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Abstract—Co-saliency detection focuses on detecting common
and salient objects among a group of images. With the application
of deep learning in co-saliency detection, more accurate and
more effective models are proposed in an end-to-end manner.
However, two major drawbacks in these models hinder the
further performance improvement of co-saliency detection: 1)
the static manner-based inference, and 2) the constant quantity
of input images. To address these limitations, we present a novel
Adaptive Group-wise Consistency Network (AGCNet) with the
ability of content-adaptive adjustment for a given image group
with random quantity of images. In AGCNet, we first introduce
intra-saliency priors generated from any off-the-shelf salient ob-
ject detection model. Then, an Adaptive Group-wise Consistency
(AGC) module is proposed to capture group consistency for
each individual image, and is applied on three-scale features to
capture the group consistency from different perspectives. This
module is composed of two key components, where the content-
adaptive group consistency block breaks the above limitations
to adaptively capture the global group consistency with the
assistance of intra-saliency priors and the ranking-based fusion
block combines the consistency with individual attributes of
each image feature to generate discriminative group consistency
feature for each image. Following AGC modules, a specially
designed Aggregated Decoder aggregates the three-scale group
consistency features to adapt to co-salient objects with diverse
scales for preliminary detection. Finally, we incorporate two
normal decoders to progressively refine the preliminary detection
and generate the final co-saliency maps. Extensive experiments
on four benchmark datasets demonstrate that our AGCNet
achieves competitive performance as compared with 19 state-of-
the-art models, and the proposed modules experimentally show
substantial practical merits.

Index Terms—Co-saliency detection, group consistency, intra-
saliency priors, content-adaptive layer, semantic information.

I. INTRODUCTION

ALIENCY detection simulates the human visual attention

mechanism during free-viewing within a single image to
rapidly focus on the most attractive regions [1], [2]. As an
extended branch of saliency detection, co-saliency detection
explores the most repeatedly occurring salient objects with
the same attributes across a group of relevant images.
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The most important information of the group of images can
be represented by the extracted co-occurring patterns or the
prime objects within contexts of the group [3], [4]. With this
ability, co-saliency detection is widely used as an inherent part
in many applications, such as image co-segmentation [5]—[7],
image co-localization [8], and image retrieval [9].

Compared with saliency detection in a single image, mining
the interaction of a group of images is a further essential
step for co-saliency detection. Existing co-saliency detection
models [10]-[25] generally focus on tackling two key issues
to ensure that the detected objects are salient and similar with
each other: 1) extracting representative features to characterize
salient objects and 2) mining group consistency.

At the early stage, co-saliency detection models [10], [12],
[13], [24], [26] are mainly based on handcrafted features, and
assume that the co-salient objects in multiple related images
should share certain shallow-level consistency. Researchers
have designed some constraints to capture the group consis-
tency of a given image group, e.g., Kullback-Leibler diver-
gence [26], cluster [10], and manifold ranking [12], [13], [24].
However, these models cannot sufficiently capture high-level
object semantics, and the handcrafted features are unstable
on complex scenes, e.g., when there is a large appearance
variance of co-salient objects across images, or when the co-
salient objects are similar to the background. These factors
often lead to poor performance.

Recently, the deep-learning based co-saliency detection
models [4], [18]-[23], [27]-[29] demonstrate more powerful
performance than handcrafted feature-based co-saliency detec-
tion models [30]. These models extract Convolutional Neural
Network (CNN) features and model collaborative relationships
of features from group-wise and single images, and obtain
promising results. However, there are two major limitations in
these models, which hinder the further performance improve-
ment of co-saliency detection:

First, most end-to-end models [ 18], [20]-[23] capture group
consistency in a static manner, where the model parameters
are generally fixed once trained, which reduces their gener-
alizability of handling objects of unseen categories. We take
some results of IML [21] as examples in Fig. 1. Due to the
training dataset including human category, the person who
appears in the fifth image is wrongly identified by IML [21]
as co-salient object. The real co-salient objects are cricket
balls, which are not detected in the first image by IML model.
Second, most end-to-end co-saliency detection models [20],
[21], [23] are limited by a constant quantity of input images.
Whether in the training or inference stage, the complete
image groups have to be divided into some subgroups with
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Fig. 1. Illustrations for the problems of existing end-to-end models to detect
co-salient objects. Examples of cricket ball group in CoSOD3k [30]. GT
represents ground truth.

a specified number of images. With different partial image
groups as inputs, the global consistency capture within a
complete image group is deficient for these models, resulting
in the inconsistent inference for different combinations. When
the number of images in a subgroup is fixed to a small value,
some frequently occurring attributes will be enlarged. From
the results of IML [21] in Fig. 1, when the cricket balls
are highlighted, the mallets that often accompany them are
mistakenly highlighted by IML. The root cause is that the ways
(e.g., feature concatenation) of modeling the inter-correlation
among multiple images and combining the individual attributes
with inter-correlation are improper.

To break the above limitations, we propose an end-to-
end Adaptive Group-wise Consistency Network (AGCNet) to
detect co-salient objects within an image group, where the
number of images in the group can be variable. The key idea of
AGCNet is to adaptively capture the global group consistency
and integrate it with attributes of each individual image for
more discriminative reflecting on each image of the group.
Specifically, in light of that state-of-the-art image salient object
detection (SOD) models can achieve comparable performance
in co-saliency detection, we introduce the results of any off-
the-shelf image SOD models into our model. In our view, the
extracted salient regions from SOD models can be taken as the
intra-saliency priors to conduct the semantic matching within
an image group, modeling the inter-semantic correlation for
capturing the global group consistency. Moreover, considering
that co-salient objects in a group of images often belong
to the same semantic category but vary in terms of some
individual attributes [31], we further combine the global group
consistency with individual attributes to keep the internal
coherence of any co-salient objects. Besides, in light of that the
co-salient objects of a group vary in scale even within the same
category and existing attribute gap between different scales,
we explore local and global complementation for different-
scale group consistency in the decoder. Finally, on account of
the excellent performance of the existing image SOD models
in object edge detection, we combine group consistency with
intra-saliency priors to promote the detected co-salient objects
to retain fine edges.

In particular, our AGCNet is composed of three parts: an
encoder for basic feature extraction, three Adaptive Group-
wise Consistency (AGC) modules for modeling collaborative

relationships among a group of image features, and a hybrid
decoder for co-saliency reasoning. Specifically, our AGC mod-
ule consists of a Content-adaptive Group Consistency (CGC)
block and a Ranking-based Fusion (RF) block. The CGC
block is capable of adaptively capturing more flexible global
group consistency for current input group images. The intra-
saliency priors are employed to mask the basic features to
generate intra-semantic features as convolution kernels for
a dynamic convolutional layer [32], which through filtering
achieves point-to-point semantic matching for the given image
group with random quantity. Subsequently, a weighted sum-
mation is applied on the matching information to generate
the group consistency map, potentially scoring co-saliency for
each pixel of each image. RF block targets for achieving the
combination of global group consistency and attributes of each
individual image. To ensure the internal consistency of each
image, RF block further mines the self-correlation relationship
within pixels of each image through an affinity matrix for
the representation of the individual attributes. Finally, this
block combines the group consistency map with the individual
attributes to rearrange the channel group consistency features
to drive the pixels of co-salient objects being highlighted more
uniformly for subsequent reasoning. These two blocks mainly
involve the operations of dynamic convolution, multiplication,
addition and rearrange. Thus, this module can be applied
to the input group with random quantity of images, and is
content adaptive to the input image group, without bias to
the category attributes of training data. The hybrid decoder
includes an Aggregated Decoder and two normal decoders.
Our Aggregated Decoder aggregates three-scale group consis-
tency features through three Attentional Feature Fusion (AFF)
blocks for preliminary detection of co-salient objects. Based
on the attentional feature fusion mechanism, the AFF block
globally and locally fuses group consistency features at differ-
ent scales to remedy group information inconsistency. Since
the group consistency is captured based on relatively high-
level features, the proposed aggregated decoder that aggregates
different-scale group consistency can only locate co-salient
objects in the form of low-resolution co-saliency maps. Thus,
we adopt two normal decoders to improve the integrity of co-
salient objects by broadcasting the preliminary co-saliency to
shallow-level features and further combine the intra-saliency
priors for progressive refinement.

Our contributions can be summarized as follows:

« We propose an end-to-end Adaptively Group-wise Con-
sistency Network, which introduces the intra-saliency pri-
ors generated from any off-the-shelf image SOD models,
for co-saliency detection in an image group with ran-
dom quantity. Our AGCNet can adaptively capture group
consistency and aggregate multi-scale group consistency,
highlighting co-salient objects with fine structures.

« We propose an Adaptively Group-wise Consistency mod-
ule to model collaborative relationships among a group
of image features in a dynamic manner. This module
can adaptively achieve semantic matching with the as-
sistance of intra-saliency priors and capture global group
consistency. It can further integrate the self-correlation
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of individual image with the global group consistency
to generate discriminative group consistency features for
each image.

« We propose an Aggregated Decoder to promote com-
plementarity between different-scale group consistency
features. This module globally and locally aggregates fea-
tures of inconsistent semantics and scales to preliminary
detect co-salient objects with various scales.

II. RELATED WORKS
A. Image Salient Object Detection

Most early image SOD models [!], [33]-[40] adopted
bottom-up strategy and generally based on handcrafted fea-
tures with cognitive assumptions, e.g., local contrast [36],
global contrast [33], and background priors [37], etc. Classi-
cally, Cheng et al. [33] employed color histogram contrast to
characterize global contrast to infer saliency. Liu et al. [38] ex-
tracted center-surround histograms, color spatial distributions
and multi-scale contrast features, and adopted the conditional
random field algorithm to fuse these for prediction. Besides,
frequency domain analysis [40] and low-rank recovery [36]
are the commonly used traditional algorithms for image SOD.

The deep learning-based image SOD has attracted lots of
research attention and achieved remarkable progress. Early,
Han et al. [41] followed background prior assumptions to
measure the saliency of each region by reconstructing er-
ror between detected regions and background regions. Li et
al. [42] extracted deep features to infer the saliency for each
pixel and superpixel, respectively. Whereafter, a number of
end-to-end SOD models [2], [43]-[45] were proposed, and
they were designed with multi-scale or multi-stream network
to learn more comprehensive CNN features. To improve
the performance of image SOD, many researches [46]-[50]
adopted the edge information as additional auxiliary infor-
mation. By exploiting the correlation between saliency and
contour, Zhou et al. [51] designed a two-stream framework to
separately generate preliminary saliency map and edge map,
and combined these two maps for final prediction. In addition
to these image SOD models, Zhang er al. [52] proposed
a well-performing detection model with weak supervision.
Some researchers made attempts to employ top-tier image
SOD models on co-saliency detection benchmarks. These
image SOD models surprisingly achieved comparable results
with deep learning-based co-saliency detection models, such
as CPD [53], EGNet [49], and BASNet [50], as mentioned
in [30]. This indicates that if the result of each image generated
from image SOD models can be employed to support co-
saliency detection in a proper way, a more powerful co-
saliency detection model will be designed.

B. Co-saliency Detection

Similar to image SOD, traditional co-saliency detection
models relied heavily on handcrafted features to characterize
co-saliency with manually designed metrics. Jacobs et al. [3]
defined the co-saliency detection task, and made the first
attempt to detect common salient objects in image pair by
exploring local variations. Li ef al. [54] established the first
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public image pair benchmark. Whereafter, Li et al. [55]
expanded the co-saliency detection task from image pair to
multiple images.

Most traditional co-saliency detection models took the intra-
saliency regions generated from existing image SOD models
as proposals, then employed various matching techniques, e.g.,
independent component analysis [26], cluster [10], cellular
automata [56], and propagation [57], to capture the inter-
correlation of these proposals. In order to promote the integrity
of the co-salient objects, many models did not regard inter-
correlation as the results, but combined intra-saliency and
inter-correlation through diverse fusion techniques, e.g., fixed
weight fusion [54], adaptive weight fusion [24], [25], and
region-wise adaptive fusion [13], for final inference.

The deep learning-based co-saliency detection models
demonstrated more powerful performance than traditional
models [30]. The early deep learning-based works only
roughly combined CNN features with traditional co-saliency
detection models. Based on CNN features, Zhang et al. [27]
used the clustering algorithm and a principled Bayesian mod-
ule to infer co-salient objects. Zhang et al. [58] applied high-
level semantic CNN features and used a self-paced multiple-
instance algorithm to capture the group consistency. Yao et
al. [59] employed spectral rotation co-clustering algorithm
twice to divide lots of images into a series of subgroups with
similar foreground objects and to segment out the co-salient
objects.

Afterwards, deep learning technology was applied in both
feature extraction and co-saliency reasoning. Tsai et al. [4]
proposed an unsupervised CNN based model to adaptively
learn the deep features for co-saliency detection. Zhang et
al. [29] novelly employed gradient information of consensus
representation among a group of images to reflect the dis-
criminative co-salient features for co-saliency detection. Hu et
al. [60] employed Graph Convolutional Network (GNN) [61]
to capture common information and regarded the co-saliency
detection task as a classification task to conduct the binary
classification for superpixels. In addition to these models, a
large number of end-to-end co-saliency detection models [ 18]

[23], [62], [63] have been proposed with various strategies,
such as multi-scale inter-correlation propagation [20], [23],
RNN [22], [64], co-attention mechanism [63], GNN [19].

Notably, some models [18], [65] introduced extra labels for
training. Wang et al. [65] extracted the co-category informa-
tion from group-wise images as the group consistency with the
supervision of category labels. However, a fine-tuning process
must be used if applying the trained model to an unseen cat-
egory. Zhang et al. [18] designed a collaborative aggregation-
and-distribution network to capture both salient and repetitive
visual patterns from five images with the supervision of image
SOD label and co-saliency detection label.

While most end-to-end models made a great performance
progress, some frameworks [18], [21]-[23], [63] are limited
by the fixed quantity of input images with the influence of
group consistency capture module, and cannot summarize the
global shared attributes for the given group with random
quantity. Moreover, these models are full of static convolu-
tional layers that perform inference in a static manner with
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Fig. 2. Architecture overview of the proposed AGCNet. For a given image
group with random quantity, we first utilize VGG to obtain the multi-scale
CNN features of each image, and introduce corresponding single saliency
map SSM generated from state-of-the-art image SOD models to AGCNet.
Then, three relatively high-level features paired with SSM are fed into three
Adaptive Group-wise Consistency (AGC) modules, respectively, generating a
group of group-wise consistency features at three scales. Subsequently, three-
scale group consistency features are aggregated by an Aggregated Decoder to
generate a group of preliminary co-saliency maps CSpye and composited group
consistency features CF». Finally, CF; is combined with SSM to refine CSpe
through two normal decoders, generating the final co-saliency maps CSgpa
with the same sizes as the input images.

fixed parameters, hindering the performance improvement on
unseen category of co-salient objects. Although the RNN-
based co-saliency detection models [64], [66] made some
improvements, the learned group representations vary in dif-
ferent order of the given image groups, resulting in unstable
inference. The crucial temporal relations can be constructed by
RNN for video sequences, while the relationships do not exist
in image groups. Thus, modeling collaborative relationships
of the input image groups by RNN for co-saliency detection
is sub-optimal.

Compared with existing end-to-end co-saliency detection
models, the proposed AGCNet breaks the hindrances of static
manner-based inference and the constant image quantity.
AGCNet not only fuses the results of existing SOD models as
the former works [1], [4], [24], but also introduces the results
to guide the dynamic convolutional layer of AGC module to
capture global group consistency. This module endows our
FCN-based AGCNet content-adaptive ability for any quantities
of input images, and ensures the generalization ability of
AGCNet on unseen categories without additional annotated
category labels.

III. PROPOSED APPROACH

In this section, we first sketch the architecture of the
proposed AGCNet in Sec. III-A. Subsequently, we describe
the most important AGC module in Sec. III-B, and present
the Aggregated Decoder in Sec. III-C. Finally, we state the
implementation details in Sec. III-E.

A. AGCNet Overview

As reported in [30], some image SOD models [49], [50],
[53] have achieved comparable performance with state-of-
the-art co-saliency detection models. In our AGCNet, we
use the output of SOD model as a form of prior infor-
mation in co-saliency detection. In our AGCNet, we take
saliency maps generated from CPD [53], which is a specialized
model for single image SOD, as intra-saliency priors, ie.,

SSM € RN 1x224x224 " o suppress the noise of non-salient
regions. In Fig. 2, we illustrate the architecture of the pro-
posed AGCNet, which mainly involves three parts: the feature
extraction (i.e., five convolution blocks Conv_1~Conv_5), the
group consistency capture (i.e., three AGC modules), and the
hybrid decoder (i.e., one Aggregated Decoder and two normal
decoders).

Given an image group with N images, denoted as I €
RN*3x224x224 " e take VGG-16 [67] pre-trained on Ima-
geNet [68] as backbone for feature extraction, generating a set
of basic features with five scales for each image of this image
. NxCix 245224
group, ie, F; € R"77 20720 e {1,2,3,4,5}. Notably,
the last pooling and fully-connected layers of the original
VGG-16 are discarded. Then, the basic features of three
relatively high-level convolution blocks (i.e., F;, i € {3,4,5})
are respectively paired with SSM to flow into the AGC
module to mine discriminative group-wise consistency features

Nx128x 224 224

CF; eR 2720 i€ {3,4,5}. In order to make accurate
prediction for co-salient objects with various scales, the three-
scale group consistency features then flow into an Aggregated
Decoder to generate preliminary co-saliency maps, denoted
as CSpre € RV*1X36x56 " and group consistency, denoted as
CF, ¢ RV*128x56x36  Eipaly, CSpre is progressively broad-
casted to shallow features through two normal decoders [69]
D;, i€ {1,2}, which combine CSp., SSM, the shallow features
F;,i € {1,2} and CF;,i € {1,2} to generate final co-saliency
maps of the given group, CSqpgy € RV*1x224x224,

B. AGC Module

In Fig. 3, we take a group of three images as an example to
illustrate how AGC module works. Clearly, our AGC module
mainly consists of CGC block and RF block.

CGC Block: In real-life applications, co-salient objects in
each image of a given group often vary in terms of texture,
color, scale, and background. But they have the same semantic
category attributes [31]. Thus, Wang ef al. [65] mined the co-
category vectors as group consistency. However, co-saliency
detection needs to classify each pixel to segment out co-
salient objects, not only to classify the image. Guaranteeing the
detected co-salient objects are salient is one of the basic con-
cepts of co-saliency detection. Based on these considerations,
we introduce intra-saliency priors to extract intra-semantic
information to match each pixel of input images for group
consistency capture.

Firstly, we adopt the intra-saliency priors SSM generated
from CPD model [53] to directly mask F; € RN*CixHxW
to filter the distractors of background and generate intra-
saliency features. Once we obtain the masked features, we
can directly apply global pooling operation to these features
to generate intra-semantic vectors, as suggested in [29], [62].
However, since most images contain more than one salient
object, many vectors represent hybrid semantic information
of multiple salient objects. Thus, we try to generate relatively
purer semantic vectors by adopting patch-wise average pooling
with the patch size of 7 x7 for the masked features and
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Fig. 3. Illustration of the AGC module.

reshaping the pooled features into a set of intra-semantic
vectors, denoted by §; € RW*H/TxW/T)xCix1x1,

0; = R(PAvg(F; ® SSM)), (D

where PAvg(-) and R(-) are the patch-wise average pooling and
the reshape operation, respectively, and ® is the element-wise
multiplication. Notably, according to the size of input image,
the patch size is fixed to 7 x 7 for any scale of masked features
in AGCNet. In this way, intra-semantic vectors generated from
multi-scale features with different receptive fields can cover
salient objects with various scales.

Subsequently, we try to make semantic matching between
the intra-semantic vectors and the pixels of detected image
features F;. We achieve this matching through a dynamic
point-wise convolutional layer [32] with 6; as kernels. From
the perspective of feature matching, the semantic vectors of
every patch in the group 6; take turns matching F; at pixel
level through the dynamic convolution, generating a set of
pixel-level matching maps for each individual image, denoted
as af§"> e RWxH/TxW/T)xHxW = and extending to a group
of images, denoted as AF; € RN*WxH/TxW/T)xHXW Each
matching map is associated with an intra-semantic vector, and
the pixels with high correlation to the intra-semantic vector
will be highlighted in the corresponding matching map. In this
way, we formulate the matching maps for a group of images
as follows:

AF; = CPconv(F,;|6;), 2

where CPconv(-) denotes the point-wise convolutional layer
which is content-adaptive, and the channel size of AF; is
determined by the size of the group of features.

Then, we summarize these matching maps afl(n) in channel-
wise to directly reflect the co-saliency score of each pixel.
While considering the dependence of patch-wise intra-
semantic vectors, we construct an affinity matrix to weight
the matching maps before the summation. For each image,
()’ ie., RINXH/TXW/T)xHXW jn

. . n
we resize the size of af;
RWN<H/TxW/T)xHW ' and measure the relevance between each

Authorized licensed use limited to:

v
Reshape | 1 SF,  Reshape
s o

B N HF x H x ¥

..............................

S S ——

Nx128x H xW

two matching maps via matrix multiplication to generate
affinity matrix ami") € RWXH/TXW/[T)x(NXH/[TxW[T)
T

amf") = afl(") @afl(n) , 3)
where ® denotes matrix multiplication, and this operation is
applied on AF; to generate AM; for the group. The importance
of each matching map can be weighted by the summation of
all elements in the column of am?"). Concretely, the weight

vector @) € RVXH/T<W/T)x1x1 for af") can be formulated
as follows:
NxH/TxW /1
0" = softmaxy T @am) comn. &)

With the generated weight vector, we summarize af; into

a group consistency map cml(”) € RPHXW at channel-wise,
formulated as follows:
n NxH/TxW/T, (n n
le( ) :ZJ:XI [mw (wi( )oafl(. >)channel7 (5)

where o is the channel-wise multiplication. In this way, a group
of consistency maps CM; can be generated.

Our CGC block benefits from the content-adaptive property
of the dynamic convolution [32], [70] and the weighting sum-
mation, breaking the static-manner based inference and gain-
ing content-adaptive ability for capturing group-consistency
under various quantity and category of input groups.

RF Block: The consistency map reflects the potential co-
saliency score for each pixel without the consideration of the
dependence between pixels of each individual image. If we
multiply CM; with the F; directly, the pixels belong to the
same co-salient objects but with relatively individual attributes
may fail to be distinguished due to its low matching, leading
to sub-optimal prediction. Therefore, to detect more complete
objects, we employ a RF block to combine the self-correlation
of individual image with group consistency.

First, we mine th(e) self-correlation relationships sfl(")
fin

for

each image feature € REG*H>W by computing inner pixel-
wise correlations of individual image. Specifically, we reshape
the size of fl(") to R¥W>Ci and use the inner product to
construct an affinity matrix, which is formulated as follows:

T
st =" ot 6)

) . Fermission. See http://www.ieeeorgg{aublicationsﬁstandards/Eublications/ri hts/index.html for more information.
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Fig. 4. Illustration of the Aggregated Decoder.

where the size of the affinity matrix sfl(.n) € RAWXHW = and
the affinity matrixes of a group of image features SF; €
RN*HW>XHW can be constructed like this.

Then for fine-grained performance, we combine the group
consistency with self-correlation. We reshape the size of SF;
into RVHWXHXW g the correlation maps and rearrange the
channel order of reshaped SF; as suggested in [62], [69]. The
number of pixels in CM; is consistent with the channel size
of SF;. For the pixel that has higher co-saliency scores in
CM;, the channel of self-correlation map SF; with the same
index will be placed on the upper channel to generate the
RSF; € RVXHWXHXW _ After that, we multiply RSF; and CM;,
and take a regular convolutional layer to compress the channel
size. The group consistency features CF; € RV*128xHxW g
thus obtained. In this way, the pixel with a high co-saliency
score will drive the pixels which have strong dependence on
it to be highlighted.

In the RF block, we keep the internal coherence of each co-
salient object and integrate the group consistency maps with
individual attributes for more discriminative group consistency
features. Notably, even the parameters of the adopted regular
convolutional layer in the RF block are fixed after training,
our AGC module still maintains the content-adaptive ability
owning to the adopted rearrangement operation in RF block.

C. Aggregated Decoder

Based on the features of different scales, the captured
common attributes are different. Thus, to handle diverse
scenes, the combination of multi-scale group consistency is
an indispensable process in reasoning. While feature fusion
in the decoder of co-saliency models is usually implemented
via the feature concatenation, which allocates the features
with fixed weights regardless of the importance of different
scales. From these considerations, we specifically design an
Aggregated Decoder to effectively aggregate the three-scale
group consistency features for reasoning. This decoder is
mainly composed of three Attentional Feature Fusion (AFF)
blocks and a residual connection, as shown in Fig. 4. Each AFF
block corresponds to a feature fusion between two adjacent
scales. We take the fusion of CF4 and CFs as an example to
describe the details of the AFF block.

In AFF block, we construct a soft selection between two
features for fusion. Concretely, the soft selection mainly
depends on the attention mechanism [76] for local channel
context aggregation and global channel context aggregation,

Authorized licensed use limited to: Concordia University Library. Down

named as local attention (LA) and global attention (GA). The
LA exploits point-wise channel interactions for each spatial
position, while the GA aggregates channel context. For CF4
and CFs, we first take up-sampling operation for CF5 to keep
the size of it to be consistent with CF4. Then, we formulate
LA and GA as follows:

LAsy = Pconvg ,(6(Pconvg | (CFs @ CFy))), (7)

GAsy = FC,(8(FCp  (GAP(CFs & CFy)))),  (8)

where @ is the element-wise summation, Pconvﬁ is the point-
wise convolutional layer with Batch Normalization (BN), &
denotes the Rectified Linear Unit (ReLU), FCp is the fully
connected layer with BN, GAP is the global average pooling,
LAss and GAsy respectively represent the local channel con-
text aggregation and global channel context aggregation for
CF; and CF;4.

We combine local channel context aggregation with global
channel context aggregation to generate the soft selection
matrix Ms4, formulated as follows:

Ms4 = C(LA54 D GAsy), 9

where the size of Msy is consistent with the size of CFy,
{ denotes the Sigmoid, and elements in Ms4 belong to [0,1].
With M3y, we fuse CF4 and CF5 to generate the fused features
FFs, as follows:
FFs54 = CF5 ®M54@CF4®(1*M54). (10)
As shown in Fig. 4, to keep more high-level semantic cate-
gory attributes, we adopt an AFF block to fuse FFs4 and CF;
and generate fused features FF43. And then fused features,
i.e., FFs4 and FF43 flow into another AFF block to generate
FF. So thus, the three AFF blocks realize the aggregation of
three-scale group consistency. Finally, we employ a residual
connection operation on FF to generate CSp and CF>.

D. Normal Decoder

After the Aggregated Decoder locating co-salient objects for
each input image in the form of low-resolution co-saliency
map, we try to combine shallow-level features and the ag-
gregated group consistency to improve the integrity of co-
salient objects in images with full resolution. To this end,
we adopt two normal decoders for further refinement. In light
of the superiority of existing image SOD models in object
edge detection, we also introduce the intra-saliency priors
into two decoders to progressively generate sharper and more
homogeneous co-saliency maps with full resolution.

In the normal decoder, CSpe and SSM are utilized as masks
for F;, i € {1,2}, to generate two types of masked features.
After up-sampling, the masked features and the semantic group
consistency features CF;, i € {1,2} are concatenated for more
accurate inference.
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TABLE 1
BENCHMARKING RESULTS OF 16 LEADING CO-SALIENCY DETECTION MODELS AND THREE IMAGE SOD MODELS ON FOUR
DATASETS [27], [301, [711, [72]. *-> MEANS THAT THE AUTHORS DO NOT RELEASE RESULTS OR CODES, ‘CO’ AND ‘SIN’ ARE IN THE
‘TYPE’ COLUMN REPRESENT THE CORRESPONDING MODELS ARE CO-SALIENCY DETECTION MODELS AND SOD ONES, RESPECTIVELY.
IML [21] ADOPTS COSAL2015 AS TRAINING DATA, THUS AUTHORS DO NOT TEST ON THIS DATASET. MSRC FOR GCAGC [19] IS IN
THE SAME SITUATION. 1 & | DENOTE LARGER AND SMALLER IS BETTER, RESPECTIVELY. THE TOP THREE RESULTS ARE MARKED IN

RED, BLUE AND , RESPECTIVELY.
Models Type # Param | FLOPs | Speed Cosal2015 iCoseg MSRC CoSOD3k
‘ M) | © | FPS) | St Fpt Eet M| Set Fgt Egt ML |Sat Fpt Eet ML |Set Fgt Egt Ml
CBCS [10] Co - - 33 545 568 568 234 | 671 763 696 .166 | 498 .671 509 297 | 450 496 413 204
CSHS [14] Co - - 0.01 | 595 .565 586 312 | .747 686 .739 .177 | .671 735 .656 280 | .568 .494 566 .308
ESMG [12] Co - - 0.8 552 511 593 248 | 744 680 766 .149 | 545 610 .628 291 | .534 451 588 .239
CODR [11] Co - - 0.03 | .693 .608 .684 .203 | .822 .744 826 .107 | .756 771 795 192 | .643 526 .639 222
DIM [73] Co - - 0.04 | 595 525 564 312 |.760 .679 733 174 | .662 681 .614 302 | 562 456 537 .327
CoDW [27] Co - - - .650 573 608 274 | 751 656 709 .178 | 714 738 675 .259 - - - -
SPMIL [58] Co - - - - - - - 782 675 745 159 | 769 768 742 215 - - - -
UCSG [74] Co - - - 754 690 741 159 | 822 779 813 .118 | .795 819 .790 .175 - - - -
CSMG [17] Co - - 031 | .776 757 783 .131 | .812 .790 .820 .105 | .728 851 .749 .182 | .712 .684 707 .141
IML [21] Co 963.8 1338.1 4.8 - - - - .833 796 .843 .101 | .786 .834 799 .167 | 736 .642 742 .155
FEM [22] Co 136.4 426.9 16.7 - - - - .844 804 846 .099 | .801 842 817 .152 | .680 .559 .681 .187
MGLCN [75] Co - - - .805 712 .800 .130 | .861 .868 .077 | 788 814 784 182 - - - -
GCAGC [19] Co - - - 810 819 .836 .095| 859 .801 .874 .079 - - - - - - - -
CoEG-Net [28] | Co - - 043 | .838 872 078 | .869 .841 898 .060 | .712 .813 .756 .178 | .778 820 .084
GICD [29] Co 278.0 46.8 50.1 | .839 .844 879 .073 | .821 .827 .881 .070 | .665 .785 733 .198 172 .087
ICNet [62] Co 24.1 201.3 | .857 854 .897 .058 | 863 .855 917 .049 | 739 816 815 .155|.797 787 .844
CPD [53] Sin 29.2 59.5 68.0 | .825 .801 .845 .094 | .857 .828 .891 733 853 780 158 | .779 738 805 .107
EGNet [49] Sin 108.1 270.8 127 | 824 789 840 .096 | .870 .841 .897 .060 | .730 .792 .776 .164 | .784 784 808 .106
BASNet [50] Sin 87.1 127.3 36.2 | .820 .806 .842 .097 .849 174 773743 805 .110
Ours-pre Co 16.8 19.2 172.0 | .857 .865 .851 .864 .898 .058 | .786 .861 .836 .123 | .821 .810 .865 .073
Ours Co 17.0 868 .879 903 .055 | 862 .883 912 .049 874 .850 .113 | .829 .825 .879 .066
Baseball (Cosal2015) Pyramid (iCoseg) Building (MSRC) Frog (CoSOD3k)
RGB m ‘I
CPD
Ours
ICNet
GICD
Co-EGNet
CSMG
DIM
CODR
ESMG
CSHS
CBCS

Fig. 5. Visual comparisons with five learning based co-saliency detection models (ICNet [62], GICD [29], Co-EGNet [28], CSMG [17],
DIM [73]), and four classical non-learning based co-saliency detection models (CODR [11], ESMG [12], CSHS [14], CBCS [10]) on four
datasets. Besides these, a image SOD model CPD [53] is also involved in the visual comparison, due to that the introduced SOD model of
our posted results is CPD.
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E. Implementation Details

1) Supervisions. We supervise N preliminary co-saliency
maps and final co-saliency maps with corresponding ground-
truths via the widely-used IoU loss [77], [78] as follows:

L—1— l i Z(h,w) (min(cs(”>,gti”i))(hiw)
N =1 L o) (max(es™, ) )

; 1)

where (h,w) denotes the position of pixel, cs”) is the concate-
nation of csg and csg;)al at channel, max(-,-) and min(-,-) are
utilized to retain the element-wise maximum and minimum of
two inputs, respectively.

2) Network Training Protocol. The experiments are im-
plemented on Pytorch [79] by adapting a NVIDIA GTX
2080TI GPU (11G memory). Except for the parameters of the
backbone, the additional parameters in the proposed AGCNet
are initialized with the random normal distribution of which
U =0,0=0:1. We use Adam [80] as the optimizer to train
our AGCNet with 60 epochs, and respectively set the learning
rate and weight decay to 107> and 10~*. The training data is a
subset of the COCO dataset [81], including 65 groups of 9,213
images, as suggested by [28], [62]. All imported images are
resized into 224 x224. For each training iteration of training
stage, we set the upper limited number of a batch to 11 due
to the limited GPU memory, the images in each batch are all
randomly selected from a same image group. In the testing
stage, each image group with an arbitrary quantity of images
constitutes a batch.

IV. EXPERIMENT
A. Dataset and Evaluation Metrics

1) Dataset. We conduct our experiments on four datasets
(see Table I). The datasets, include iCoseg [71], MSRC [72],
Cosal2015 [27] and CoSOD3k [30], are used for testing.

iCoseg [71] is originally proposed for co-segmentation task.
After modification, it becomes the most widely used dataset
in co-saliency detection task. The dataset contains 25 scenes,
covering sports, animals, landmarks and so on. This dataset
totally includes 643 images, which are divided into 38 groups.
For each group, the co-salient objects and backgrounds of each
image are roughly the same.

MSRC [72] is originally proposed for object classification
task, which is used for co-saliency detection lately. This
dataset consists of 7 groups of 233 images, and each group has
30-53 images. Most images have only one single category of
salient objects and the synergy of co-salient objects of group
tends to be semantic category consistency.

Cosal2015 [27] includes 50 groups of 2,015 images, and
each group has 25-52 images. It is a relatively challenging
dataset due to the diverse variances in appearances and com-
plex backgrounds, and most images have more than one salient
object.

CoSOD3Kk [30] is the largest co-saliency detection dataset,
which is recently proposed with more realistic settings. Totally,
it contains 13 super-classes, 160 groups and 3,316 images,
where each super-class is carefully selected to cover diverse
scenes. Thus, it is the most challenging dataset among the test
datasets in this paper.

Authorized licensed use limited to: Concordia University Library. Down
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2) Evaluation Metrics. We use S-measure [82] (Sq, 0 =
0.5), maximum F-measure [83] (F[;,ﬁz = 0.3), maximum E-
measure [84] (Eg ), and Mean Absolute Error [85] (MAE, M)
to evaluate the performance of our proposed model and all
compared models. The adopted evaluated tools are provided
by Fan et al. [30].

S-measure is proposed for structure information evaluation,
motivated by the studies of human behavioral vision. The S-
measure combines region-aware and object-aware structural
similarity as their final structure metric.

F-measure is essentially a region based similarity metric,
which is adopted extensively in the field of saliency detec-
tion [50], [86], [87]. Following [62], we provide the maximum
F-measure using varying fixed (0-255) thresholds.

E-measure is an enhanced alignment measure [84], which
is specifically proposed for the evaluation of binary map.
This measure is based on cognitive vision studies to combine
local pixel values with the image-level mean value in one
term, jointly capturing image-level statistics and local pixel
matching information.

MAE is used to evaluate the pixel-level error between a
predicted co-saliency map and the corresponding GT [85].

B. Comparisons with State-of-the-art models

To evaluate the effectiveness of the proposed model, 19
state-of-the-art models are adopted for comparison, including
CBCS [10], CSHS [14], ESMG [12], CODR [I11], DIM [73],
CoDW [27], SPMIL [58], UCSG [74], CSMG [17], IML [21],
FEM [22] MGLCN [75], GCAGC [19], CoEG-Net [28],
GICD [29], ICNet [62], CPD [53], EGNet [49], and BAS-
Net [50]. Among these, CBCS, CSHS, ESMG and CODR
are four conventional co-saliency detection models which
are based on handcrafted features, DIM, CoDW, SPMIL,
CSMG and UCSG are five co-saliency detection models which
are based on deep learning features, IML, FEM, MGLCN,
GCAGC, GICD and ICNet are end-to-end deep learning-based
models for co-saliency detection, CoOEG-Net is a a two-stage
model, and CPD, EGNet and BASNet are end-to-end image
SOD models. Notably, in our comparison, the backbone of
the compared image SOD models are VGG-16 [67]. For fair
comparison, we use either the implementations with recom-
mended parameter settings or co-saliency maps provided by
the authors. These resources have been collected by Fan et
al. [30]". Among the models with the released source code,
Parameters, FLOPs and Speed of the end-to-end CNN-based
models, which are IML, FEM, GICD, ICNet, CPD, EGNet
and BASNet, are provided. For the traditional models based
on handcrafted features and the models without CNN-based
reasoning, we only compare the Speed.

Quantitative Comparisons. As shown in Table I, our
model outperforms the compared models in terms of most
metrics on four datasets. For example, F-measure and MAE
scores of our model consistently outperform all compared
models. For the most challenging dataset CoSOD3k, our
model improves upon the second best model (except the
preliminary results of our AGCNet, i.e., Ours-pre) by about

Uhttps://dpfan.net/CoSOD3K/
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3.1%, 3.1%, 3.3% and 1.8% in terms of S-measure, F-measure,
E-measure and MAE respectively. Since the images in the
iCoseg and MSRC datasets typically contain one co-salient
object, therefore the image SOD model CPD can easily
handle these datasets. However, due to intrinsic limitation,
CPD fails to handle the images with multiple objects in
the Cosal2015 and CoSOD3k datasets. The co-salient objects
in the training dataset tend to be the category consistent
and the co-salient objects in the iCoseg dataset are further
constrained by color. Due to the gap between the training
datasets and the iCoseg dataset and the superiority of SOD
model for simple dataset, AGCNet performs relatively weak
on the iCoseg dataset compared with other models. From Fig.
3, the AGCNet embedded with three AGC modules seems to
have high computational complexity, but that is not the case.
Compared with the existing end-to-end co-saliency detection
models, the proposed AGCNet requires the least parameters
to be trained (even compared with the SOD which is a
relatively easy task). The FLOPs and Speed of the proposed
AGCNet slightly lag behind ICNet, but the performance of
ICNet is lower than our model. And similar to our model,
ICNet also needs additional assistance from existing image
SOD models. Our model effectively captures global group
consistency on multi-level features with the support of intra-
saliency priors, and therefore exhibits competitive performance
as compared with 16 co-saliency detection models and three
image SOD models. In addition, Ours-pre is also competitive
without two normal decoders. Although the performance is
attenuated, the efficiency is reinforced. From the trade-off
between performance and efficiency, the two normal decoders
have a positive effect on co-saliency detection.

Visual Comparisons. We show co-saliency maps generated
on various challenging scenes to demonstrate the superiority
of AGCNet visually in Fig. 5. It can be observed that tradi-
tional models CBCS and CSHS can hardly locate common
salient regions with handcrafted features. From the results
of most cases, the image SOD model CPD can better find
salient objects with sharp boundaries, but the non-common
objects cannot be erased. For the co-salient objects with small
size shown in the baseball group of Cosal2015 dataset, our
model can successfully suppress the large non-common salient
objects and perform significantly better than the compared
models. The CGC block in our AGC module is particularly ef-
fective in handing extreme scale variation of co-salient objects.
For the co-salient objects with low contrast like the pyramid
group of iCoseg dataset, although the co-salient objects can
not be detected by auxiliary CPD, our model can highlight the
pixels of co-salient objects by connecting high correlation with
other images of the same group, verifying the robust group
consistency modeling capability. In contrast, GICD [29] relies
on the group consensus and can not discriminatively put more
weight to the co-salient objects. Even for co-salient objects
with large size, i.e., the building group of MSRC dataset, our
model can propagate high-level semantic group consistency
cues to shallow level to highlight salient objects more evenly
without holes. In the case of the frog group of CoSOD3k
dataset with background clutter and cross images variations,
more complete object contours can be detected by our model
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TABLE I
PERFORMANCE OF AGCNET WITH DIFFERENT QUANTITIES OF
INPUTS.

Cosal2015
Sut Fpt M
3 0.858 0.872 0.064
5 0.863 0.875 0.059
10 0.866 0.878 0.057
Ours | 0.868 0.879 0.055

CoSOD3k
Sat Fgt M
0.820 0.814 0.073
0.826 0.819 0.069
0.828 0.823 0.067
0.829 0.825 0.066

number

TABLE III
PERFORMANCE OF AGCNET WITH INTRA-SALIENCY PRIORS
OBTAINED FROM VARIOUS IMAGE SOD MODELS.

Models Cosal2015 CoSOD3k

Sat Fpt M4 |Sat Fgt M
CPD [53] |0.825 0.801 0.094 |0.779 0.738 0.107
Our-CPD | 0.868 0.879 0.055|0.829 0.825 0.066
EGNet [49] [0.824 0.789 0.096 | 0.784 0.784 0.106
Our-EGNet | 0.870 0.877 0.055(0.827 0.828 0.068
BASNet [50] | 0.820 0.806 0.097 | 0.773 0.743 0.110
Our-BASNet | 0.869 0.876 0.054 | 0.826 0.820 0.071
w/o SSM 1 0.849 0.857 0.078 [ 0.803 0.793 0.093

with the help of the introduced SSM generated by CPD.

C. Ablation Studies

To gain insight of our key components, we do extensive
ablation experiments to investigate the effectiveness of them,
including the performance of AGCNet with different quantities
of input images, the dependence of AGCNet on auxiliary
intra-saliency priors, the design rationality of AGC module,
the impacts of the AGC module number to AGCNet and
the effectiveness of Aggregated Decoder. Compared with the
MSRC and iCoseg datasets, the collected images of Cosal2015
and CoSOD3k dataset cover more diverse scenarios, which are
more in line with realistic scenes. To this end, we perform the
ablation studies on Cosal2015 and CoSOD3k datasets.

Performance of AGCNet with different quantities of
input images. As presented in Table II, there is a performance
gap between the numbers of input images, i.e., 3 and 5.
However, due to the size limitation of most models, existing
end-to-end models are difficult to deal with a complete group
with more than 5 images, which result in incorrectly reserving
some attributes that are not shared in the image group, as
shown in Fig. 1. AGCNet benefits from AGC module without
such a limitation, as the number of input images increases to
10, the performance is close to that of the complete image
group as inputs.

The Dependence of AGCNet on Auxiliary Intra-saliency
priors. We exploit image SOD results as intra-saliency priors
in our AGCNet. In order to find out the dependence of our
model on image SOD model, we apply three end-to-end image
SOD models, i.e., CPD, EGNet and BASNet, on our model,
and remove SSM from AGCNet to construct the variant w/o
SSM. In Table III, we list the quantitative results of the original
image SOD models and the corresponding applications for
our model, i.e., Our-CPD, Our-EGNet, Our-BASNet, on the
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TABLE IV
PERFORMANCE OF DIFFERENT VARIANTS TO OUR AGC MODULE. SSM OF THE TABLE CORRESPONDS TO THE OPERATION THAT
INTRODUCING SSM TO AGC MODULE, PA INDICATES THE PATCH-WISE AVERAGE POLLING IN THE PROCESS OF GENERATING
INTRA-SEMANTIC VECTORS IN CGC BLOCK, CP IS THE CONTENT-ADAPTIVE CONVOLUTION LAYER FOR SEMANTIC MATCHING IN CGC
BLOCK, WS DENOTES THE WEIGHTED SUMMATION IN CGC BLOCK, RF IS THE RF BLOCK.

Cosal2015 CoSOD3k
Models | SSM PA CP WS RF Sut Fgt ML |Sat Fgt M
0 v v v v v 0868 0.879 0.055]|0.829 0.825 0.066
1 v v v v 0854 0.855 0.063[0.811 0.793 0.076
2 v v v v 0862 0.877 0.057|0.819 0.802 0.070
3 v v v v [0.847 0.832 0.079]0.801 0.799 0.085
4 v v Vv v 10.863 0.869 0.057|0.821 0.813 0.069
5 v v v v 0.853 0.854 0.063 | 0.820 0.808 0.071
6 v 0.838 0.812 0.087 | 0.791 0.768 0.091

..

Image

¥
‘ d'
GT 0 1 2 3 4 5 6

Fig. 6. Visual comparisons of AGCNet with variants about AGC module.

TABLE V
PERFORMANCE OF DIFFERENT NUMBER OF AGC MODULE.
AGC Cosal2015 CoSOD3k

number | S T FﬁT M| | Sq7T FﬁT M|

0 0.807 0.799 0.107 | 0.775 0.747 0.096

1 0.855 0.856 0.062|0.816 0.800 0.071

2 0.863 0.871 0.055|0.828 0.830 0.067

3 0.868 0.879 0.055 |0.829 0.825 0.066

4 0.859 0.851 0.057|0.815 0.814 0.076

5 0.855 0.853 0.061|0.809 0.803 0.078
TABLE VI

PERFORMANCE OF DIFFERENT VARIANTS TO AGGREGATED
DECODER.
Variants Cosal2015 CoSOD3k

Sa? Fgt Ml | Sat Fgt M

w/o GA | 0.861 0.858 0.060 | 0.823 0.803 0.070

w/o LA |0.863 0.857 0.058|0.821 0.806 0.071

w/o AD | 0.847 0.831 0.075]0.802 0.797 0.086

w/ 2AFF | 0.865 0.866 0.058|0.825 0.810 0.068

Ours | 0.868 0.879 0.055 | 0.829 0.825 0.066

most challenging two benchmark datasets in co-saliency field.
Our model clearly improves the performance on co-saliency
benchmarks, no matter which image SOD model is used
for our model. The performance of w/o SSM is inferior to
the performance of Our-CPD, Our-EGNet and Our-BASNet,
which verifies the effectiveness of using intra-saliency priors
to our model. Although our model depends on image SOD to
a certain extent, while judging from the improvements made
by the three auxiliary image SOD models, the performance

Authorized licensed use limited to: Concordia University Library. Down

of image SOD model does not have a great impact on our
model, e.g., even CPD performs worse than EGNet in terms
of CoSOD3k dataset, Ours-CPD outperforms Ours-EGNet a
bit.

The Rationality of AGC Module. AGC module in AGCNet
plays the most important role in capturing consistency infor-
mation within a group. In order to verify the design rationality
of the AGC module, the five important operations as described
in Section III-B in the module are removed or replaced
by some conventional operations in turn. The quantitative
performance is reported in Table IV. For the convenience of
comparison, we use the original AGCNet as the baseline with
the index ‘0’. For model ‘1’, we discard the intra-saliency
of SSM, and directly process the extracted original features
with subsequent four operations. This variant differs from w/o
SSM, due to the fact that SSM still works for the two normal
decoders of AGCNet. The performance degradation of model
‘1’ proves that SSM is indispensible to AGC module. The
performance of model ‘2’ is severely damaged by exchanging
to global average pooling, the visual comparison in Fig. 6 also
confirms that the patch-wise semantic matching is promoting
for detection without less interference. We average all intra-
semantic vectors of the detected group and take it as a common
semantic vector, then expand the vector to the size of original
feature to add each image feature. The above operation is used
to replace the CP to construct model ‘3’. The performance
of this replacement drops dramatically and the incomplete of
detected soccer in the Fig. 6 all validate the generalization
ability of CP. For the model ‘4’, we directly summarize the
matching maps without the process of affinity weighting, the
lacking for the relation of intra-semantic vectors results of
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the performance degradation. We construct the variant ‘5’ by
employing the group consistency map generated from the CGC
block to mask the original feature. Without the individual
attributes for each image, the variant can not well handle the
misleading pixels of co-salient. For the model ‘6’, except for
the SSM, we discard the rest of operations of AGC module,
just concatenate intra-saliency features of all group to generate
common features, and concatenate intra-saliency feature with
the common feature for each image to make inferring. Under
this design, the performance of this variant reaches a low
record, (e.g., Sq : 0.868 — 0.8338, 0.829 — 0.791; F3 : 0.879 —
0.812, 0.825 = 0.768; M : 0.055 — 0.087, 0.066 — 0.091), the
non-common salient regions can not be effectively suppressed,
just as shown in the results of CPD and ours in Fig. 6.
The comparison of visual and quantitative results of these
variant models all prove that each process of AGC module
is indispensable.

The Impacts of the AGC Module Number to AGCNet.
As shown in Table V, we construct model ‘0’ by deleting AGC
modules from the AGCNet, which indicates that the group
consistency modeling process is omitted. By comparing the
results of the proposed model with 0, 1, 2, 3 (ours), 4 and 5
AGC modules, we discover that the performances of 4’ and
’5’ are lower than the original AGCNet with 3 AGC modules.
Owning that most co-salient objects do not have clear common
attributes on shallow-level features, with shallow-level features
adopted for modeling group consistency, i.e., model ‘4’ and
’5’, the computation cost increases dramatically compared
with model ‘3’, but performs worse. With 2 AGC modules,
the performance is comparable to the original AGCNet. The
observations all illustrate that the high-level features with more
semantic information are more effective for co-saliency task.

The Effectiveness of Aggregated Decoder. To evaluate the
contribution of the proposed Aggregated Decoder to AGCNet
on co-saliency task, we derive four variants: w/o GA, w/o
LA, w/o AD and w/ 2AFF, the w/o GA and w/o LA of which
respectively refer to that removing the global attention and
local attention aggregating in turn. In light of that, there are
three scales of group consistency that need to be aggregated.
We delete one AFF which targets the fusion of FFs4 and
FF 43, directly import FF43 to the next residual block to form
w/ 2AFF. The variant w/o AD is constructed by replacing
the Aggregated Decoder with the operation of feature con-
catenation. As presented in Table VI, the slight deterioration
of performance of w/ 2AFF indicates that the task is more
dependent on CFs and CF4 with relatively more semantic
category attributes than CF3. Embedding three AFF blocks can
promote the reservation of CF5 and CF4, which is beneficial
for co-saliency detection. The performance degradation of
w/o GA, w/o LA and w/o AD confirm that the discriminate
attention aggregations are reasonable as described in Section
III-C and our aggregated decoder is necessary for our AGCNet.

With the support of existing image SOD models, the
proposed AGC module, aggregated decoder and two normal
decoders have different capabilities, are closely interdependent
for a good tradeoff between effectiveness and efficiency,
making AGCNet possible to be applied in practical appli-
cations. The AGC module is guided by intra-saliency priors
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to capture group consistency within any complete group with
any quantities of images, but does not depend on the perfor-
mance of intra-saliency priors. By constructing intra-semantic
correlation of group and pixel-wise self-correlation of each
single image, the AGC module can obtain more discriminative
global group consistency to tackle the detection of easy
confusing pixels compared with existing co-saliency detection
models. And this module adopts less regular convolutional
layers to retain the generalization for the group with unseen
category. The aggregated decoder adaptively bridges the gap of
adjacent-scale group consistency, to adaptively fuse three-scale
group consistency for the preliminary localization of co-salient
objects. And two normal decoders make further utilization of
intra-saliency priors, benefiting from the advantage of edge
detection of intra-saliency priors, further propagating group
consistency to shallow features to improve integrity of the co-
salient objects in full-resolution images.

V. CONCLUSION

In this paper, we propose an AGCNet for co-saliency
detection. Promoted by the intra-saliency priors produced
by existing image SOD models, our mainly proposed AGC
module breaks the issues of the static manner-based infer-
ence and the constant quantity of input image, capturing the
global group consistency within any unknown given group by
semantic matching and weighted summarization. Moreover,
this module integrates individual property with group consis-
tency to extract discriminative group consistency features. The
proposed Aggregated Decoder overcomes the semantic and
scale inconsistency issue among multi-scale group consistency
features for preliminary co-saliency detection. Experiments on
four benchmark datasets demonstrated our AGCNet is com-
petitive to 16 state-of-the-art co-saliency detection and 3 SOD
models. And comprehensive ablation studies also validated the
effectiveness and rationality of proposed modules.
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