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Motivations

• Recent advances in vehicular networking, communication and computing technologies have
facilitated the practical deployment of autonomous vehicles
• The increasing number of vehicles requires innovative solutions to deal with road traffic

issues

• Private mobility within urban road networks is almost always unsustainable
• Optimizing routing decisions has a positively impact on traffic congestion phenomena

• Future smart cities should refer to autonomous mobility systems that may offer a new way to
provide equivalent service capabilities at possibly low congestion levels
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Aims

Challenging issues -
• Capability to efficiently take or modify routing decisions during the on-line operations

• Definition of control architectures in charge to couple nominal paths (sequences of routing
decisions) with the real dynamics of autonomous vehicles

Objective -
Develop a distributed framework to enjoy

• scalability

• flexibility

by jointly exploiting
1 reinforcement learning ideas
2 model predictive control philosophy
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Reinforcement learning overview

Historical flow -
• Automation of repeated physical solutions

1750-1940 Industrial revolution and Machine Age

• Automation of repeated mental solutions
1950- Digital revolution and information age

• Allow machines to find solutions themselves
1960 - Artificial Intelligence

• It only needs to specify a problem and/or goal
1980 - This requires learning autonomously how to make decisions

What is reinforcement learning?
• People and animals learn by interacting with the environment

• Differ from other classes of learning algorithms
• Interactions are often sequential - future interactions can depend on earlier ones

• Goal-directed

• Learn without resorting to optimal behaviors

• Optimize some reward signal
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Benchmark examples

Cart-Pole problem -
• Objective: balance a pole on top of a movable cart

• Measurements: angle, angular speed, position, horizontal
velocity

• Action: horizontal force applied on the cart

• Reward: good if the pole is upright

Walking robot -
• Objective: make the robot move forward

• Measurements: angle and position of the joints

• Action: torques applied on joints

• Reward: good if upright and forward movement
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Intelligent agents (1/3)

Definition -

An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators
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Intelligent agents (2/3)

Rational agent -
For each possible measurement sequence, a rational agent should select an action that is
expected to maximize a performance criterion based on its built-in knowledge about the
environment

Utility function -
A performance criterion is an objective index for evaluating success or failure of an agent’s
behavior

Remarks -
• rational 6= omniscient: measurements may not supply all relevant information

• rational 6= clairvoyant: action outcomes may not be as expected

• rational 6= successful

Rational⇒ exploration, learning and autonomy
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Intelligent agents (3/3)

Learning -
An agent is learning if it improves its performance after making observations about the world
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What is Reinforcement Learning?

Idea -
Capability to learn from experience to make good decisions under uncertainty

Ingredients -
• State space S states s ∈ S (discrete or continuous)

• Action space A actions a ∈ A (discrete or continuous)

• Reward function r : S ×A× S → IR
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Reinforcement Learning modeling

Environment customization -
1 Observable
2 Stochastic process
3 Markovian transition model:

Pr(s(t+ 1)|s(t), a(t), s(t− 1), a(t− 1), . . . , s(0), a(0)) = Pr(s(t+ 1)|s(t), a(t))

Markov decision process -
A Markov decision process is a tupleM = {S, s(0),A, δ} where

• s(0) is the initial state;

• δ : S ×A× S → [0, 1] is a probabilistic transition function.
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Reinforcement Learning functions

Return G -
Starting from the current state s(t), it is the weighted accumulated future rewards

Value function V -
Starting from the current state s(t), it is the total amount of reward an agent can expect to
accumulate over the future (expected G)

Policy π -

π : S → A

It is the core of the framework: it alone is sufficient to determine the agent behavior
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Anatomy of the reinforcement learning algorithm
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Reinforcement learning algorithms (1/2)

Types of algorithms -
• Policy gradients: directly differentiate the expected return

• Value based: estimate the value function of the optimal policy

• Actor critic: estimate value function of the current policy

• Model based: estimate the transition model

Episode -
Let s(tstart) and s(tend) be two given environment states. An episode ep is defined as:

ep := [tstart tend]

Reset function -
Re-initialize the environment for successive episodes
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Reinforcement learning algorithms (2/2)

Value-based Policy-based

Model-based
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Q-learning

Definition -
• It is a value based reinforcement learning algorithm for agents in Markovian domains

• It is an incremental method for dynamic programming with limited computational demands

• It successively improves the evaluation of the quality of particular actions at specific states

• It finds an optimal policy by maximizing the expected value of the total reward over the future

State-action value function

Q-function : Q(s, a) = E

[ ∞∑
t=0

γtr(t+ 1)

]

• E[·] : the expected value operator

• γ ∈ (0, 1) : the discount factor
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Q-learning policy

Greedy action -
Maximize the Q-function:

a∗ := arg max
a∈Ap(s)

Q(s, a)

where Ap(s) ⊆ A is the set of possible actions on s ∈ S

ε−greedy policy -

a(t) =

{
rand(Ap(s)), probability ε(t)

a∗, otherwise

where ε(t) ∈ (0, 1) is a monotonically decreasing function of time
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Q-learning loop
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Deep Q-Learning (DQL)

Definition -
Deep Q-learning belongs to the class of Q-learning algorithms and makes use of a deep neural
network to approximate the state action value function

Deep Q-function -
A deep neural network in charge to compute the optimal value of Q(s, a), namely Q∗(s, a), is a
Deep Q-network Q(s, a; θ) with θ the neural network weights

Aim-

θ∗ = argmin
θ
|Q∗(s, a)−Q(s, a; θ)| ∀(s, a) ∈ S ×Ap(s)

Drawback -
The optimal value Q∗(s, a) is not available
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Fully connected feed-forward Deep Q-Network
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Activation functions
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Neural network training

Definition -
It is the process of teaching a neural network to perform a task

Procedure -
1 For each tupla {s(t), a(t), r(t+ 1), s(t+ 1)} compute the expected reward:

r̂(t+ 1; θ) = Q(s(t), a(t); θ)− γ max
a∈Ap(s(t+1))

Q(s(t+ 1), a; θ)

2 Evaluate the loss function:

L(t+ 1; θ) := (r(t+ 1)− r̂(t+ 1; θ))2

3 Update the weights vector θ :

θ ← θ − α∇θ L

with α ∈ (0, 1) the learning rate
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Multi-agent RL model

Multi-agent system -
A multi-agent system is a group of interacting rational agents sharing a common environment

Environment

AG1 AG2

AG3

AG4

AG

.  .  .

h

Stochastic game -
It is the generalization of the Markov decision process to the multi-agent scenario

< V,S,A, {r1, . . . , rh} >, V = {AG1, . . . , AGh}
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Reward functions

Global reward -

Φ : S × S → IR

It is computed by the environment and shared in broadcast with all the agents AGi, i = 1, . . . , h

Local reward -
It exploits the information coming from environment and neighbors

ri , Φ + φi

• φi : Oi ×Ai ×Oi → IR a heuristic function accounting for the task of the agent AGi
• Oi the observation space
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Multi-agent Deep Q-learning Algorithm

Ingredients -
• deep Q-networks: Qi(s, a; θi), i = 1, . . . , h

• greedy actions: a∗i (t) := arg max
a∈Ai

Qi(o(t), a; θi), with o(t) ∈ Oi

• ε-greedy policy:

ai(t) =

{
rand(Api (s)), probability ε(t)

a∗i (t), otherwise

• Loss function: L(t+ 1; θi) = (ri(t+ 1)− r̂i(t+ 1; θi))
2
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