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Aim

Autonomous vehicles in urban road networks -

Develop an efficient path planning strategy for constrained autonomous vehicles moving in the
cluttered environments of urban road networks under time-varying operating scenarios

Multi-vehicle configuration -

The autonomous vehicles are topologically organized as a platoon

Intelligent Intelligent Intelligent Intelligent
Agent with Agent with Agent with Agent with
distance distance

Vv Communication V2V Communication Vv Communication

Key aspects -
« the computation of routing decisions for mitigating traffic congestion phenomena
e a constrained control strategy in charge of adequately exploiting the routing decisions
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Problem statement (1/3)

Modeling -

e Topological configuration: Platoon of L autonomous vehicles
e Dynamics:

zi(t+1) = Azt (t) + Bi(t), i=1,...,L,

X . T .
o z'(t) = [p'®)7T, 23,17 : 2}, € R™~? accounts for the non-spatial components
o u' € R™:i : the control input

e Set-membership constraints:

zi(t) e X' = {2zt € R™ :a’ x’<m2}
ui(t) € U= {ut € R™i : ! u’<u2} vVt > 0,7, u € RT

PN CP I C>
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Problem statement (2/3)

Perception capabilities -
o vehicles are equipped with a perception module with a detection radius R > 0
o field of view: 360°
e minimum curvature radius: R > R{

Detected region: the ball B(p’(t), R) centered at the current vehicle planar position p?(t) J

A

direction of travel
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Problem statement (3/3)

Information exchange -
At each ¢, AV* sends to AV**1 its predicted future state trajectory %*(t)

Operating scenario -

o Link: a portion of a road comprised between two junctions
o Urban road network: M links and F junctions, where sequence of routing decisions have to
be taken into account during the travel

N,

Platoons in Urban Environments (PL-UE) -
Given a platoon of constrained autonomous vehicles and a target z y = [m}T, m?T, e ,a:J%T]T,
design a distributed state-feedback control policy

ul(t) = g(z'(t),2}),
wi(t) = g(a*(t),®-1(1),2%), i=2,...,L
satisfying state and input constraints and such that, starting from an admissible initial condition
z(0) = [xlT (0), 22" 0),..., 2" (0)]7, the team is driven towards z ; regardless any junction
occurrence

A
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Proposed solution: an overview
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Basic units -

e Path Planner : based on distributed reinforcement learning arguments, receives the
measurement z*(¢) and generates the action a*(¢) (link road selection) to be executed by the
vehicle AV* until the next junction

o Reference Generator : translates a’(t) into a set-point z*(t) for the underlying control logic
o Controller : computes an admissible command ¢ (¢) in a distributed receding horizon fashion
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Urban Road Network (

Characterizing aspects -

o the environment is a-priori known, i.e., the link-free region O’

ree

e adecision zone DZ7 is defined for each link:Hip > b7, p € R?,

Direction of travel

Direction of travel
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Urban Road Network (

e Geometric constraints:

(Xe)s 2 XN O

free

q ar g
={a' €eR™:2" 2*<2}}i=1,...,L,j=1,...,.M

e Set-point computation: ) ‘ )
z'(t) ;== arg  max llzf(t) — 2°)|?

ie(X.)t,
zte( )al(t)

Decision zone -

Exploited for routing decision purposes
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Modus operandi

Model Predictive Controllers -

@ the leader AV'! implements a receding horizon controller with N1 = 0

@ each follower AV* uses an MPC controller with N; =i — 1,5 =2,...,L

Time-varying leader-follower topology -

The current platoon can be split in two or more WD RETORS I EI) AL G| (R EEs) 157

P . ¢ SP reconnecting the leader of LF! to the leaf node
leader-follower configurations 2

of LF

N=1 ... NL— L-1 E Ni=t .. NL, =L
t+1 ‘ ". Ni=0 o N =L2-1

N2=1 Ny, =L-1 4

Ni=0 NL: 1>-1 oc NLz L1 Npw=la ... NL =L-1

v
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Distributed Reinforcement learning scheme

Task -

The routing problem is recast as a path search on a connected graph by exploiting as a threshold
the decision zone

|

Vehicle density -

Given a road link j, the vehicle density is

i o Uj(t)
el

with u7 (t) € Z* the number of vehicles on the link j, 7 € Rt the average road width and I7 the
road length

Multi-agent RL model -

|

<V, 5, AP >

o V={AV! ... AV} :the set of vehicles

o 3 :={o'}" | :the set of RL states

e A : the admissible vehicle actions: e.g., “turn right”, “turn left”, “go straight on”;
e & : ¥ x AxX — IR:the global reward function
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DMPC units: single platoon (1/7)

x(t + k|t), u*(t + k|t) : k — th predicted state and predicted control

o xi(t) := {z*(t + k|t)}fj;’0, ul(t) == {ul(t+ klt)},f;’o : predicted state and predicted control
sequences

o XU (1) := {z (t + k|t)}ff;’0 : optimal state trajectory

o Xi(t) := {&*(t + k|t)}fj;’0 : assumed state trajectory

Information exchange -

The sequence %! is transmitted to AV*+1 which in turn hypothesizes that AV? will implement
during the update prediction time interval

[(E+1)+k, t+1)+Ek+ N
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DMPC units: single platoon (2/7)

Ingredients -

e Input sequence parametrization:

([t = ul(t + k|t), k=0,...,N; — 1
U=\ Kiait + k), k>N,

with K% € R™i X7

e Cost-to-go:
Ti@(tlt) ah,ui(®) = > [t (kI =zl 2, + i+ k10 I3, | + ot 4+ Nilt) — 212
k=t

with R, = RS’ >0, R, = Ri, >0, P =P >0
e Terminal constraint:

z(t + Nyt) € B2 ¢ R™

|

Positively invariance -

The pair (2%, K*) is such that u?(-) = K*xz*(-) a stabilizing state feedback law and =* a
positively invariant region for the state evolutions of the closed-loop system:

2 (t 4 Ni|t) € B = (A* + BPKH)HNetkgip 4 Ny|t) € E2,VEk > 0

v
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DMPC units: single platoon (3/7)

Time-varying terminal sets -

o the LF formation moves towards z s
o the vehicle must take into account routing decisions z*(t) at each junction

v
Prescriptions -

e Given the equilibrium z_,, the positively invariant region Z¢(¢) is such that

i € Bt —1)NEY(t)
o Terminal set-membership requirement:
2t + Ni|t) € Bt — 1) UEL(2)
o Leader admissible set constraint:
Proj, (E'(¢)) € B(p' (), R),Vt > 0

» Follower admissible sets: =%(t), i > 2, take advantage of transmitted =~ 1 (¢t — 1)
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DMPC units: single platoon (4/7)

Leader positively invariant set computation -

='¢2) = (1)
=L(t) := arg rg11n dist(m}, =) st
zl , eEl(t—1)NEi()
Proj, (E'(t)) C B(p*(t), R),Vt > 0
c & = (t1)
‘ Bl(t) := argmln dist(2*(t),E) s.t.
mtle_(t )ﬂEl()
Proj, (E'(t)) € B(p* (), R),¥

Dr. Giuseppe Franzé, June 04 2023 15/37



DMPC units: single platoon (5/7)

Follower positively invariant set computation -

E (t-2) =
Ei(t) := arg min dist(2H, 271t — 1)) st
Z_, €Zi(t—1)NEi(t)

g

= ) = (1)

=') st
‘(1)

s

Zi(t) := arg min dist(z
z_, eZi(t—1)n

i
o

E'(t2) ST

e

{ Ei(t) = argmin dist(' (1), =) st
Z_; €E(t-1)NE()

y
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DMPC units: single platoon (6/7)

Predecessor assumed state sequence -

Given
e the current state condition: z(t|t) € X'¢

o the received optimal state sequence of AV¢~1 at the previous time instant ¢ — 1 :
x(E=D" ¢ — 1)

The vehicle AV will implement

_ a0 (-1 kt—1),k=1,...,N;_1
XY = o .
(A171 + BzilK’Lil)tikaJ:(Zil) (t -1+ Ni_1|t = 1), k=N;j—1+1,...,N;

y

Formation constraints -

o Preserve the platoon configuration
e Maintain a safe distance from a vehicle and its predecessor
» Requirements in terms of desired relative distance and bearing between AV* and AV ¢!
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oo

min [||a:1(t + klt) = oI1% +llut 6+ klt)||i.%] subject to

1 =1
ESLE k=t

at(t+k+1|t) = Alzl (¢t + k|t) + Blul(t + k|t), VE —
ul(t+klt) = Klzt(t + k+ 1|t) e U, V& —

zl(t+ k|t) € XL, VE  —

zi_, €ENt-1)NE(E) —

Dynamics
Saturation
Geometric
Terminal set

Follower optimization problem - Pi(t) :

mingi ) J(2(t|t), 2%, u'(t)) subjectto

¥ (t+ Kk + 1|t) = APz (t + k[t) + Biu’(t + k|t)
ui(t+klt) €U, k=0,1,...,N; — 1

ot +klt) € X, k=0,1,...,N; — 1

x'(t + N;i|t) € Z2(¢)

al i S IpHE+klt) — Pt + k)| € 0S0ps B =0,1,...,N;

min —

— Dynamics
— Saturation
— Geometric
— Terminal set
— Formation

as, € RT and ot

max min

are guaranteed bounds depending on formation requirements
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Platoon splitting

N. |1 NL=|_-1":.1
b1 (e G
Ni=0 N2=1 N, =Li-1
|
=9
Ni=0 N, =L2-1

Modus operandi -

o At i, the routing decision sequence {a' (%), a?(f),...,a”(f)} is such that

i : a(f) # a* (D), k=14,...,L—1

» Two platoon configurations: LF! and LEF? :

e LF*! keeps the same control horizon lengths N; = ¢ — 1,i =1...,L;
o LF? modifies the control horizon length as N, = 0 Ny =i—Ly, i=Lo+1,...,L

o A re-numbering procedure is implemented: { AV } 2, and {AV2}

V.
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Platoon queuing

9?9
g

t Ny =Li-1
(0
N1=0 N NLz L2-1

. N|_2 -1 NpLw=L2 e NL =L-1

Modus operandi -

e LF'isaddedto LF? or viceversa at the leaf node of the first platoon
e horizon lengths are setas Nj, = Np,, +h, h=1,...,L2

Leaf node detection - Regrouping -

o AV'" makes available a data packet LF platoon is able to regroup with LF?
Count® = {Count.child(i), Count’.N;}, | when Count™” is detected by AV of LF!
the integer child(4) accounts for its follower:
child(i) = 0 implies no follower

e Count® can be acquired by AV if
i DM@ = P Dl2 < Afgn
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SUMO versus MATLAB co-design (1/2)

Simulation of Urban MObility ®(SUMO) -
o Open source highly portable, microscopic and continuous multi-modal traffic simulation
package
e Handle large urban road networks
» Traffic is described by means of departure times and routes with certain duration
o Particularly suitable to simulate different classes of vehicles: cars, trains,buses
e Simulation engine is based on an hybrid description : discrete-time and continuous-space.

o Enjoy collision avoidance capabilities, multi-lane roads under lane changing, junction-based
right-of-way rules, lane-to-lane connections

o Data expressed in XML formats

Ingredients -

| \

e The TraCl4Matlab@®toolbox allowing the communication between any MATLAB application
and the SUMO traffic simulator

e The TraCl application level protocol is based on the client-server paradigm

e The application developed in MATLAB plays the role of a client and it can access and modify
the simulation environment provided by SUMO that acts as a server
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SUMO versus MATLAB co-design (2/2)

Co-design procedure -
o Urban road network information are properly encoded into MATLAB objects
o A MATLAB graph is obtained by exploiting SUMO XML files: junctions (nodes), roads (edges)
o A setof APIs get, modify or add information about vehicles within the simulation environment
o Neural network weights optimization by the MATLAB Reinforcement Learning toolbox® and
the MATLAB Deep learning toolbox®

Porta SiFelice

~>—ViaSabetino |

\ P})rta
T =5 = Sant'lsaia
ViaAndrea Costa W

?
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Simulations (1/12)

Simulation setup -

e Matlab R2022a environment by using the SUMO 1.11.0 toolbox

o Lenovo IdeaPad L340-15RH laptop equipped with an Intel Core i9 processor under a 64—bit
operating system

<

Vehicle platoon and constraints -

e Platoon: L = 11 vehicles

o Point mobile robot dynamics:
ozt = [p;, p;, vi, vi]T ¢ (pL, p}) the vehicle planar coordinates and (v, v? ) velocity components
o u; = [ag, a;}T € R? the acceleration vector

T2
a=lo T le=| 20
2 2 TSIZ

o Ts = 1[s] the sampling time
o Input constraints )
" (®))1* < 5[m/s?], vt >0
» Formation constraints
Appin S P (E+K[E) =" T (¢ + RO < afans Ain = 3[m], @

max’ “min

=10 [m]

)
max
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Simulations (2/12)

Urban road network -
The district around the “Andrea Costa” road in Bologna (IT)

SUMO Road Network

-, :l
oy On'|_1| 00m

Traffic data -
e Peak hour (8:00 am - 9:00 am) generated during a football match on March 3rd 2010

o Daily flow one week before
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Simulations (3/1

Opearing scenario -

The reference initial position is located at the latitude 44°29'23.6"" N and longitude 11°18'30.2” E
coordinates. Within a local tangent plane East-North-Up reference frame, the AVs initial positions
have been set as reported in Table with v% = 0 and v, = 0, Vi. The aim consists in driving all the
vehicles towards the parking area located close to the target position in the south-east side.

Av?t AV? A3 Av? AVS AVS AVT AvS AvVY AV10 Ayt

70.0195 63.955 57.8905 51.826 45.7615 39.697 33.6325 27.54 21.503 15.44 9.374
386.4212 384.08 381.743 379.403 377.064 374.725 372.39 370.047 367.707 365.368 363.029

= Portaisifelice

> —ViaSabetino

Porta
Sant'lsaia

\ {
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Simulations (4/12)

Simulation knobs -

e Vision radius: R = 5 [m],

o Curvature radius: RS . = 2[m],
o Cost-to-go function weights: RY = I,,,, R, = I;n,, i=1,...,L

o Decision zone: 3.5 [m] before each junction

Neural network architecture -
The state input layer dimension is twice the number of edges of the considered URN: 2M = 358

state FC1

action FC1 FC2 _r

24 120

ezl
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Simulations (5/12)

Neural network training -
e SUMO data set
o MATLAB Reinforcement Learning Toolbox built-in routines

e 2000 traffic episodes: each one defined as a finite sequence of time instants starting from the
initial positions until the target « ¢ (parking area)

Episode Reward

Episoode Reward

Average Reward

Expected Reward

| |
0 500 1000 1500 2000
Episode Number
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Simulations (6/12)

Splitting mode (1/3) -
o traffic data in the time interval 8 : 00am — 8 : 30am
e initially the platoon configuration is kept constant

o att = 482 s], the greedy actions a’(482) # a'(482), i = 9, 10, 11, suggest to
AV* i =9,10,11, to turn on the right while the others continue on the straight line

e two platoons LF! = {AV1,... [ AV8} and LF? = {AV?, AV10 AV11} arise
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Routing actions behavior: the leader routing decision (green line) differs from AV? (red line)

leader trajectory
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Simulations (8/12)

Splitting mode (3/3) -

Saturation constraints fulfillment
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Simulations (9/12)

Queuing mode (1/3) -

o traffic data in the time interval 8 : 30am — 9 : 00am

e att ~ 123 [s] the vehicles AV?, i = 6,. .., 11, make different routing decisions with respect
to the leader AV'! and two new platoons arise

e att~ 350[s] LF? queues to LF!
e the platoon reaches the target at ¢t ~ 715 [s]

=2005] =132[s] =280}

,// 4 |

=345[s]
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Routing actions behavior: the leader routing decision (green line) differs from AV (red line)
leader trajectory 3-
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Simulations (11/12)

Queuing mode (3/3) -

Saturation constraints fulfillment

(oIl

3
2 Xnin

0 20 40 60 80

t[s]

150 200 250 300

150 200 250 300

&2 £ Xpin
150 200 250 300
t[s]

Dr. Giuseppe Franze, June 04 2023

33/37



Simulations (12/1

Comparisons -

» Contrast the proposed distributed Q-learning scheme with the Dijkstra algorithm

e Three operating scenarios:
@ splitting mode
@ queuing mode
© within the time window 8 : 00am — 8 : 30am, the initial platoon configuration is initialized by
imposing that all the vehicles have zero velocities, the leader is located at
(#1(0), 23(0)) = (874.54, 979.20)[m] and the target is = ; = [1611.76, 883.38, 0, 0] [m)]

Simulation | Route percentage || DRL-MPC Dijkstra

scenario 1 | 20% of route length 200 [s] 210 [s]
50% of route length 400 [s] 500 [s]
100% of route length 760 [s] 850 [s]
scenario 2 | 20% of route length 180 [s] 170 [s]
50% of route length 400 [s] 450 [s]
100% of route length 745 [s] 800 [s]
scenario 3 | 20% of route length 124 [s] 120 [s]
50% of route length 280 [s] 250 [s]
100% of route length 610 [s] 655 [s]
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Concluding remarks

Conclusions -

» The path planning problem for vehicle platoons subject to routing decisions and operating in
urban road networks has been addressed

» A new control architecture based on the joint exploitation of distributed reinforcement learning
and model predictive control properties has been developed by fully taking advantage of the
routing decisions

o Time-varying topologies of the multi-vehicle system have been considered according to the
minimization of traffic congestion criteria

Future directions -
o Extend the proposed approach to take care of obstacle avoidance requirements

o Customize the strategy to comply with roadways including more than one lane so that grid
vehicle topologies can be used

o Improve the performance of the distributed reinforcement learning algorithm by accelerating
the distributed learning phase to get faster vehicle planning decision responses
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