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Gaze Estimation via Modulation-Based Adaptive
Network With Auxiliary Self-Learning
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Abstract— Given a face image, most of previous works in gaze
estimation infer the gaze via a well-trained model with supervised
training. However, the distribution of test data may be very
different compared to that of training data since samples might
be corrupted in real-world scenarios (e.g., taking a photo in
strong light). This will lead to a gap between source domain
(i.e., training data) and target domain (i.e., test data). In this
paper, we first introduce self-supervised learning into our method
for addressing challenging situations in gaze estimation. More-
over, existing appearance-based gaze estimation methods focus
on directing towards the development of powerful regressors,
which mainly utilize face and eye images simultaneously or
face (eye) images only. However, the problem of inter cues
between face and eye features has been largely overlooked.
To this end, we propose a novel Modulation-based Adaptive
Network (MANet) for gaze estimation, which uses high-level
knowledge to filter the distractive information and bridges the
intrinsic relationship between face and eye features. Further,
we combine self-supervised learning and MANet to learn to adapt
to challenging cases, such as abnormal lighting conditions and
poor-quality images, by minimizing a self-supervised loss and
a supervised loss jointly. The experimental results on several
datasets demonstrate the effectiveness of our proposed approach
with a real-time speed of 900 fps on a PC with an NVIDIA Titan
RTX GPU.

Index Terms— Gaze estimation, self-supervised learning, cor-
rupted images, inter cues, high-level knowledge.

I. INTRODUCTION

GAZE is a non-verbal cue for understanding internal
states of humans. It is widely applied in various appli-

cations, such as saliency detection [1]–[5], human-computer
interaction [6], [7], brain–computer interface (BCI) [8]
and virtual reality industry [9]. Recently, deep neural net-
works have dramatically improved the performance in gaze
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Fig. 1. Examples of a face image with different corrupted versions of the
most severe level. (a) original face image; (b) Gaussian blur; (c) adjusting
brightness; (d) Gaussian noise; and (e) glass blur.

estimation [10]–[14]. However, after existing methods are well
trained, the distribution of test data may be very different
compared to that of training data. This is because, during
testing, samples may be corrupted by noise, different lighting
conditions, and environmental changes (shown in Fig. 1).
These corruptions and the resulting distribution shifts cause
a dramatic drop in performance [15], [16].

To address the above problem, recent work mainly focuses
on personal calibration from the same dataset to adver-
sarial examples [17] or few-shot learning [11], [18]. Both
areas aim to train a model to be robust against various
types of distribution shifts or domain shifts during testing.
In this paper, we introduce the self-supervised auxiliary
task [19]–[22] into our method to handle distribution/domain
shifts. Self-supervised learning can force the predictions of
the two augmented views (i.e., normal images and corrupted
images) to be as similar as possible. Our first intuition is to
impose a constraint over the feature space during training,
so that the feature distribution of training examples can remain
close to that of the real-world domain. In general, our self-
supervised learning based framework consists of two neural
networks, that is, an online network and a target network.
By minimizing the mean squared euclidean distance of both
l2-normalized predictions, our proposed method can obtain
robust parameters to adapt to various corrupted images.

Some appearance-based models use CNNs for gaze esti-
mation from either a single eye patch (Fig. 2(a)) [11], [23],
[24] or both eye patches (Fig. 2(b)) [18], [25], [26]. There are
also some works [27], [28] on gaze estimation from full face
images (Fig. 2(a)). Most state-of-the-art approaches [29]–[32]
use both face and eye images (Fig. 2(b)). However, these
methods use simple techniques to fuse the information from
the face and eye images, e.g., by simple concatenation or
fully-connected layers. Since gaze estimation is inherently a
challenging task that requires high-level understanding of the
gaze, simple feature concatenation operation is fundamentally
limited, which is not conducive to modeling the interaction
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Fig. 2. Two typical gaze estimation architectures to explore the correlation
between face and eye images. (a) full face or single eye input [11], [18], [27],
[28]; (b) face and eye images simultaneously or both eyes input [14], [29],
[30], [33]; and (c) our unique architecture for gaze estimation.

between face and eye images. We believe that modeling
the proper interaction between face and eye images is very
important for gaze estimation. Besides, the capacity of gaze
cues between eyes and face is different that means we cannot
address them by simple concatenation. Eyes can provide more
accurate gaze cues, instead face contains richer gaze cues,
including more noises. Therefore, we use more accurate eye
features to filter distractive information of face features.

To this end, in this paper, we propose a novel modulation-
based adaptive architecture named MANet (Fig. 2(c)). Differ-
ent from existing architectures (Fig. 2 (a&b)) that simply fuse
face and eye features or just input a single patch, our model
uses the eye features to modulate the face features for gaze
estimation. The advantage is that our model effectively models
the proper interaction between face and eye features and
successfully captures the complementary information between
them. Concretely, our MANet consists of three main parts:
a feature extraction network, an eye-guiding network and a
gaze prediction network. The eye-guiding network is based
on a two-stream structure that encodes precise information
from the bounding boxes for the two eyes. The gaze prediction
network encodes the visual feature from the full face for gaze
estimation. The output from the eye-guiding network is used to
modulate the face features in the gaze prediction network. This
feature modulation enables to learn rich interactions between
face and eye features.

We combine a self-supervised auxiliary task and MANet
to cope with domain shifts when test data is corrupted. Our
method mitigates the harmful effect of data distribution shifts
between training data and test data, which can tackle extreme
conditions, such as low-quality images, blurred images and
abnormal illumination.

Our major contributions are summarized as follows:
• First, previous works in gaze estimation have largely

overlooked the issue of the covariate shift between train-
ing and testing. To solve it, we introduce self-supervised
learning to promote the robustness and generalization of
our gaze model. Our core idea is to impose a constraint
over the feature space during training so that the feature
distribution of training examples remains close to that of
the test domain.

• Second, we propose a novel modulation-based adaptive
architecture called MANet for gaze estimation. To the
best of our knowledge, this is the first method that utilizes
high-level cues of eye regions to modulate face features
in gaze estimation.

• Finally, we combine the self-supervised learning and
MANet at the training phase which is able to adapt to
corrupted images at test time. Our proposed model with
joint training shows competitive performance compared
with other state-of-the-art methods on several datasets.

II. RELATED WORK

In this section, we briefly introduce self-supervised learning
and review existing representative works on gaze estima-
tion, including model-based methods and appearance-based
methods.

A. Self-Supervised Learning

The goal of self-supervised learning is to learn general
representations with unlabeled data. Recent state-of-the-art
approaches for representation learning rely on contrastive
learning [20], [34], [35]. The key idea of contrastive learn-
ing is to jointly maximize the similarity of representations
of augmented views of the same image, while minimizing
the similarity of representations of other samples, i.e., the
so-called negatives. Our paper uses another state-of-the-art
method, BYOL [19], which shows that the self-supervised
learning on only a single image can surprisingly produce
representations that generalize well. Fu et al. [21] present a
novel self-supervised synthesis ranking auxiliary framework
for better metric learning. Guo et al. [22] use 2D spatial
relationships and 3D geometric knowledge to build a self-
supervised module to eliminate domain gaps between 2D and
3D space in 3D hand pose estimation. In gaze estimation,
for the first time, we introduce self-learning to adapt domain
shifts when test data is corrupted. In addition to self-supervised
learning methods, many outstanding semi-supervised works
are published. Chen et al. [36] propose a semi-supervised deep
model for imbalanced activity recognition from multimodal
wearable sensory data. DML [37] presents a deep mutual
learning strategy to transfer knowledge to meet the low-
memory or fast execution requirements. Then the proposed
DML is extended straightforwardly to semi-supervised learn-
ing. Laine and Aila [38] present a simple and efficient method
for training deep neural networks in a semi-supervised setting.
Zheng and Yang [39] propose an orthogonal method to exploit
the intra-domain knowledge and regularize the model training.

B. Model-Based Methods

Much attention has been spent on investigating model-based
methods for gaze estimation, and they use a geometric model
of eyes, usually requiring either high-resolution images or
a person-specific calibration stage to estimate personal eye
parameters [40]–[46]. Although these model-based methods
have achieved promising performance, most of them require
special devices such as infrared lights or RGB-D cameras.

Authorized licensed use limited to: Concordia University Library. Downloaded on January 27,2023 at 16:13:20 UTC from IEEE Xplore.  Restrictions apply. 



5512 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 8, AUGUST 2022

Meanwhile, model-based methods are prone to noise or illu-
mination perturbations, and cannot handle well with head ori-
entation variabilities, which limits their practical application.
Besides, the users usually need to provide a strict controlled
environment such as a laboratory, because all of the present
model-based methods have limited working distance. Different
from the model-based methods, we propose a novel method
based on appearance.

C. Appearance-Based Methods

Because of the above-mentioned limitations of model-based
methods, recent research works focus more on appearance-
based methods as they can learn a direct mapping from an
image, or extract eye features to estimate gaze direction, thus
being potentially applicable to relatively low-resolution images
and mid-distance scenarios. The appearance-based methods
can roughly be classified into three major categories based
on the ways of input: single eye-patch input, full face input
and multiple regions input.

1) Single Eye-Patch Input: Many appearance-based meth-
ods [13], [17], [24], [47]–[54] take a single eye region as
input (Fig. 2(a)), and these methods can be inputted the
left or right eye of a person separately. Zhang et al. first
propose a CNN-based method to map eye images to gaze
directions [55]. Because existing appearance-based methods
assume person-specific training data, Sugano et al. [50] use a
large amount of cross-subject training data to train a 3D gaze
estimator. Zhang et al. [26] first present an in-the-wild dataset
for gaze estimation to evaluate gaze estimation methods.
Wang et al. [17] propose to incorporate adversarial learning
and Bayesian inference into a unified framework to overcome
poor generalization performance. Although their inputs to
the network are relatively straightforward, the performance is
significantly improved.

2) Full Face Input: Because the regions need to be chosen
by handling for above-mentioned methods, previous methods
also use full face as input (Fig. 2(a)) [27], [28], which can
be simple in real-world applications. FullFaze [27] encodes
the face image using a convolutional neural network with
spatial weights applied on the feature maps to flexibly sup-
press or enhance information in different facial regions.
Zhang et al. [56] leverage a standard CNN architecture, trained
with the task of estimating gaze from a monocular face patch.
Generally, full face image can provide more information, and
the CNNs can avoid over-fitting when the input is a full face
image. But the performance of the gaze estimator is still not
sufficient for high-accuracy applications.

3) Multiple Regions Input: Performance generally improves
when considering both eye regions simultaneously or using
multiple input regions (Fig. 2(b)), such as the two eyes
alongside the face [14], [18], [25], [29], [30], [32], [33],
[57]. To further improve the accuracy of the gaze estimator,
Cheng et al. propose an Asymmetric Regression-Evaluation
Network by utilizing asymmetry of two eyes. Recently, a lot
of works focus on few-shot learning [58]–[64]. For example,
Park et al. [18] lower the angular errors by using a few-shot
adaptive network for learning person-specific gaze estimation

networks. From scientific research to commercial applications,
Krafka et al. [29] present the first large-scale dataset to
build an eye tracking software that works on commodity
hardware. Fischer et al. [25] address the gaze estimation task
by measuring head pose using a motion capture system and
eye gaze using mobile eye-tracking glasses. AR-Net [57]
and ARE-Net [57] try to improve the gaze estimation per-
formance using the property of “two eyes asymmetry”.
Based on AR-Net [57] and ARE-Net [57], FAR-Net [30] and
FARE-Net [30] present the face-based asymmetric regression-
evaluation network to optimize the gaze estimation results.
These works have obtained promising results, however, the
intrinsic regularities between face and eye features are largely
ignored because face and eye images only serve as independent
or parallel feature sources in these works.

Existing appearance-based gaze estimation approaches with
CNNs have poor generalization performance, due to three
issues in our opinion, i.e., lacking the intrinsic regulari-
ties correlation between face and eyes, inputting low-quality
or occluded image, and over-fitting issue with point esti-
mation. Some works have tried to tackle these issues.
Cheng et al. [31] proposed a coarse-to-fine adaptive network
to address the intrinsic correlation between face and eyes.
Further, Zhang et al. [32] take a dynamic region selection
approach to overcome the problems of illumination conditions,
low-quality images and occlusions to some extent, but this
method requires to undergo a complex training process due to
the non-end-to-end network. Inspired by the previous studies
mentioned above, compared to [32], in our method, we focus
on making the model adapt to various situations. Besides,
we would expect to extract more meaningful adaptive eye
features to filter the distractive information, and learn inter
cues between face and eyes with a concise architecture.

Thus, based on the above analysis, we first introduce self-
supervision to address corrupted images, and we also design
a modulation-based structure called MANet, to learn inter
cues between face and eye images. Our model can eliminate
distractive information and avoid performance degradation
when the input is with low-quality, abnormal illumination and
occlusion.

III. OUR APPROACH

In this section, we elaborate our proposed model.
In Sec. III-A, we present the architecture of our model.
In Sec. III-B, we give the details of the proposed Modulation-
Based Adaptive Network (MANet), which consists of feature
extraction, gaze prediction network and eye-guiding network.

A. Architecture Overview

Similar to previous work in self-supervised learning (or
representation learning) [19], [20], our proposed model learns
representations by maximizing agreement between different
views of the same data example via a self-supervised loss in
the latent space. The overall architecture as shown in Fig. 3
consists of two neural networks: the online and target ones.
The online network is defined by a set of weights θ and is
comprised of three stages: an encoder fθ , a projector gθ and
a predictor. The target network has the same architecture as
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Fig. 3. Overview of our approach. Similar to BYOL [19], our approach has a online network and a target network. For the online network, we use the
original image into augmentation, which is then passed through fθ (MANet, see Fig. 4) to obtain yθ . After that, yθ is passed through gθ (MLP) to obtain
zθ , where θ are the trained weights. The target branch has same the architecture as the online branch except prediction. We first augment (simulating image
corruptions) the original image into augmentation, then the image undergoes the same process as that of online. ξ are an exponential moving average of θ that
means the target never calculates gradients. We minimize a similarity loss (self-supervised loss) between zθ and z�ξ . Meanwhile, we minimize the supervised
loss via prediction. At the end of training, everything is discarded but fθ (MANet).

the online network except predictor (target has no predictor).
The target network provides the regression targets to train
the online network, and its parameters ξ are an exponential
moving average of the online parameters θ [65]. Given a target
decay rate τ ∈ [0, 1], after each training step we perform the
following update:

ξ ← τξ + (1− τ )θ, (1)

where we set τ to 0.99. In addition, we elaborate major
components in Fig. 3 as follows:

1) Augmentation: We use stochastic data augmentation to
transform any given data example randomly resulting in a cor-
related view of the input image v, denoted as v �. In this work,
we sequentially apply several simple augmentations, including
color distortion, random sequence of brightness, contrast,
saturation, hue adjustments, Gaussian blur and Gaussian noise,
to the face image.

2) Representation: We apply the proposed MANet (refer to
Sec. III-B for details) as the base encoder f (·) that extracts
the representation vectors yθ and y�ξ from the two samples v
and v �, respectively.

3) Projection: We use a Multi-Layer Perception (MLP)
as projection g(·) that maps representations to the space
where self-supervised loss is applied. We obtain zθ via g(·).
The MLP consists of a linear layer with output dimension
1024 followed by batch normalization, and a linear layer with
output dimension 512 followed by ReLU. Additional details
of the MLP are given in Tab. V.

4) Objective: Our proposed model has two loss func-
tions, i.e., a supervised loss and a self-supervised loss.
We obtain the supervised loss via prediction. We use the
angular gaze estimation error as the supervised loss and
evaluation metric. To calculate this error, we first convert
the yaw and pitch angles, i.e., (φ,ψ), into three-dimensional
representation in the Cartesian coordinate system as p =
(cosφcosψ,−sinφ, cosφsinψ). Given the ground-truth gaze
angle p and the predicted gaze angle p̂, the angular error

L( p̂, p) is defined as:

L( p̂, p) = arccos(
p̂ . p∥∥ p̂
∥∥ . �p� ). (2)

To compute the self-supervised loss, we first use �2-normalize
to output zθ and z�ξ , then obtain z̄θ = zθ /�zθ�2 and z̄�ξ =
z�ξ /�z�ξ�2. Finally we use the following mean squared error
between the normalized predictions like [19],

Lsel f =
∥∥∥z̄θ − z̄�ξ

∥∥∥
2

2
= 2− 2 · �zθ , z�ξ �∥∥zθ

∥∥
2 ·

∥∥z�ξ
∥∥

2

· (3)

Note that we only compute gradient with respect to θ in Eq. 3,
but not ξ (refer to Eq. 1).

We symmetrize the loss L( p̂, p) and Lsel f in Eq. 2 and
Eq. 3, by separately feeding v � to the online network and v to
the target network, to compute L̃( p̂, p) and L̃sel f , respectively.
The final loss can be summarized as:

L = L( p̂, p)+ L̃( p̂, p)+ Lsel f + L̃sel f . (4)

B. Modulation-Based Adaptive Network

Most of the appearance-based methods handle eyes and face
by simply concatenating, however, inter cues between eyes and
face are vital for regressing gaze. In this paper, we propose a
modulation-based adaptive network (MANet) to address this
issue. As illustrated in Fig. 4, MANet consists of a feature
extraction backbone network, an eye-guiding network and a
gaze prediction network. The eye-guiding network extracts
visual information from the two eye images, i.e., the bounding
boxes of two eyes, and outputs modulator vectors for the gaze
prediction network. The gaze prediction network predicts gaze
based on the modulated features of the face image.

1) Feature Extraction: We use the relatively shallow
ResNet-18 [66] as our backbone network for feature extrac-
tion. We remove the last fully-connected layer of ResNet-18,
and retain its original five blocks, i.e., Block1 to Block5.
We define the extracted features of Block-i as Fi . Notably,
the resolution of the input face image is set to 224× 224× 3.
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Fig. 4. The overall framework of MANet, which is composed of three components: feature extraction, eye-guiding network, and gaze prediction network.
First, the feature extraction component extracts features from the face image by ResNet-18 Block3 and Block4. These features are passed into the eye-
guiding network. The eye-guiding network first pools two eyes’ regions to a fixed size using PrPool layers. Then, ResNet-18 Block4 and Block5 features
extracted from the face image pass through h(·) which is consisted of two Conv layers. The generated features are modulated by channel-wise multiplication
with the modulator vectors returned by the eye-guiding network. Finally, the gaze prediction network predicts the gaze directions.

2) Eye-Guiding Network: As shown in Fig. 4, the eye-
guiding network is a key component of MANet. Its goal
is to encode the visual information of the two eyes in the
image and to produce the modulator vectors for face features
modulation in the gaze prediction network. The eye-guiding
network takes the visual information extracted from the two
eyes as inputs. It then produces the modulator vectors, which
modulator vectors allow us to capture the rich interaction
between face and eye images.

To simplify, we take F ∈ R
K×K×D as an input example to

introduce our eye-guiding network. We use {Bl, Br } ∈ R
4 to

denote the two bounding boxes of both eyes. Here Bl/r

indicates continuous coordinates of the top-left and bottom-
right points of the bounding box for the left/right eye. The eye-
guiding network first feeds F through a Conv layer followed
by a pooling layer on the two eye bounding boxes Bl and Br .
Here, we use the precise ROI pooling layer (PrPool)1 [67],
which is a continuous variant of adaptive average pooling.
The key advantage of PrPool is that it is differentiable
with respect to the bounding box coordinates, and can better
extract features of the bounding box. The output from each
eye bounding box after PrPool is a feature map of size
K×K×D, denoted to ϕl/r for left or right eye. We formulate
the above operations as follows:

Left eye: ϕl = PrPool(Bl ,Conv(F)), (5a)

Right eye: ϕr = PrPool(Br ,Conv(F)), (5b)

where Conv consists of a convolutional layer, a batch normal-
ization layer, and a ReLU activation function.

In this work, we perform the operations in Eq. 5b to F3 and
F4. This two-stream interaction is in charge of capturing local
and global information. The output size of PrPool to F3 and

1Given a deep feature representation x of an image and a bounding box B
of an object in the image, a precise ROI pooling layer performs the pooling
operation in x over the region given by B , resulting in a feature map of a
pre-determined size.

F4 are set to 3 × 3 and 1 × 1, respectively. We use ϕ3
l and

ϕ4
l to denote the two outputs for the left eye. We then apply

a fully-connected layer on ϕ3
l to match the feature dimension

of ϕ4
l , and concatenate them together to form a feature vector

corresponding to the left eye, i.e.,

cl = FC(ϕ3
l ) � ϕ4

l , (6)

where FC(·) is the fully-connected layer. The feature vector
cr for the right eye is similarly defined.

Finally, we concatenate cl and cr , and pass through
the fully-connected layers to obtain two modulation vectors
{ν1, ν2} ∈ R

1×1×512. Here, we give the implementation details
of operations to F3 and F4 in Tab. VI.

3) Gaze Prediction Network: The goal of the gaze predic-
tion network is to perform gaze estimation using full face fea-
tures. We use features extracted from Block4 and Block5
of the backbone network, i.e., F4 and F5, as the input to the
gaze prediction network. Note that gaze estimation from full
face image is quite challenging, since the underlying factors
(e.g., gaze and head orientation) that we wish to precisely
encode gaze estimation entangled with many other extraneous
factors (e.g., lighting, hue, blur, etc.). In order to address this
challenge, we introduce the modulation mechanism, where the
face features are modulated by the information extracted from
the eye-guiding network of the two eyes. This modulation
mechanism not only disentangles the gaze from distractive
information, but also models the rich interaction between face
and eye features.

Therefore, the modulator vectors from the eye-guiding net-
work are also sent to the gaze prediction network, playing a
role in modulating the visual features extracted from the face
image (i.e., F4 and F5). Concretely, as shown in Fig. 4, the
features of the face image first pass through two Conv layers.
Then the generated features are modulated by the modulator
vectors ν1 and ν2 via the channel-wise multiplication. The
two modulated representations pass through RL4 and RL5,
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Fig. 5. The process of data normalization.

respectively, for reshaping the feature maps. Finally, the
feature maps are concatenated then fed into the gaze predictor
module u(·), consisting of three fully-connected layers (512D,
256D, 3D). The predicted gaze is hence given by

p̂ = u
(
RL4

(
h(F4)⊗ ν1

)
� RL5

(
h(F5)⊗ ν2

))
, (7)

where h(·) stands for the two Conv layers, RL4/5 is reshaping
layer, ⊗ is channel-wise multiplication, and � is concatena-
tion. We will describe the details of h(·) and reshaping layers
in Tab. VII.

IV. EXPERIMENTS

In this section, we present experimental results to assess
the effectiveness of the proposed method. We first give the
details of our datasets and implementation details in Sec. IV-A.
We then perform ablation experiments to study the effect
of different components of our model in Sec. IV-B. Finally,
we compare our method with the current state-of-the-arts in
Sec. IV-C.

A. Datasets and Implementation Details

1) Datasets: We use the GazeCapture [29], MPIIGaze [26],
EyeDiap [23] and Gaze360 [28] datasets in our experiments.
All are widely used benchmark datasets in 3D gaze estimation.

• GazeCapture2(DGC ) [29] is the largest in-the-wild
dataset for gaze estimation. It contains data over 1,450
people consisting of almost 2.5M frames. Since the
original GazeCapture dataset only provides gaze labels
on a 2D screen, we use the pre-processing pipeline [18]
to attain 3D head pose from GazeCapture. Note that
the same ground-truth gaze vectors in the normalized
face coordinate system are always used in the following
experiments. We use both phone and tablet sessions in
GazeCapture, and adopt the same training and test sets
as [29]. All face images are cropped to 224 × 224, and
we roughly set the size of eye regions to be 0.3 times of
the face image size, i.e., about 68× 68 pixels.

• MPIIGaze3(DM ) [26] is another established benchmark
dataset for in-the-wild gaze estimation. Compared with
GazeCapture, this dataset has higher within-person varia-
tions in appearance including illumination, make-up and
facial hair changes. These factors potentially make this
dataset more challenging. The MPIIGaze dataset provides
a standard subset for evaluation, which contains 1,500 left

2https://gazecapture.csail.mit.edu/
3https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-

learning/research/gaze-based-human-computer-interaction/appearance-based-
gaze-estimation-in-the-wild/

eye images and 1,500 right eye images independently
selected from each participant. So we use the images
specified in the MPIIFaceGaze subset [27] only for eval-
uation purposes. The MPIIFaceGaze subset consists of
15 subjects each with 2,500 samples on average.

• EyeDiap4(DE ) [23] contains a set of video clips of
16 participants. Since EyeDiap dataset does not pro-
vide a evaluative standard, we sample one image per
15 frames [30] from VGA videos. We obtain the video
clip from 14 participants since the other two participants
are lack of screen target session videos.

• Gaze3605(DG) [28] is a large-scale gaze-tracking dataset
for robust 3D gaze estimation in unconstrained images.
The dataset consists of 238 subjects in indoor and outdoor
environments with labeled 3D gaze across a wide range
of head poses and distances. It is the largest publicly
available dataset of its kind in term of both subject and
variety. This dataset is split into training, validation and
test sets.

2) Data Normalization: We pre-process GazeCapture [29],
MPIIGaze [26], EyeDiap [23], and Gaze360 [28] datasets
following the data normalization procedure described in [68]
to extract the face images and the corresponding gaze direction
labels. As shown in Fig. 5, the data normalization procedure
places a virtual camera to re-render the eye image from a
reference point with the head upright, which results in a
normalized face image without any in-plane rotation.

3) Implementation Details: We implement the proposed
model in PyTorch on two NVIDIA Titan RTX GPUs with
approximately 24 hours for training. The ADAM [69] opti-
mizer is employed with initial learning rates of 2e-5 and 1e-4
for the backbone network (i.e., ResNet-18) and the others,
respectively. The batch size is set to 128. On GazeCapture and
Gaze360 datasets, we train our network for 20 epochs; and on
MPIIGaze and EyeDiap datasets, we train it for 200 epochs
with a leave-one-person-out strategy. The inference time of
one sample is around 1.1ms.

B. Ablation Study

In this section, we provide comprehensive ablation studies
to evaluate the contribution of each key component in our
method. We follow [32] and use the following settings for
the ablation study: (1) training and testing on GazeCapture
[29]; (2) cross-dataset testing by training on GazeCapture and
testing on MPIIGaze [26], EyeDipa [23] and Gaze360 [28];
(3) within dataset evaluations on MPIIGaze [26], EyeDiap [23]
and Gaze360 [28].

1) Importance of Self-Supervised Learning: To show the
ability of self-supervised learning, we provide a variant with-
out the self-supervised learning strategy, named w/o self-
supervision. As shown in Tab. I, the performance of our
full model is better than w/o self-supervision, especially on
DGC→DM . The angular error descends as shown by the large
gap with and without the self-supervised learning strategy.

4https://www.idiap.ch/en/dataset/eyediap/
5http://gaze360.csail.mit.edu/
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Fig. 6. Two variant architectures. (a) w/o eye-guiding networ: discarding the eye-guiding network; (b) concatenation: discarding the modulation mechanism.

TABLE I

ABLATION STUDY RESULTS ON GAZECAPTURE (DGC ) AND MPIIGAZE (DM ). HERE “Ang error �� MEANS ANGULAR ERROR

WHICH IS USED AS EVALUATION METRIC. THE BEST RESULT IN EACH COLUMN IS BOLD

This clearly shows that the learned parameters are able to
address lots of corrupted situations.

2) Significance of Eye-Guiding Network: In this experi-
ment, we investigate the significance of the eye-guiding net-
work in the proposed architecture. We compare our model with
a baseline without the eye-guiding network, named w/o eye-
guiding network, that is, directly predicting the gaze from the
full face image, as shown in Fig. 6a. The performance of this
baseline is reported in the second row in Tab. I. We can see
that our method achieves better performance (3.53◦ and 4.64◦)
than that of w/o eye-guiding network (3.91◦ and 5.00◦) with
a significant margin (9.7% and 7.2%) in both settings. This
demonstrates the effectiveness of adapting the gaze prediction
network using the information from the eye-guiding network.

To further prove the effectiveness of our model, we give
quantitative results for poor-quality images in Tab. II. Because
the original dataset doesn’t provide the files about poor-
quality images, we pick them manually. We observe that
the quantitative results of three subjects’ poor-quality images
(P00, P02 and P11) are incremental in terms of angular error
(e.g., P00: 3.56◦→3.02◦→3.00◦, P02: 4.11◦→3.96◦→3.85◦
and P11: 4.60◦→4.51◦→4.32◦). This shows that the eye-
guiding network and self-supervised learning improve perfor-
mance even in bad conditions.

3) Effectiveness of PrPool in Eye-Guiding Network: In the
eye-guiding network, we have used PrPool to extract precise
semantic cues from two eyes in order to generate the two

modulation vectors as shown in Fig. 4. To investigate the
effectiveness of PrPool, we compare with two alternative
baselines in Tab. I. The first one, named w/o PrPool, removes
PrPool in the eye-guiding network, and directly extracts
eye features from F3 and F4. The second one, named ROI
Pooling, uses ROI Pooling to replace PrPool in the eye-
guiding network. Our model outperforms these two baselines,
which demonstrates the benefit of PrPool in extracting
effective information from the eye regions.

4) Effectiveness of Modulation Mechanism: In our model,
we use the feature representations from the eye images to
modulate the features from the face image. To validate the
effectiveness of this modulation mechanism, we compare with
a baseline, named concatenation, that simply concatenates the
features from the face and two eyes (see Fig. 6b). This baseline
is similar to previous work, e.g., [30], [57]. Note that the
simple concatenation does not model rich interactions between
face and eye images. As shown in Tab. I, we can see that
concatenation performs inferior.

5) Usefulness of Two Branches in Gaze Prediction Network:
In the gaze prediction network, we use two modulation vectors
to adjust the generated two groups of feature maps from
Block4 and Block5. This two-branch structure is in charge
of capturing local and global information. To investigate the
effectiveness of two branches in gaze prediction network,
we design two variants: using a single modulation vector to
adjust the generated features from Block4 and Block5,
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Fig. 7. Some visual results of estimated 3D gaze.

TABLE II

THE QUANTITATIVE RESULTS OF ABLATION STUDY ABOUT EYE-GUIDING NETWORK. WE RANDOMLY CHOOSE 3 SUBJECTS ON MPIIGAZE DATASET

AND MANUALLY PICK POOR-QUALITY IMAGES

TABLE III

COMPARISON WITH THE STATE-OF-THE-ARTS. NOTE THAT OUR METHOD PERFORMS PARTICULARLY WELL IN THE MOST CHALLENGING

CROSS-DATASET SETTING WHEN TRAINED ON THE LARGE GAZECAPTURE (DGC ) DATASET EVEN IF TESTED ON MPIIGAZE (DM ),
EYEDIAP (DE ) AND GAZE360 (DG ). THE BEST RESULT IN EACH COLUMN IS BOLD

named single branch w/ Block4 and single branch w/ Block5,
respectively. As shown in Tab. I, the results of these variants
confirm that our full model can achieve more favorable per-
formance than them.

C. Main Comparisons

We compare our method with 12 state-of-the-art
appearance-based gaze estimation methods, including
GazeNet [26], AR-Net [57], ARE-Net [57], CA-Net [31],
MeNets [13], FAR-Net [30], FARE-Net [30], FAZE [18],
LRSNet [32], FullFace [27], DPGaze [47] and
ETH-XGaze [56]. For a fair comparison, the results of
all compared methods are either from the original papers or
obtained by running their released codes.

1) Quantitative Results: In Tab. III, we show the
comparisons on the GazeCapture dataset and in the cross-
dataset setting. Overall, our proposed method outperforms
other state-of-the-art approaches. Concretely, our result (4.37◦)

outperforms the second best method ETH-XGaze [56] (4.5◦)
by over 3% on the cross-dataset from GazeCapture to
MPIIGaze evaluation. For the cross-dataset from GazeCapture
to EyeDiap and Gaze360 evaluations, our method consistently
outperforms the previous state-of-the-art methods.

In Tab. IV, we show the comparisons using within evalua-
tion protocol on MPIIGaze, EyeDiap and Gaze360 datasets.
We compare our model against 11 state-of-the-art meth-
ods, including LRSNet [32], GazeNet [26], AR-Net [57],
ARE-Net [57], CA-Net [25], MeNet [13], FAR-Net [30],
FARE-Net [30], FullFaze [27], DPGaze [47] and ETH-
XGaze [56]. Within MPIIGaze evaluation, CA-Net [31]
achieves the best result (4.1◦). Our proposed method achieves
the second best result (4.3◦) in angular error. Moreover, our
method achieves the best result on Gaze360.

2) Computational Complexity Comparison: We report para-
meter amount (Params) and FLOPs of our various variants in
Tab. I and most compared methods in Tab. III. Unfortunately,
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TABLE IV

COMPARISON OF THE PROPOSED MODEL WITH CURRENT STATE-OF-THE-
ARTS WITHIN DATASET EVALUATIONS ON MPIIGAZE (DM ), EYEDIAP

(DE ) AND GAZE360 (DG ).THE TOP THREE RESULTS ARE SHOWN

IN RED, BLUE AND GREEN, RESPECTIVELY

most methods don’t release the codes, so their Params and
FLOPs are missing in Tab. IV. As shown in Tab. I, our
method puts a little more computational complexity compared
to various variants. Notably, the FLOPs of our method is
2.7G, accounting for 66% of the second-place method ETH-
XGaze in Tab. III. The parameter amount of our method
(i.e., 29.5M) is slightly higher than ETH-XGaze (i.e., 23.5M).
In general, the proposed method is an efficient and effective
method.

3) Qualitative Results: In Fig. 7, we show the qualitative
examples of our method in the cross-dataset evaluation from
GazCapture to MPIIGaze. Our proposed approach consistently
generates gaze directions close to the ground-truths on differ-
ent samples.

There are several challenging and complicated scenes for
gaze estimation: 1) low-quality images (No. 11, 13, 14, 15,
17 and 18); 2) abnormal illumination (No. 1, 7, 8 and 13);
and 3) wearing glasses (No. 3, 4, 9 and 10). Besides, there are
some good images (No. 2, 5, 6 and 12). Corrupted face images
might fail to provide valuable cues, and even provide incorrect
information. Thanks to the strong power of each component
in the proposed model, our model overcomes various extreme
conditions.

V. CONCLUSION AND DISCUSSION

In this paper, we introduce auxiliary self-learning to gaze
estimation, which can deal with corrupted images (e.g., blurred
images) at test time. Moreover, we propose a Modulation-
based Adaptive Network (MANet), which is the first method
utilizing high-level cues of the eye-specific regions to mod-
ulate face features in the gaze estimation task. MANet con-
tains feature extraction, eye-guiding network and gaze pre-
diction network. The proposed eye-guiding network captures
meaningful information from two eyes to generate adaptive
features, which adjust the gaze prediction network by the

TABLE V

DESCRIPTION OF MLP

TABLE VI

DESCRIPTION OF Conv OF F3 AND F4 IN THE EYE-GUIDING NETWORK.
HERE, k DENOTE THE KERNEL SIZE, p IS THE PADDING, AND s IS THE

FILTER STRIDE

TABLE VII

DESCRIPTION OF h(·) OF F4 AND F5, RL4 , AND RL5 IN THE GAZE
PREDICTION NETWORK. HERE, k INDICATES THE KERNEL SIZE, p IS

THE PADDING, AND s IS THE FILTER STRIDE

modulation-feedback mechanism to filter noise information for
accurate gaze directions. Further, we combine self-learning
and MANet to learn to adapt to challenging cases by joint
training. In addition, our model runs at 900 fps for practical
real-time eye tracking applications.

Notwithstanding the above advantages, a limitation of our
method is that it requires the coordinates of eye pairs for the
eye-guiding network, which sets some constraints for practical
applications. We will design a network to automatically locate
the eye regions or more important regions to extract high-level
gaze cues in the future work. Moreover, we will use more
augmentations for self-learning training which will make our
model more robust.
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