Constrained Control of Multi-Vehicle Systems for Smart Cities and Industry 4.0: from Model Predictive Control to Reinforcement Learning Part 3 - Reinforcement Learning Review

> IEEE Intelligent Vehicles Symposium Anchorage, Alaska, USA - June 4-7 2023

Dr. Giuseppe Franzè, June 04 2023

Outline

- Aims and motivations
- 2 Reinforcement learning overview
- Intelligent agents
- Reinforcement Learning
- Q-learning
- Deep Q-Learning
- Multi-agent Deep Q-learning

References

Motivations

- Recent advances in vehicular networking, communication and computing technologies have facilitated the practical deployment of autonomous vehicles
- The increasing number of vehicles requires innovative solutions to deal with road traffic issues
- Private mobility within urban road networks is almost always unsustainable
- Optimizing routing decisions has a positively impact on traffic congestion phenomena
- Future **smart cities** should refer to autonomous mobility systems that may offer a new way to provide equivalent service capabilities at possibly low congestion levels

Challenging issues -

- · Capability to efficiently take or modify routing decisions during the on-line operations
- Definition of control architectures in charge to couple nominal paths (sequences of routing decisions) with the real dynamics of autonomous vehicles

Objective -

Develop a distributed framework to enjoy

- scalability
- flexibility

by jointly exploiting

- reinforcement learning ideas
- e model predictive control philosophy

Historical flow -

- Automation of repeated physical solutions 1750-1940 Industrial revolution and Machine Age
 - Automation of repeated mental solutions 1950- Digital revolution and information age
 - · Allow machines to find solutions themselves
 - 1960 Artificial Intelligence
 - · It only needs to specify a problem and/or goal
 - 1980 This requires learning autonomously how to make decisions

What is reinforcement learning?

- People and animals learn by interacting with the environment
- Differ from other classes of learning algorithms
 - · Interactions are often sequential future interactions can depend on earlier ones
- Goal-directed
- Learn without resorting to optimal behaviors
- Optimize some reward signal

Cart-Pole problem -

- · Objective: balance a pole on top of a movable cart
- Measurements: angle, angular speed, position, horizontal velocity
- Action: horizontal force applied on the cart
- Reward: good if the pole is upright

Walking robot -

- Objective: make the robot move forward
- Measurements: angle and position of the joints
- Action: torques applied on joints
- Reward: good if upright and forward movement

Definition -

An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators

Rational agent -

For each possible measurement sequence, a rational agent should select an action that is expected to maximize a performance criterion based on its built-in knowledge about the environment

Utility function -

A performance criterion is an objective index for evaluating success or failure of an agent's behavior

Remarks -

- rational \neq omniscient: measurements may not supply all relevant information
- rational ≠ clairvoyant: action outcomes may not be as expected
- rational ≠ successful

Rational \Rightarrow exploration, learning and autonomy

Learning -

An agent is learning if it improves its performance after making observations about the world

What is Reinforcement Learning?

Idea -

Capability to learn from experience to make good decisions under uncertainty

Ingredients -

- State space ${\mathcal S}$
- Action space A
- Reward function

states $s \in S$ (discrete or continuous)

actions $a \in \mathcal{A}$ (discrete or continuous)

 $r: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$

Reinforcement Learning modeling

Environment customization -

- Observable
- O Stochastic process
- O Markovian transition model:

 $Pr(s(t+1)|s(t), a(t), s(t-1), a(t-1), \dots, s(0), a(0)) = Pr(s(t+1)|s(t), a(t))$

Markov decision process -

A Markov decision process is a tuple $\mathcal{M} = \{\mathcal{S}, s(0), \mathcal{A}, \delta\}$ where

- s(0) is the initial state;
- $\delta: S \times A \times S \rightarrow [0,1]$ is a probabilistic transition function.

Return G -

Starting from the current state s(t), it is the weighted accumulated future rewards

Value function V -

Starting from the current state s(t), it is the total amount of reward an agent can expect to accumulate over the future (expected G)

Policy π -

$\pi: \mathcal{S} \to \mathcal{A}$

It is the core of the framework: it alone is sufficient to determine the agent behavior

Anatomy of the reinforcement learning algorithm

Reinforcement learning algorithms (1/2)

Types of algorithms -

- · Policy gradients: directly differentiate the expected return
- Value based: estimate the value function of the optimal policy
- Actor critic: estimate value function of the current policy
- · Model based: estimate the transition model

Episode -

Let $s(t_{start})$ and $s(t_{end})$ be two given environment states. An episode ep is defined as:

 $ep := [t_{start} \ t_{end}]$

Reset function -

Re-initialize the environment for successive episodes

Reinforcement learning algorithms (2/2)

Q-learning

Definition -

- · It is a value based reinforcement learning algorithm for agents in Markovian domains
- It is an incremental method for dynamic programming with limited computational demands
- It successively improves the evaluation of the quality of particular actions at specific states
- It finds an optimal policy by maximizing the expected value of the total reward over the future

State-action value function

Q-function :
$$Q(s,a) = E\left[\sum_{t=0}^{\infty} \gamma^t r(t+1)\right]$$

- $E[\cdot]$: the expected value operator
- $\gamma \in (0,1)$: the discount factor

Greedy action -

Maximize the Q-function:

$$a^* := \arg \max_{a \in \mathcal{A}_p(s)} Q(s, a)$$

where $\mathcal{A}_p(s)\subseteq \mathcal{A}$ is the set of possible actions on $s\in \mathcal{S}$

ϵ -greedy policy -

$$a(t) = \begin{cases} \operatorname{rand}(\mathcal{A}_p(s)), & \operatorname{probability} \epsilon(t) \\ a^*, & \operatorname{otherwise} \end{cases}$$

where $\epsilon(t)\in(0,1)$ is a monotonically decreasing function of time

Definition -

Deep Q-learning belongs to the class of Q-learning algorithms and makes use of a deep neural network to approximate the state action value function

Deep Q-function -

A deep neural network in charge to compute the optimal value of Q(s, a), namely $Q^*(s, a)$, is a Deep Q-network $Q(s, a; \theta)$ with θ the neural network weights

Aim-

$$\theta^* = \arg\min_{a} |Q^*(s, a) - Q(s, a; \theta)| \quad \forall (s, a) \in \mathcal{S} \times \mathcal{A}_p(s)$$

Drawback -

The optimal value $Q^*(s, a)$ is not available

Fully connected feed-forward Deep Q-Network

Neuron

Definition -

It is the process of teaching a neural network to perform a task

Procedure -

• For each tupla $\{s(t), a(t), r(t+1), s(t+1)\}$ compute the expected reward:

$$\hat{r}(t+1;\theta) = Q(s(t), a(t);\theta) - \gamma \max_{a \in \mathcal{A}_p(s(t+1))} Q(s(t+1), a;\theta)$$

② Evaluate the loss function:

$$\mathcal{L}(t+1;\theta) := (r(t+1) - \hat{r}(t+1;\theta))^2$$

• Update the weights vector θ :

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}$$

with $\alpha \in (0,1)$ the learning rate

Multi-agent RL model

Multi-agent system -

A multi-agent system is a group of interacting rational agents sharing a common environment

Stochastic game -

It is the generalization of the Markov decision process to the multi-agent scenario

$$\langle V, \mathcal{S}, \mathcal{A}, \{r_1, \dots, r_h\} \rangle, V = \{AG_1, \dots, AG_h\}$$

Global reward -

 $\Phi:\mathcal{S}\times\mathcal{S}\rightarrow {\rm I\!R}$

It is computed by the environment and shared in broadcast with all the agents AG_i , i = 1, ..., h

Local reward -

It exploits the information coming from environment and neighbors

$$r_i \triangleq \Phi + \phi_i$$

• $\phi_i : \mathcal{O}_i \times \mathcal{A}_i \times \mathcal{O}_i \to \mathbb{R}$ a heuristic function accounting for the task of the agent AG_i

O_i the observation space

Ingredients -

• deep Q-networks: $Q_i(s, a; \theta_i), i = 1, \dots, h$

• greedy actions:
$$a_i^*(t) := \arg \max_{a \in \mathcal{A}_i} \ Q_i(o(t), a; \theta_i)$$
, with $o(t) \in \mathcal{O}_i$

ϵ-greedy policy:

$$a_i(t) = \left\{ \begin{array}{cc} \mathrm{rand}(\mathcal{A}_{p_i}(s)), & \mathrm{probability} \ \epsilon(t) \\ a_i^*(t), & \mathrm{otherwise} \end{array} \right.$$

• Loss function: $\mathcal{L}(t+1;\theta_i) = (r_i(t+1) - \hat{r}_i(t+1;\theta_i))^2$

References

Intelligent agents-

- S. Russell and P. Norvig, "Artificial intelligence a modern approach," Pearson Education, Inc., 2021.
- M. Wooldridge, "An Introduction to Multi-Agent Systems," John Wiley and Sons, 2002.

Reinforcement learning-

- R. Sutton and A. Barto, "Reinforcement learning: An introduction," MIT press, 2018.
- K. Leslie Pack, M. Littman and A. Moore, "Reinforcement learning: A survey," Journal of artificial intelligence research, Pp. 237-285, 1996.

Q-learning-

- J. Fan et al., "A theoretical analysis of deep Q-learning," Learning for Dynamics and Control, 2020.
- T. Hester *et al.*, "Deep q-learning from demonstrations," *Proceedings of the AAAI Conference on Artificial Intelligence*, Vol. 32, No. 1, 2018.

Neural networks-

- A. Martin, P. Bartlett and P. Bartlett, "Neural network learning: Theoretical foundations," Cambridge university press, 1999.
- K. Murphy, "Probabilistic machine learning: an introduction," MIT press, 2022.

Multi-agent deep Q-learning-

- B. Lucian, R. Babuska, and B. De Schutter, "Multi-agent reinforcement learning: An overview," Innovations in multi-agent systems and applications, Pp. 183-221, 2010.
- R. Wanget al., "Multi-agent reinforcement learning for edge information sharing in vehicular networks," Digital Communications and Networks, Vol. 8, No. 3, Pp. 267-277, 2022.

THANKS FOR THE ATTENTION!!