDA signal to return to
baseline. Then the respondents’ EDA signal can start from the
baseline level for the next stimulus. Important characteristics
of the signal are the following:

• Latency. The duration from stimulus onset to the onset
of the phasic burst.

• Peak amplitude. The amplitude difference between onset
and peak.

• Rise time. The duration from onset to peak.
• Recovery time. The duration from peak to 100% recovery.

D. Public available EDA datasets

Unlike other physiological indicators, such as Electroen-
cephalography (EEG), ECG, and Photoplethysmogram (PPG),
open EDA datasets have always been scarce. The EDA data in
some open datasets, such as PPG-DaLiA [19] and CLAS [20],
were acquired from the wrist by the wearable device, while the
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Product Form Sensors Functions

Empatica E4 Wristband EDA, PPG, ST Collect physiological data
MyFeel Wristband HR, EDA, ST Monitor stress level
MOXO Sensor Wristband EDA Measure emotional reactions

HEALBE GoBe2 Wristband Impedance, HR, EDA Track calorie intake, body hydration, sleep quality,
heart rate, and stress levels

U-Check-It Wristband EDA Monitor stress hormones

Fitbit Sense Smartwatch ECG, EDA, ST, PPG,
Red and infrared sensors for SpO2

Stress management,monitor HR&HRV,
SpO2, Breathing Rate, Sleep quality, ST, and ECG

Table I: Wearable devices with EDA sensor available on the market.

Dataset Subjects Device Activities Modalities Year Ref.

VerBIO 55 Empatica E4,
Actiwave Public speaking EDA, ECG, BVP 2020 [17]

WESAD 15 RespiBAN,
Empatica E4

Reading, watching videos,
public speaking, meditation,
a mental arithmetic task

EDA, ECG, BVP, RESP 2018 [18]

Table II: Information about public available EDA datasets used in this work.

EDA data could also be recorded from fingertips or palm in
other datasets such as ITMDER [21]. The datasets’ objectives
mainly focused on detecting emotions, stress, and attention
distraction.

In this work, we chose two available public datasets, which
are VerBIO [17] and WESAD [18], as summarized in Table II.
These datasets were chosen for two main reasons. First, the
EDA data in the two datasets were all recorded by the wearable
device Empatica E4. Empatica E4 is a wristband of which
the electrodes are built to detect the EDA signals on the
wrist. Second, the experiments in the two datasets have similar
activities. No physical-intense activity was included in VerBIO
and WESAD, and public speaking was required to perform in
both of them. In this way, there can be more possibilities to
cross-compare the data. The objectives of creating these two
datasets were both for emotions/stress detection. Furthermore,
these datasets have relatively detailed demographic descrip-
tions, including the age and gender of the subjects, so that
it provides more possibilities to conduct experiments with
different purposes for future study. The followings are the
overviews of these two datasets.

1) VerBIO: The objective of creating the VerBIO dataset
and analyzing the data is to understand if the stress caused by
public speaking impacts physiological signal changes. EDA,
ECG, and Blood Volume Pulse (BVP) signals were recorded
during 344 public speaking sessions given by 55 subjects.
The subjects had to deliver their speeches to real or virtual
audiences in different sessions. A virtual reality device was
adopted to stimulate the public speaking scenario with virtual
audiences. Empatica E4 recorded the EDA data at a frequency
of 4 Hz. This dataset uses self-report as ground truth labels.

2) WESAD: WESAD was built for emotional states recog-
nition. It filled the gap between the authors’ previous labora-
tory research on stress and emotion by including three different
emotional states: neutral, stress, and entertained. This dataset
includes EDA, ECG, EMG, respiration, body temperature, and
triaxial acceleration data recorded from 15 subjects. Watch-

ing amusing videos, performing public speaking and mental
arithmetic tasks, and meditation were designed to elicit the
subjects’ different emotional statuses. Again, Empatica E4 was
used to obtain the EDA data in WESAD, and the frequency
is 4 Hz. In addition, the dataset also includes self-reports
obtained from subjects through multiple surveys.

IV. METHODOLOGY

A stress detection system should be able to maps the signal
inputs (i.e., EDA in this paper) to an output indicating a
person’s stress level. We formulated stress detection as a binary
classification problem. Let E = [e1, e2, . . . , et, . . . , en] be the
input EDA data, where et denote the EDA measurement in
Siemens at discrete time t, the stress detection problem can
be defined as follows:

s = C(Ew, θ) (1)

where s = {0, 1} is the stress state, with s = 1 indicates stress
and s = 0 non-stress, Ew ∈ E is a subset of EDA signals
defined according to the segmentation window w < n, C is the
classification model, and θ is the corresponding coefficients.
These classification models and their corresponding coeffi-
cients can be learned with any supervised machine learning
methods.

A. Data pre-processing

During data pre-processing, four main steps should be
performed.

1) Data segmentation: Since EDA data are usually ex-
tracted from different activities, and the duration of the ac-
tivities usually lasts for several minutes to hours, researchers
need to split the EDA data into segments with the same
lengths so that the data format will be consistent and the
computation cost will be affordable. This study segmented
all data and labels by a 30-second non-overlapping sliding
window for next-step processing. In WESAD, the data came
from more than one activity and had four ground truth labels.
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Dataset Subjects Selected
Subjects

Segments
Stress Non-stress

VerBIO 55 18 284 322
WESAD 15 15 317 572

Table III: The segmentation overview of VerBIO and WESAD.

Dataset All Training Validation Testing

VerBIO 18 15 1 2
WESAD 15 12 1 2

Table IV: The number of subjects for training, validation, and
testing set.

For the binary classification objective in this study, we merged
the labels to stress and non-stress categories for each dataset
according to the stress status indicated on the labels. After
applying the sliding window, there are 606 attributes from
VerBIO and 889 attributes from WESAD. Table III shows the
segmentation results of VerBIO and WESAD.

2) Components seperation: Further data pre-processing is
still necessary for EDA data has two components that make the
data seem not intuitive. Meanwhile, the electrodes of the EDA
sensor will slightly move due to skin moisture and arm or body
movements, resulting in artifacts being generated. Therefore,
the artifact removal methods need to be applied to the raw
data, but the SCR and SCL components must be extracted. The
Python library NeuroKit, which is developed specifically for
processing and analyzing physiological signals, including EDA
data, can apply filters to EDA data and extract the informative
SCR components. In our research, the NeuroKit is used to
pre-process the EDA data.

3) Data splitting: When the pre-processing is finished, the
data are split into training and testing sets. The splitting is
based on subjects for subject-independent experiments are
more beneficial than subject-dependent ones so that the re-
search can explore more insights of the relations between the
emotional changes and the EDA data based on individuals. We
took 10% of the subjects as testing set (rounded up), and the
rest are used for training. The leave-one-subject-out method
is used to validate the training, which means one subject is
left for validation in every training round. Table IV shows the
data splitting results.

4) Feature extraction: Training with all data features would
be time-consuming and increase the computation cost. Statis-
tical features and additional SCR features were computed and
extracted to form a feature vector used to train the data. In the
end, seven features are chosen to establish the feature vector.
The feature vector can be expressed as:

FeatureV ector =[meanEDA,minEDA,

maxEDA, stdEDA,

meanSCRonsets,meanSCRamp,

meanSCRrecovery ]

(2)

B. Classification algorithms

Three machine learning methods are applied to perform the
classification task.

1) K-nearest neighbor: KNN classifies by measuring the
distance between different feature values, that is, given a
training dataset, find the K instances in the training dataset
closest to the input instance. The input instance will be
classified according to most of the K instances belonging to
which specific class.

2) Logistic Regression: Logistic Regression is a linear
classification algorithm that investigates a sample’s probability
belonging to a certain category. Logistic regression calculates
the best decision boundary that can distinguish the categories
to the most.

3) Random Forest: Random Forest is randomly composed
of many decision trees in the forest, and no correlation exists
between each decision tree. When there is a new sample, each
decision tree in the forest decides to which category the sample
belongs. Then the decision tress vote to determine the final
classification result based on which category is more selected.

C. Evaluation metrics

The accuracy, recall, precision, and F1 score, all of which
are common evaluation methods in statistics, are used to
evaluate the classification performances, as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1score = 2 ∗
precision ∗ recall

precision+ recall
(6)

TP = True positive, TN = True negative,

FP = False positive, FN = False negative.

V. RESULTS AND DISCUSSION

We performed the binary stress and non-stress classification
tasks with both the full features and the feature vector with
selected features. From Table V, we can observe that Logistic
Regression and Random Forest have better performance on
VerBIO and WESAD, respectively. Logistic Regression has an
85.3% accuracy for VerBIO, while Random Forest achieved an
accuracy of 85.7% on WESAD. However, the performance of
KNN is not as satisfactory as Logistic Regression and Random
Forest on both datasets. Although VerBIO is a balanced dataset
while WESAD is unbalanced, the results indicate that the EDA
data extracted from the wrist by Empatica E4 in both datasets
can detect the stress status. However, due to the lacking of
open EDA datasets, the training samples are insufficient for the
growing demand for EDA research. The similarity of VerBIO
and WESAD offers an opportunity that EDA datasets with
similar activities and labels can be considered to merge and
train together to expand the training samples and improve the
classification accuracy.
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Model Data Metrics VerBIO WESAD

KNN
Full F1 score 0.788 0.569

Accuracy 0.794 0.605

Features F1 score 0.588 0.412
Accuracy 0.588 0.664

Logistic
Regression

Full F1 score 0.828 0.407
Accuracy 0.853 0.731

Features F1 score 0.615 0.743
Accuracy 0.706 0.849

Random Forest
Full F1 score 0.824 0.566

Accuracy 0.824 0.588

Features F1 score 0.800 0.785
Accuracy 0.765 0.857

Table V: Evaluation of the classifiers on the classification task
with full features and selected features. (Full: All features;
Features: Selected features.)

In addition, all the three classifiers offer better accuracy
when training with full features than with selected features of
VerBIO. However, an opposite conclusion can be drawn from
the results of WESAD. This indicates that it is unreliable to
determine whether training with all or selected features is safe
for different datasets. Since the wearable device on the human
body will be slightly displaced due to people’s activities and
the EDA signal is derived from direct contact with the skin,
artifacts will inevitably be generated. The peaks caused by the
artifacts will affect the data quality and classification results
accuracy. Consequently, the extracted SCR features may be
affected, resulting in comparing training with all features
and different combinations of exacted features, and advanced
artifact removal algorithms are necessary.

The proposed framework and the experiment results show
the feasibility of adopting wearable devices with EDA sensors
to detect stress. Empatica E4, a research-grade wearable de-
vice, is widely used in academia for its convenience and raw
data provision. Verifying the feasibility of using EDA to detect
stress can provide confidence to the industry that integrating
EDA sensors into smartwatches is the mainstream to develop
future smartwatch products.

VI. CONCLUSION

This study evaluated the feasibility of classifying stress
and non-stress status with EDA signals by applying three
machine learning models, KNN, Logistic Regression, and
Random Forest, on the datasets VerBIO and WESAD. We
trained the models with all features and selected features
separately, and there has no consistency that training with
selected features could be better than with all features, or vice
versa. According to the results, Random Forest offered the
best binary classification performances on WESAD, with an
accuracy of 85.7%, making EDA data collected from wearable
devices a promising approach for stress detection systems.
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