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Abstract—Current approaches for human pose estimation in
videos can be categorized into per-frame and warping-based
methods. Both approaches have their pros and cons. For example,
per-frame methods are generally more accurate, but they are
often slow. Warping-based approaches are more efficient, but
the performance is usually not good. To bridge the gap, in
this paper, we propose a novel fast framework for human pose
estimation to meet the real-time inference with controllable
accuracy degradation in compressed video domain. Our approach
takes advantage of the motion representation (called “motion
vector”) that is readily available in a compressed video. Pose
joints in a frame are obtained by directly warping the pose
joints from the previous frame using the motion vectors. We
also propose modules to correct possible errors introduced by
the pose warping when needed. Extensive experimental results
demonstrate the effectiveness of our proposed framework for
accelerating the speed of top-down human pose estimation in
videos.

Index Terms—Human pose estimation, compressed video, deep
neural network.

I. INTRODUCTION

Human pose estimation in videos is a cornerstone for many
computer vision applications, such as smart video surveillance,
human-computer interaction, virtual reality etc. It aims to seek
for locations of human body joints (e.g. head, elbow and etc.)
in video sequences. Current real-time solutions to this problem
can be categorized into per-frame methods [48], [50], [35],
[10], [47], [40], [22], [34], [32], [7], [53], [46], [13], [19],
[11], [56], [24], [30], [33] and warping-based methods [38],
[43], [14], [5].

Due to their simplicity, per-frame methods are widely
deployed in real-world applications. In general, the per-frame
methods can be categorized into top-down methods [32], [53],
[46], and bottom-up methods [7], [13]. While bottom-up meth-
ods localize human joints for all persons in a frame, top-down
methods decompose the multi-person human pose estimation
into a simpler task of single-person pose estimation by first
detecting each person in a frame, then applying a single-person
pose estimation on each detected person. Although the two
different pipelines have their distinctive properties, both of
them are usually designed to meet the real-time demand from
the perspective of searching compact neural network models
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or reducing the input image size. However, per-frame methods
do not consider the temporal continuity between frames. As a
result, they involve a lot of redundant computations.

To exploit temporal continuity in videos, warping-based
methods aim to discover temporal relations (e.g. optical flow
[38], [43], pose flow [55], etc.) and quickly propagate human
pose from one frame to another. However, computing optical
flow is often time-consuming, so warping-based methods are
rarely used in real-world applications.

In this paper, we introduce an alternative way of exploiting
the temporal continuity in videos for human pose estimation.
The core idea of our approach is to take advantage of the
motion information that is already available in compressed
videos when they are being encoded by standard video codecs.
Compressed video streams only retain very few frames as
RGB images, but contain massive motion information (i.e.
motion vector and residual error) for frame reconstruction.
These motion vectors and residual error are readily available
in compressed videos and do not require any computation to
obtain. Recent years have witnessed many successes in han-
dling computer vision tasks in the compressed video domain.
Some early work focuses on classification tasks such as action
recognition [52], video classification [8], [9]. These tasks
usually do not require precise motion cues at the pixel level,
so motion vectors in compressed videos can be easily applied.
There are also works on semantic segmentation [29], [16] in
compressed videos. Although semantic segmentation is a pixel
labeling task, the performance of semantic segmentation is
largely influenced by the prediction in the interior of object
instances rather than instance boundaries. As a result, this
task does not require very much motion information either.
In comparison, human pose estimation in compressed videos
is much more challenging, since this task requires accurate
joint predictions.

To this end, we propose a novel framework for human pose
estimation in the compressed video domain. The framework
consists of four components, i.e. human pose estimator, fast
pose warping module (FPW), pose recall module (PR) and
transition re-initialization module (TR). To be specific, the
human pose estimator is a top-down pose estimation network
working on RGB images. For the purpose of reducing temporal
redundancy, a fast pose warping module is designed to use
motion vectors for rapid pose propagation across consecutive
frames. However, since motion vectors are noisy and not
always associated with the motion on the body parts, we
design a pose recall module to adaptively find “hard-to-warp”
human instances and perform human pose estimation instead
of warping by jointly considering the motion intensity and
confidence on body joints. Moreover, video transitions can
result in significant motion cues which are irrelevant to body
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motion. To address this issue, the transition re-initialization
module is introduced to terminate the warping process at video
transitions and switch to RGB-based pose estimation.

The main contributions of this work can be summarized as
follows. First, this paper represents the first work on real-time
human pose estimation in the compressed domain. Second,
we propose a human pose estimation framework in the com-
pressed domain using three well-designed modules. Finally,
we demonstrate through extensive experimental results that
our framework can speed up existing per-frame and warping-
based methods by 2-5 times on the Posetrack dataset, while
achieving comparable performance in accuracy.

II. RELATED WORKS

In this section, we briefly review several lines of research
related to our work.
Per-frame Human Pose Estimation: Traditional human pose
estimation methods [2], [3], [23], [39] usually adopt the
pictorial structures model with hand-crafted features. These
methods often fail when some body parts are occluded. In
recent years, with the emerging of deep convolutional neural
networks, most of the image-based human pose estimation
[48], [50], [35], [10], [47], [40], [22], [34], [32], [7], [53],
[46], [13], [19], [11], [56], [58], [25], [24], [30], [33] learn
to predict human poses on large-scale datasets with intensive
human joints annotations. Instead of mapping images directly
to human joint coordinates, most of these methods, except
for [48], choose to predict heatmaps for easier regression and
optimization.

In the era of deep learning, image-based methods can be
categorized as top-down methods and bottom-up methods.
Top-down methods [32], [46], [53], [35], [19], [11] usually
rely on a human detector that helps localizes human instances
in an image. Then the methods decompose the multi-person
human pose estimation task into single person pose estimation
problems. On the contrary, bottom-up methods [22], [7], [13]
first detect all the body joints in an image, and then assign the
detected joints to each person.

These works mainly focus on exploring novel models to
achieve state-of-the-art human pose estimation accuracy, but
their processing speed is often slow.
Fast Human Pose Estimation: Although the efficient es-
timation of the human pose is quite important, very few
works aim for this goal. Rafi et al. [41] introduce a compact
neural network that can be trained efficiently on a mid-range
GPU. Bulat et al. [6] binarize heavy CNN architectures for
model compression and specifically designed a parallel and
multi-scale architecture for the binary case. Zhang et al. [56]
successfully employ a well-trained large network to help
boost the performance of a small network with knowledge
distillation [20]. However, the above-listed methods only focus
on designing a small network that is cost-effective for de-
ploying in practice. In this paper, we alternatively investigate
the possibility of accelerating inference speed in the video
compressed domain.
Video Based Human Pose Estimation: Temporal depen-
dency among video frames is the most crucial factor that

distinguishes an image task from a video task. Exploiting
the temporal correlation wisely can significantly improve the
performance in a video task. However, due to the scarcity
of large-scale video-based benchmarks, video-based human
pose estimation has only drawn very little attention in recent
years. Some methods [38], [43] use dense optical flow as
temporal representations to capture relationships across the
multiple frames. In contrast, Doering et al. [14] compute task-
specific motion representation only on human joints to reduce
redundancy of dense optical flow. Bertasius et al. [5] introduce
a novel CNN architecture for pose estimation in sparsely
labeled videos. This method uses a neural network to directly
learn offsets of consecutive frames. Although most of these
video-based methods show great improvements on estimation
accuracy, they still ignore the problem of how to efficiently
estimating human pose in videos.
Video Analysis in Compressed Domain: Video analysis in
the compressed domain is also understudied. There are few
works that try to leverage the compressed domain knowledge
to assist specific video analysis tasks. The current methods in
compressed domain can be categorized as traditional methods
and deep learning base methods. For traditional methods, Chen
et al. [12] propose to use global motion estimation and Markov
random field for extraction moving regions in compressed
domain. Some works [28], [37] introduce fast scene change
detection algorithm using the feature from compressed videos.
The two methods mainly focus on how to precisely detect wipe
transition. Despite the effectiveness of traditional method, they
usually adopt compressed knowledge for transition and motion
detection rather than high-level video analysis. To further
exploit the valuable information in compressed domain, some
recent work proposes to use deep learning techniques for
video analysis in the compressed video domain. There is some
work [8], [9] on 3D convolutional neural networks for video
classification utilizing compressed domain knowledge. Wu et
al. [52] accelerate action recognition directly on compressed
videos. The success of extracting high-level representations
from the compressed domain implies the potential of com-
pressed domain information in other computational vision
tasks. Recently, Li et al. [29] adopt convolutional LSTM to
propagate semantic maps to consecutive frames by motion
vector and residual. Feng et al. [16] propose a novel real-
time framework for semantic segmentation using compressed
domain knowledge. Due to the nature of semantic segmenta-
tion, where most of the pixels are inside of objects, the noise
in motion vectors can be largely tolerated. On the contrary,
accurately propagating the human joints with noisy motion
vectors is a more challenging task. In this paper, we are
inspired by Feng et al. [16] to propose a method for fast
human pose estimation in the compressed domain. To our best
knowledge, this paper is the first to address this problem.

Video Analysis Beyond RGB Frames: Our work is loosely
related to other video analysis tasks that use the information
beyond RGB frames in a video. For example, there has been
lots of work (e.g. [42], [26], [57]) on using depth information
in RGBD videos for object recognition, pose estimation, etc.
However, these works can only work on video data collected
by RGBD cameras, since the depth information is not available
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Fig. 1: Illustration of decoding a compressed video. Each I
frame is encoded as a regular image. Each P frame is stored
as a motion vector and residual that represent the correlation
between the current P frame and the previous frame.

in regular videos. In contrast, our work is more widely appli-
cable since the motion vector information is readily available
in any compressed video.

III. BACKGROUND: COMPRESSED VIDEO

Due to the enormous data volume, digital videos are typ-
ically encoded into video streams for efficient storage and
transmission. Commonly used modern video codecs include
MPEG-4 Part 2 [27], H.264/AVC [51], HEVC [44], VP9 [31],
etc. A video stream compressed by these video codecs has a
very different structure from a sequence of stand-alone images
as often seen in an uncompressed video. In this section, we
take the MPEG-4 Part 2 (Simple Profile) codec [27] as an
example to analyze the type of data that are available in a
video stream. Nevertheless, most popular video codecs share
a similar predictive coding strategy and generate compressed
streams with a similar structure. So our analysis on this
particular codec generalizes to other codecs.

The basic unit in a compressed video is called a group of
pictures (GOP). The encoding and decoding processes of one
GOP are independent of any other GOPs. A compressed video
is composed of a sequence of such GOPs. In the default mode
of the MPEG-4 Part 2 codec, a GOP consists of 12 frames,
with the first being an I-frame (intra-coded frame) and the rest
being P-frames (predictive frames). Video codecs treat the two
types of frames differently. The I-frame is encoded as a regular
image, so decoding it does not depend on any other frames in
the GOP. However, the encoding of each P frame depends on
the data from its previous frame, which finally relies on the
data of the first I-frame of the GOP. Specifically, for each 16×
16 block in a P-frame It at time t, the codec first tries to find
a best-matched block in the previous frame It−1 by a block-

matching method [4]. It then represents the correspondence
between the two blocks by a vector pointing from the reference
block to the target. Such a vector is known as the motion
vector (MV) in the context of video compression. After the
block matching, the residual between the target and reference
blocks is also computed and encoded into the video stream.
As such, the P-frame It is compactly represented by an MV
map Mt and a residual map Rt, and can be reconstructed by
reusing the data of the previous frame It−1.

It(x, y) = It−1
[
(x, y)−Mt(x, y)

]
+Rt(x, y), (1)

where (x, y) indicates any pixel position in the frame. Figure 1
illustrates the representation and the reconstruction process of
P-frames in a GOP. Some other codecs may generate another
type of frame, i.e. B-frame (bi-directional frame), which is
encoded in a similar manner to P-frames except that the motion
vectors are estimated from both previous and future frames.

IV. OUR APPROACH

Top-down pose estimation is often performed in a two-
stage manner. First, a human detector scans the whole image
to crop out each person instance in a bounding box. Then,
pose estimation is performed in each of the bounding boxes to
localize each joint of the person using a heatmap. This process
is well established for pose estimation on a still image but still
has room to improve when processing a video. As analyzed
in Section III, neighboring frames are highly correlated with
each other, so it is intuitively possible to reuse the estimation
results from the previous frame in the current frame. Let us
consider an extreme case where a person is doing yoga and
keeping a posture for a few seconds. The motion vectors in the
video will indicate that there is no motion between adjacent
frames. We can then perform pose estimation only on the first
frame and copy the results to the remaining frames. Intuitively,
this approach can save several folds of inference time while
achieving a similar level of accuracy.

Our proposed approach is inspired by and a natural exten-
sion of this intuition. By exploiting the inter-frame relationship
readily available in a compressed video stream, we design
a system that can accelerate any per-frame pose estimation
method while maintaining relatively high prediction accuracy.
As shown in Fig. 2, our proposed approach contains several
components: a human instance detector, a single-person pose
estimator, a fast pose warping module (FPW), a pose recall
(PR) module and a transition re-initialization module (TR). In
particular, the first two components form the baseline image-
based pose estimator that is used to initialize the human
pose in I-frames. The last three modules are designed for
accelerating and correcting pose estimation in P-frames. First,
we design an FPW module to propagate the joints of each
person based on the results in the previous frame. By reusing
the inference results from the previous frame, both modules
can significantly speed up the pose estimation in P-frames.
Although direct warping is fast, it is possible for the warping
error to accumulate over time, and the tracking points grad-
ually shift off the human body. In order to control the error
propagation, we further design a pose recall module to correct
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TR Transition Re-initialization PR Pose Recall FPW Fast Pose Warping

Fig. 2: An overview of our proposed method for fast human pose estimation in compressed videos. I-frames are directly sent
to a human detector to detect each person. Then a human pose estimator is applied to each person instance to produce a
corresponding human pose. For each P-frame, we first use the transition re-initialization module (TR). If a scene transition
is detected, these frames would be treated the same as an I-frame by reconstructing its RGB image. Otherwise, each person
instance in the P-frame is passed to the pose recall module (PR) to decide whether we need to re-initialize the pose estimation
for this person. If a person instance passes the TR and PR modules, we can directly obtain its pose in the current P-frame by
warping the pose joints from the previous frame using our fast pose warping (FPW) module.

the pose estimation results when the motion is too complex to
follow. Another challenge to the fast warping approach is the
occurrence of scene transition, which breaks the relationship
between consecutive frames. To address this challenge, we
design a transition re-initialization module to detect such scene
transition so that the pose estimation can be re-initialized on
the first frame of the new scene. Note that the PR and TR
modules depend only on the compressed domain features and
thus introduce minimal overhead into the whole pipeline.

Fig. 2 presents the complete data flow of the proposed
framework when processing a compressed video. After decod-
ing each GOP, the leading I-frame is first sent to the human
instance detector and the pose estimator to obtain the location
of body joints. Then the results of P-frames are efficiently
predicted by the FWP module unless the PR and TR modules
are triggered to re-initialize the pose estimation results of
several human instances or the whole image.

The proposed framework exhibits three major advantages
over the traditional per-frame framework. First, the proposed
framework does not need to perform image-based pose esti-
mation on most P-frames, resulting in a significant speedup
on highly compressed videos. Second, all the additional
modules rely only on the features that are readily available
in a compressed video stream. So they introduce minimal
overhead into the pipeline. Third, this framework is compatible
with a wide range of image-based pose estimation methods
and consistently achieves 2 to 5× speedup while achieving
comparable accuracy.

We will discuss the details of each component below.

Human Instance Detector & Human Pose Estimator: We
start by introducing the image-based pose estimation pipeline
for the I-frames. Since an I frame is represented as a standard
RGB image in a compressed video, we can choose any
image-based human instance detector, denoted by ϕd and a
pose estimator, denoted by ϕp, to initialize the human pose
estimation in a GOP. In this paper, we adopt the HRNet [46],
which uses an adapted Faster-RCNN for human detection and
a specifically designed CNN for subsequent pose estimation.
However, we emphasize that any pose estimation methods
sharing a similar pipeline can be easily plugged into our
proposed framework. We also conduct a study to illustrate
the influence of different image-based pose estimators in
Section V-C. In addition to operating on I-frames, ϕd and ϕp

will also be used to re-initialize on a P-frame by reconstructing
its RGB image if the TR or PR modules are triggered on this
P-frame.
Fast Pose Warping: The FPW module is performed on
each human instance to localize the joints of this person.
Specifically, the module warps the human joints Jt−1

i of the
i-th person in frame It−1 with the motion vectors Mt at time
t. It then generates a new set of joints location Jt

i for the same
person by solving the following equations:

Jt
i(n)−Mt(Jt

i(n)) = Jt−1
i (n), n = 1, . . . , N (2)

where Jt
i(n) denotes the coordinates of the n-th joint of the i-

th person in frame It, and where N indicates the total number
of joints of this person.
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Fig. 3: a) and b) only adopt FPW to propagate pose from left to right. c) shows the results corrected by the PR module. Each
column illustrates four consecutive frames in the same GOP.

Since the approximation of block-matching algorithm is
usually adopted for calculating motion vector, motion vector
often fails to associate the human parts of successive frames
when there is severe motion (see Fig. 3(b)), which reflects in
big magnitude on residual.
Pose Recall Module: To solve the problem of the loss
of motion relation introduced by extensive and severe pose
variance, we design the pose recall module. Before the pose
recall, we firstly fast propagate the human bounding box with
Eq. (2) by the center coordinates of the box. Then, for a given
P-frame, the goal of this module is to decide whether the pose
estimation results obtained from the pose warping are likely to
be unreliable. If so, it will run the image-based pose estimator
on a few specific human instances.

We design this module by considering the residual in
each human instance and the motion information on human
body joints to adaptively select the person with fast motion.
Specifically, this module is based on two measures called the
motion intensity and the residual intensity defined below.

The motion intensity is defined as the average motion on
each body joint. It is computed as follows. For the i-th person
in the current frame, we define the motion intensity (MI) of
this person as the average motion magnitude on the joints:

MIi =
1

2N

N∑
n=1

(|Mt
i(J

t
i(n), 0)|+ |Mt

i(J
t
i(n), 1)|) (3)

Noted that |.| is the absolute value operator and all the
operations are element-wise. Here, 0 and 1 are the channels
of the motion vector.

The residual map measures the error after warping the pixels
in a P-frame using a motion vector. The absolute values in the
residual map can be regarded as the confidence map of motion

vectors. Larger values in the residual map tend to correspond
to areas where the motion vectors are not reliable. We define
the residual intensity as the average magnitude of the absolute
value of residual (RI) for each human instance i.

RIi =

∑
(x,y)∈(Hi,Wi)

|Ri(x, y)|
Hi ×Wi

(4)

where hi and wi denote the length and width of each human
bounding box.

Then we select each person in the frame where the motion
intensity or the residual intensity is above a certain threshold.
Then the selected person instance is sent to the image-based
pose estimator for re-initialization. Fig. 3 illustrates the benefit
of adopting a pose recall module.
Transition Re-initialization: Some videos used in our dataset
contain scene transitions due to camera switching. For the
frame at the camera transition, the human pose in the current
frame is often uncorrelated to the previous frame. As a result,
the motion vector map does not provide any information for
valid pose warping (see Fig. 4). This is especially problematic
if the transition is at the beginning of a GOP. In this case, the
unmatched human pose would be propagated to the remaining
frames in this GOP. To address this issue, we propose the
transition re-initialization module to specifically handle the
camera transition.

Our key observation is that when the camera transition
happens, the residual map of the corresponding frame tends
to have enormous values. This is due to the fact that the
two frames at the transition correspond to completely different
scenes. Unlike the pose recall module that operates on each
person in a frame, this module operates on the global infor-
mation of the motion vector map. Once the residual intensity

Authorized licensed use limited to: Concordia University Library. Downloaded on January 27,2023 at 16:13:51 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3141888, IEEE
Transactions on Multimedia

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

t=0

t=1

t=2

t=3

t=4

RGB Image Residual Motion Vector

Fig. 4: Illustration of the motion vector and residual at
transition. The residual can better indicate camera transition.

on the entire image is higher than a threshold THRtrans,
we consider the frame to be a transition. This frame is then
sent to the pose estimator for re-initialization. The residual
intensity of transition RIT is defined in a similar way as in
Eq. (4), but the average is performed on the whole residual
map instead of a human bounding box, i.e. (Hi,Wi,Ri) in
Eq. (4) is replaced by (H,W,R) for the frame. We show an
example of the camera transition in Fig. 4.

The overall algorithm of our framework is shown in Alg. 1.
Note that our proposed three modules, i.e. FPW, PR, TR, are
not built with neural networks. So these modules do not have
additional model parameters.

V. EXPERIMENTS

In this section, we first describe the datasets and the
implementation details. We then present ablation studies on
various aspects of the proposed framework and compare it
with other methods.

A. Dataset
PoseTrack [1] is a commonly used video-based benchmark

for multi-person pose estimation and tracking. The videos

Algorithm 1: Overall Inference Algorithm
Require: Pose estimator model ϕp, human detector

model ϕd, compressed video stream V and
fast pose warp operation ω.

Output : Jt

for t = 1 to |V| do
if is I frame then

decode I frame to It

Bt = ϕd(I
t) # detect each person

Jt = ϕp(B
t) # estimate human pose

else
decode P frame to Mt,Rt and It

if RIT > THRtrans then
Bt = ϕd(I

t)
Jt = ϕp(B

t)
else

for i = 1 to |Jt−1| do
if MIti ≤ THRmotion and
RIti ≤ THRres then

Jt
i = ω(Jt−1

i )
else

Jt
i = ϕp(B

t
i )

from this dataset contain various challenging scenarios. For
example, many videos include severe body motion, body pose
variations, video transitions, highly occluded human instances
and crowded scenes with dynamic human movements. These
difficulties make it hard to achieve high accuracy on this
dataset. PoseTrack has two different released datasets called
PoseTrack17 and PoseTrack 18. PoseTrack17 contains in total
514 video sequences, in which 250, 50 and 214 clips are used
as train, validation and test data, respectively. PoseTrack18 is
significantly larger than PoseTrack17. The new release con-
tains 593 train, 170 validation and 375 test clips, respectively.
However, both of the two datasets only annotate 30 frames
around the center of training clips. The annotations include
head bounding boxes and 15 human key joins with indications
on whether the joints are visible. The details of the two
datasets are shown in Table I.

TABLE I: The details of the datasets used in this paper. We
illustrate the number of video clips of train, val and test split.
In addition, annotations/clip denotes the number of annotations
per video clip.

Data Split Train Validation Test annotations/clip
PoseTrack17 250 50 214 30
PoseTrack18 593 170 375 30

In this paper, we conduct ablation studies and experiments
on both PoseTrack 17 and PoseTrack18 datasets using the of-
ficial train, validation and test split. The human pose estimator
is fine-tuned on the training set. We then evaluate our proposed
framework on validation and test sets. The evaluation metric
used in this work is the mean average precision (mAP) as in
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TABLE II: Ablation studies on the effects of each individual
module on both accuracy and speed.

FPW PR TR mAP FPS

- - - 79.2 5.8

✓ - - 54.1 49.2

✓ ✓ - 72.6 22.5

✓ - ✓ 71.8 36.1

- ✓ ✓ 77.3 5.4

✓ ✓ ✓ 77.2 19.2

[1], [40].

B. Implementation Details

We choose HRNet-W48 [46] as our pose estimator. It
is pretrained on the COCO dataset and finetuned on the
Posetrack18 training set. The finetuning process starts with
an initial learning rate of 10−4 for 10 epochs. We then
reduce the learning rate by a factor of 10 until the end of
20 epochs. For data augmentation, we take random samples
uniformly distributed over [−45◦, 45◦] and [0.65, 1.35] for
random rotation and random scale respectively. Flipping and
half body data augmentation [49] are also used. We adopt
the detector in [17] for human bounding box detection. The
three thresholds, THRtrans,THRmotion and THRres, in Al-
gorithm 1 are set to 3, 50, and 5 respectively. We use MPEG-
2 Part2 (Simple Profile) [27] as our codec to compress the
PoseTrack videos with the default GOP size 12. We do not use
any data augmentation during testing. Our proposed method
is implemented using Pytorch [36] and all the evaluations are
conducted on the same Nvidia P100 GPU.

C. Ablation Studies

In this section, we perform extensive ablation studies on
various aspects of the proposed framework. All the ablation
studies are conducted on the PoseTrack 18 validation set.
Effects of Individual Module: We perform ablation studies to
demonstrate the effectiveness of each module in our proposed
framework by removing one or more modules. The results
are shown in Table II, from which we can make several
observations: 1) the fast pose warping module can efficiently
accelerate the human pose estimation with the off-the-shelf
pose estimator; 2) the pose recall module can effectively
identify significant motion in videos and re-initialize the
pose estimation of an individual person; 3) the transition re-
initialization module can detect “hard-to-warp” frames and
video transitions, which can avoid error propagation along the
time sequence; 4) the entire framework with all these modules
achieves the best overall balance between accuracy and speed.

Figure 5 shows some qualitative examples of different
methods. There is no surprise that the method with only the
fast pose warping has the best efficiency. However, if we

only use FPW, the accuracy degrades dramatically. Figure 5(b)
illustrates that the error is accumulated from the beginning of
the GOP to the end. Especially on camera transition, the FPW
module still propagates the unreliable pose to the next frame,
resulting in inaccurate estimation. In general, human motion is
exceptionally complicated. Directly warping poses with a mo-
tion vector could significantly jeopardize the performance. The
method with pose recall and FPW solves the above problem
to some extent. During inference, the person with a significant
pose variance is rebooted and FPW terminates the error to be
propagated to the next frame. From Fig. 5(c), we can observe
that the PR module can avoid inaccurate pose warping before
camera transition. However, after camera transition, the PR
module cannot employ human pose estimation with inaccurate
bounding boxes. Thus we can see the pose of the person with
a white t-shirt is missing. We then show the performance of
using both FPW module and TR module. It can be seen from
Fig. 5(d) that transition re-initialization can greatly help boost
the performance of FPW. Our method (Fig. 5(e)) using all
modules gives the best qualitative results.
Warping by Optical Flow: We conduct a comparison with
pose warping using optical flow instead of motion vectors.
This will show the effectiveness of our proposed frame-
work in terms of accelerating the inference speed. We have
experimented with using PWCNet [45] and FlowNet2 [21]
for optical flow estimation, respectively. Table III shows the
performance of our method using FPW and optical flow-
based methods. Surprisingly, we observe similar accuracy
between using the motion vector and using optical flow.
This phenomenon indicates that accurate motion modeling
provided by optical flow does not provide additional benefit
for propagating human pose across video frames compared
with motion vectors that are already available in compressed
videos. Another observation from Table III is that our fast
feature warping is about 3-8 times faster than optical flow
estimation. The gain on inference speed is mainly from the
fact that we take the existing motion representations from
the compressed video domain instead of relying on expensive
optical flow estimation.
Effect of GOP Size: Table IV illustrates the performance of

TABLE III: Comparison with pose warping using optical flow.
We experiment with several different optical flow algorithms.
Tflow represents the time for estimating optical flow, and
Twarp denotes the time for warping. Our method is more
efficient since it does not require computing optical flow. At
the same time, the performance of our method is comparable
to those using optical flow for pose warping.

Method Tflow Twarp mAP

HRNet+FlowNet2 56 ms 7.6 ms 55.9

HRNet+FlowNet2s 18 ms 7.6 ms 53.9

HRNet+PWCNet 14 ms 7.6 ms 54.8

Ours(FPW only) - 7.6 ms 54.1
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(a) Res & MV (b) Only FPW (d) FPW + TR (e) Ours(c) FPW + PR

Fig. 5: Qualitative results of the ablation studies on the PoseTrack18 validation set. We use red arrows to point out the estimation
error, orange boxes to indicate the camera transition and red boxes to illustrate the human instance being recalled by our PR
module. From top to bottom, the decreased number of red arrows indicates the effectiveness of our modules.

our method under different values of the GOP size. In order
to demonstrate the significance of our method in balancing
between inference speed and estimation accuracy, we show
experimental results of the baseline method that only uses fast
pose warping (FPW). When the GOP size is set to 1, the
task of video pose estimation is degraded to per-frame pose
estimation. In this case, the accuracy and inference speed of
the two methods are the same. With the increase of the GOP
size, we can generally see a decreasing trend in accuracy and
an increasing trend in inference speed. However, benefiting
from our PR and TR module, our method is less sensitive
to the GOP size. The accuracy of our method only decreases
from 79.2 to 77.2 with nearly 4 times speed-up. In contrast,
only adopting the FPW module for fast warping causes the
performance to drop significantly from 79.2 to 54.1. This
ablation study further proves the robustness of our method.

Influences of Crop Size: The input image size also influences
the inference speed. Intuitively, the inference speed can be
accelerated as the input image becomes smaller. We conduct

experiments to show the influence on our proposed method
in terms of crop size for each human instance. We choose
to crop human instances with two commonly used bounding
box sizes (384×288 and 256×192). The performance of our
method with two sizes is shown in Table VI. The inference
speed increases when the input size of a human instance is
decreased from 384×288 to 256×192. The gain on inference
speed is mainly due to the fact that the human pose estimation
model can run faster on a smaller input image. However, our
overall framework can work with any input size. For example,
our fast pose warping module only takes the joint coordinates
from the previous frame and warps poses regardless of the
size of each person.

Effects of Image-based Pose Estimator: Our overall frame-
work does not depend on the particular choice of the image-
based pose estimator. In this experiment, we show the perfor-
mance of our framework adopting three different state-of-the-
art pose estimation models, i.e. simple baseline [53], HRNet
[46] and 8-stage Hourglass [32]. The performance of using the
three baselines is shown in Table VI. We can observe that these
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Fig. 6: Qualitative results on the PoseTrack18 validation set. The first column corresponds to I-frames, while other columns
correspond to P-frames in a GOP.

TABLE IV: The inference speed and estimation accuracy with
different GOP sizes. The frame size is set to 384*288.

Method GOP size mAP FPS

FPW only 1 79.2 5.8

Ours (HRNet) 1 79.2 5.8

FPW only 4 70.1 16.5

Ours (HRNet) 4 78.4 9.2

FPW only 8 61.2 33.1

Ours (HRNet) 8 77.8 14.7

FPW only 12 54.1 49.2

Ours (HRNet) 12 77.2 19.2

FPS

m
AP

R
ea
l-t
im
e

PoseWarper

HRNet

SimpleBaseline

AlphaPose

8-stage Hourglass
Ours(Hourglass)

Ours(HRNet)

Ours
(SimpleBaseline)

Fig. 7: Illustration of overall running time on the PoseTrack18
validation dataset. The overall running time consists of bound-
ing box proposal time and human pose estimation time.

three pose estimation methods can be significantly accelerated
once used within our framework. It is worth mentioning
that we achieve 5 times speedup on 8-stage Hourglass. The
empirical analysis further illustrates the advantage of our
method for speeding up human pose estimation.

Overall Inference Speed: In this section, we investigate
the overall inference speed of per-frame-based methods and
our proposed one. We consider the timekeeping after the
video is decompressed. Specifically, we add the inference time
of the human detector in the pose estimation process. The
comparison of overall inference speed is shown in Figure 7. It
can be noticed that our framework can be 3-5 times faster than
the per-frame-based methods. One reason is that per-frame-
based methods require human bounding box detection for
every frame, while our framework only needs such detection
on I-frames. In other words, with PR module, our method
allows human detection on a subset of frames (e.g. I-frame)
and quickly propagates bounding boxes from the current frame
to other frames in a GOP. The results also provide a shred of
solid evidence that our method is more efficient when deployed
in practice.

D. Main Results

Table V shows the quantitative comparison of our approach
with several state-of-the-art human pose estimation methods in
terms of accuracy and speed. The comparison is conducted on
both PoseTrack17 and PoseTrack18 datasets. We can generally
observe a trade-off between inference speed and accuracy
in Table V. For example, although PoseWarper is the top-
performing method for all three datasets, the inference speed is
the slowest. PoseFlow and AlphaPose can run over ten frames
per second. However, the accuracy of the two methods is 10
mAP less than the top performed methods. Somewhat surpris-
ingly, our method is the only one that can estimate human pose
in real-time over 19 FPS, while achieving accuracy comparable
to the top-performing method. It is worth mentioning that our
performance is better than the original HRNet. We show some
qualitative examples of our method in Fig. 6.

E. Limitation and Future Works

Due to the fact that our proposed approach is introduced
to accelerate the current per-frame human pose estimation
method, we notice that our proposed method might inherit
the limitation of per-frame-based methods. Fig. 8 shows some
failure cases of our method. It can be observed that our method
fails to predict accurate human pose when the human joint is
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TABLE V: Quantitative comparison on the PoseTrack benchmark. The performance of the comparisions are collected either
from PoseTrack leaderboard or paper. We additionally report the FPS of methods that are open-sourced.

Dataset Methods Head Shoulder Elbow Wrist Hip Knee Ankle Mean FPS

PoseTrack17
Val Set

PoseFlow [54] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5 10.2
JointFlow [14] - - - - - - - 69.3 -
FastPose [56] 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3 6.4

SimpleBaseline [53] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7 6.2
HRNet [46] 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3 5.3

PoseWarper [5] 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2 1.9
Ours 79.9 87.6 82.8 76.7 80.7 79.4 72.8 80.0 19.0

PoseTrack17
Test Set

PoseFlow [54] 64.9 67.5 65.0 59.0 62.5 62.8 57.9 63.0 9.7
JointFlow [14] - - - 53.1 - - 50.4 63.4 -

SimpleBaseline [53] 80.1 80.2 76.9 71.5 72.5 72.4 65.7 74.6 5.9
HRNet [46] 80.1 80.2 76.9 72.0 73.4 72.5 67.0 74.9 5.8

PoseWarper [5] 79.5 84.3 80.1 75.8 77.6 76.8 70.8 77.9
Ours 78.4 83.8 79.3 74.3 75.4 75.4 69.6 76.7 18.6

PoseTrack18
Val Set

AlphaPose [15] 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9 14.8
MDPN [18] 75.3 81.2 79.0 74.1 72.4 73.0 69.9 75.0 -

PoseWarper [5] 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7 2.3
Ours 78.8 84.8 79.8 73.2 76.2 75.6 69.9 77.2 19.2

PoseTrack18
Test Set

AlphaPose++ [18], [15] - - - 66.2 - - 65.0 67.6 -
MDPN [18] - - - 74.5 - - 69.0 76.4 -

PoseWarper [5] 78.9 84.4 80.9 76.8 75.6 77.5 71.8 78.0 1.7
Ours 76.8 82.4 78.2 73.0 71.5 74.6 69.0 75.2 18.8

TABLE VI: The inference speed and estimation accuracy with
different size of input images. We also show our framework
when using different human pose estimators (HRNet, Sim-
pleBaseline and 8-stage Hourglass) for the pose estimation
module. Our framework can always significantly accelerate
inference speed without too much accuracy drop.

Method Input size mAP FPS

8-stage Hourglass 256*192 59.8 3.2

8-stage Hourglass 384*288 62.3 2.1

Ours (Hourglass) 256*192 58.1 13.6

Ours (Hourglass) 384*288 60.8 10.2

SimpleBaseline 256*192 75.6 11.2

SimpleBaseline 384*288 77.9 6.7

Ours (SimpleBaseline) 256*192 73.2 25.7

Ours (SimpleBaseline) 384*288 75.8 20.8

HRNet-W48 256*192 77.4 9.7

HRNet-W48 384*288 79.2 5.8

Ours (HRNet) 256*192 75.4 24.3

Ours (HRNet) 384*288 77.2 19.2

occluded or the image is blurry. The two problems are also
the main challenges in per-frame-based human pose estimation
[59]. It is preferable to address the problems in the future.

Fig. 8: Failure cases are pointed by red arrows. The pose of
elbow and head are unable to be detected because of occlusion
and image blurry.

VI. CONCLUSION

In this paper, we have introduced the task of human pose
estimation in the compressed video domain. The goal is to take
advantage of the motion representation (i.e. motion vectors)
that is already encoded in a video stream to accelerate the
pose estimation. The proposed framework uses motion vectors
to propagate the estimated pose joints from the I-frame to
other P-frames. We also introduce additional modules to re-
initialize the pose estimation when the pose propagation is
unreliable due to large motions or scene transition. Overall, our
proposed framework achieves a nice balance between accuracy
and inference speed.
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[12] Yue-Meng Chen, Ivan V. Bajić, and Parvaneh Saeedi. Moving region
segmentation from compressed video using global motion estimation and
markov random fields. IEEE Transactions on Multimedia, 13(3):421–
431, 2011.

[13] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S
Huang, and Lei Zhang. Higherhrnet: Scale-aware representation learning
for bottom-up human pose estimation. arXiv preprint arXiv:1908.10357,
2019.

[14] Andreas Doering, Umar Iqbal, and Juergen Gall. Joint flow: Temporal
flow fields for multi person tracking. arXiv preprint arXiv:1805.04596,
2018.

[15] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. Rmpe: Regional
multi-person pose estimation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2334–2343, 2017.

[16] Junyi Feng, Songyuan Li, Xi Li, Fei Wu, Qi Tian, Ming-Hsuan Yang,
and Haibin Ling. Taplab: A fast framework for semantic video segmen-
tation tapping into compressed-domain knowledge. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

[17] Rohit Girdhar, Georgia Gkioxari, Lorenzo Torresani, Manohar Paluri,
and Du Tran. Detect-and-track: Efficient pose estimation in videos. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 350–359, 2018.

[18] Hengkai Guo, Tang Tang, Guozhong Luo, Riwei Chen, Yongchen Lu,
and Linfu Wen. Multi-domain pose network for multi-person pose
estimation and tracking. In Proceedings of the European Conference
on Computer Vision (ECCV) Workshops, pages 0–0, 2018.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 2961–2969, 2017.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[21] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey
Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolution of optical flow
estimation with deep networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2462–2470, 2017.

[22] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo An-
driluka, and Bernt Schiele. Deepercut: A deeper, stronger, and faster

multi-person pose estimation model. In European Conference on
Computer Vision, pages 34–50. Springer, 2016.

[23] Sam Johnson and Mark Everingham. Clustered pose and nonlinear
appearance models for human pose estimation. In bmvc, volume 2,
page 5. Citeseer, 2010.

[24] Aouaidjia Kamel, Bin Sheng, Ping Li, Jinman Kim, and David Dagan
Feng. Hybrid refinement-correction heatmaps for human pose estima-
tion. IEEE Transactions on Multimedia, 23:1330–1342, 2020.

[25] Seung-Taek Kim and Hyo Jong Lee. Lightweight stacked hourglass
network for human pose estimation. Applied Sciences, 10(18):6497,
2020.

[26] Alexander Krull, Eric Brachmann, Frank Michel, Michael Ying Yang,
Stefan Gumhold, and Carsten Rother. Learning analysis-by-synthesis
for 6d pose estimation in rgb-d images. In Proceedings of the IEEE
international conference on computer vision, pages 954–962, 2015.

[27] Didier Le Gall. Mpeg: A video compression standard for multimedia
applications. Communications of the ACM, 34(4):46–58, 1991.

[28] Seong-Whan Lee, Young-Min Kim, and Sung Woo Choi. Fast scene
change detection using direct feature extraction from mpeg compressed
videos. IEEE Transactions on Multimedia, 2(4):240–254, 2000.

[29] Ang Li, Yiwei Lu, and Yang Wang. Semantic segmentation in
compressed videos. In 2019 IEEE 21st International Workshop on
Multimedia Signal Processing (MMSP), pages 1–5. IEEE, 2019.

[30] Miaopeng Li, Zimeng Zhou, and Xinguo Liu. Multi-person pose
estimation using bounding box constraint and lstm. IEEE Transactions
on Multimedia, 21(10):2653–2663, 2019.

[31] Debargha Mukherjee, Jingning Han, Jim Bankoski, Ronald Bultje,
Adrian Grange, John Koleszar, Paul Wilkins, and Yaowu Xu. A technical
overview of vp9—the latest open-source video codec. SMPTE Motion
Imaging Journal, 124(1):44–54, 2015.

[32] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass
networks for human pose estimation. In European conference on
computer vision, pages 483–499. Springer, 2016.

[33] Guanghan Ning, Zhi Zhang, and Zhiquan He. Knowledge-guided deep
fractal neural networks for human pose estimation. IEEE Transactions
on Multimedia, 20(5):1246–1259, 2017.

[34] Wanli Ouyang, Xiao Chu, and Xiaogang Wang. Multi-source deep
learning for human pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2329–
2336, 2014.

[35] George Papandreou, Tyler Zhu, Nori Kanazawa, Alexander Toshev,
Jonathan Tompson, Chris Bregler, and Kevin Murphy. Towards accurate
multi-person pose estimation in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4903–
4911, 2017.

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[37] Soo-Chang Pei and Yu-Zuong Chou. Effective wipe detection in
mpeg compressed video using macro block type information. IEEE
Transactions on Multimedia, 4(3):309–319, 2002.

[38] Tomas Pfister, James Charles, and Andrew Zisserman. Flowing convnets
for human pose estimation in videos. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1913–1921, 2015.

[39] Leonid Pishchulin, Mykhaylo Andriluka, Peter Gehler, and Bernt
Schiele. Strong appearance and expressive spatial models for human
pose estimation. In Proceedings of the IEEE international conference
on Computer Vision, pages 3487–3494, 2013.

[40] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres,
Mykhaylo Andriluka, Peter V Gehler, and Bernt Schiele. Deepcut:
Joint subset partition and labeling for multi person pose estimation. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4929–4937, 2016.

[41] Umer Rafi, Bastian Leibe, Juergen Gall, and Ilya Kostrikov. An efficient
convolutional network for human pose estimation. In BMVC, volume 1,
page 2, 2016.

[42] Max Schwarz, Hannes Schulz, and Sven Behnke. Rgb-d object recog-
nition and pose estimation based on pre-trained convolutional neural
network features. In 2015 IEEE international conference on robotics
and automation (ICRA), pages 1329–1335. IEEE, 2015.

[43] Jie Song, Limin Wang, Luc Van Gool, and Otmar Hilliges. Thin-slicing
network: A deep structured model for pose estimation in videos. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4220–4229, 2017.

[44] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (hevc) standard. IEEE

Authorized licensed use limited to: Concordia University Library. Downloaded on January 27,2023 at 16:13:51 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3141888, IEEE
Transactions on Multimedia

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Transactions on circuits and systems for video technology, 22(12):1649–
1668, 2012.

[45] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net:
Cnns for optical flow using pyramid, warping, and cost volume. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8934–8943, 2018.

[46] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution
representation learning for human pose estimation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
5693–5703, 2019.

[47] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler.
Joint training of a convolutional network and a graphical model for
human pose estimation. In Advances in neural information processing
systems, pages 1799–1807, 2014.

[48] Alexander Toshev and Christian Szegedy. Deeppose: Human pose
estimation via deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1653–
1660, 2014.

[49] Zhicheng Wang, Wenbo Li, Binyi Yin, Qixiang Peng, Tianzi Xiao,
Yuming Du, Zeming Li, Xiangyu Zhang, Gang Yu, and Jian Sun.
Mscoco keypoints challenge 2018. In Joint Recognition Challenge
Workshop at ECCV 2018, volume 5, 2018.

[50] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh.
Convolutional pose machines. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 4724–4732, 2016.

[51] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra.
Overview of the h. 264/avc video coding standard. IEEE Transactions
on circuits and systems for video technology, 13(7):560–576, 2003.

[52] Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Manmatha, Alexander J
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