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Abstract— In the last decades, several cyber-threats
against Cyber-Physical Systems (CPSs) have been re-
ported. Of particular interest are the classes of network
attacks capable of affecting the control systems’ perfor-
mance while remaining undetectable. In this paper, under
some conditions, we show the existence of a novel class of
finite-time undetectable attacks against constrained CPSs.
The proposed finite-time attack has the peculiar capability
of not producing anomalies after its termination. This is par-
ticularly dangerous because it enables a malicious entity to
repeatedly or intermittently affect the CPS without raising
alarms. Such an attack is here designed by resorting to
a set-theoretic approach that leverages robust reachability
arguments. Moreover, given the desired attack duration,
the set of initial states from which the attack is feasible
is characterized. A numerical simulation example involving
an industrial continuous-stirred tank reactor system is pre-
sented to support the theoretical results.

I. INTRODUCTION

The appellation Cyber-Physical System (CPS) is used to
denote engineering systems with a tight coupling between the
physical and cyber components. Examples of CPSs can be
found in different domains such as transportation systems,
water distribution systems, and smart grids [1]. CPSs have
the potential to improve traditional engineering systems in
terms of efficiency, reliability, and performance. Nevertheless,
improved capabilities come along with novel vulnerabilities to
cyber-attacks targeting the cyber-infrastructures and commu-
nication channels. In this regard, the control community has
been very active in studying the security, safety, and privacy
issues associated with CPSs, see, e.g. [2]–[6], and references
therein.

To design a secure and resilient CPS, it is particularly
important to characterize and study such systems’ vulnera-
bility to different classes of cyber-attacks. In [7], and [8], an
interesting three-dimensional attack classification is proposed
to define the attacker’s capabilities and stealthiness according
to the available resources. In [9], the impact of partial state
information on the detectability of deception attacks is studied.

Of particular relevance for this study are the classes of
False Data Injection (FDI) attacks capable of affecting the
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control system performance while remaining stealthy (unde-
tected). Well-known examples of undetectable attacks are zero-
dynamics [10], [11], replay [12] and covert attacks [13]. In the
classical definition, an attack is said stealthy if it is capable
of remaining undetectable (according to the used detection
strategy) during its actions. Starting from this definition,
different ad-hoc active detection schemes have been proposed
to reveal such attacks, see e.g. the watermarking solution in
[14], the moving target in [15], [16], the blended approach in
[6], the sensor coding in [17].

It is interesting to notice that in [18] it has been shown that
replay and covert attacks can be straightforwardly detected by
simple passive residual based detectors (e.g. a χ2 detector)
in the post-attack phase. From the defender perspective, the
latter means that using a standard detection strategy, the
system operator can a-posteriori understand that an anomaly
has occurred and he/she can take proper countermeasures
to avoid future occurrences. On the other hand, from the
attacker’s point of view, it implies that repetitive or intermittent
deception attacks such as replay and covert attacks cannot
remain undetectable.

An important question addressed in this paper is the exis-
tence of a class of finite-time attacks that are undetectable,
with respect to passive anomaly detectors [19], both when the
attack is ongoing and afterwards. Such a question is relevant in
CPS applications where the attacker is interested to repeatedly
or intermittently affect the CPS performance without ever
being detected. For example, in a modern water-treatment
facility [20], or a power system [21], a malicious entity might
be interested in stealing water/energy repeatedly (whenever
it is needed), for a finite amount of time, and without ever
triggering an anomaly.

A. Contribution
To the best of the author’s knowledge, the existence of

finite-time stealthy attacks capable of avoiding detection in
the post-attack phase has not been studied in the literature.
In the preliminary work [18], the existence of such attacks
has been investigated in an unconstrained setup. There, it has
been proved that the covert attacks proposed in [13] can be
appropriately modified to avoid detection in the post-attack
phase. In this manuscript, we face a similar design problem
but in a more challenging setup (for the attacker) where the
plant is subject to bounded but unknown disturbances and
state and input constraints. In particular, by resorting to a
set-theoretic control framework [22] and robust controllabil-
ity arguments for constrained systems, we show that, under



proper conditions, a finite-time stealthy covert attack exists.
Moreover, for a given attack duration and attack objective
(e.g. state configuration to reach under attack), we characterize
the subspace of states from which the proposed attack is
guaranteed to be successful.

This paper is organized as follows: in section II, first, the
considered CPS setup (plant, controller, anomaly detector,
cyber-attack assets) is presented, then constrained finite-time
covert attack design problem is formulated. In section III,
The proposed finite-time attack is elaborated, designed and
analyzed. Finally, a simulation example is illustrated in section
IV to testify the proposed design’s effectiveness.
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Fig. 1: Networked Control Architecture

II. CONSIDERED SETUP AND PROBLEM FORMULATION

In this section, the assumed networked control system setup
(Fig. 1) and the attack scenario are introduced.

A. Plant dynamics and constraints
Consider the following discrete-time linear system

x(k + 1) = Ax(k) +Bu′(k) +Bdd(k) (1)

where the index k ∈ ZZ+ = {0, 1, ...} denotes discrete-time
instants, x(k) ∈ IRn the vector of the states, u′(k) ∈ IRm

the control input vector received by the plant, d(k) ∈ IRd

a bounded unknown disturbance, and A,B and Bd are the
system matrices with appropriate dimensions. The unknown
disturbance d(k) is such that

d(k) ∈ D ⊂ IRd, 0d ∈ D (2)

with D a compact set. The actuators’ physical limitations
impose the following saturation constraint on u′(k)

u′(k) ∈ U ⊂ IRm, 0m ∈ U (3)

with U a compact set, while the state are desired to be
constrained into the set

x(k) ∈ X ⊂ IRn, 0n ∈ X (4)

where X is a compact set.
Assumption 1: We assume that the plant (1) is stabilizable.
Definition 1: A set Ξ ⊆ X is said to be a Robust Control

Invariant (RCI) for (1)-(2) [22] if there exists a control law
u(k) := f(x(k)) complying with (3)-(4) such that

∀x ∈ Ξ→ Ax+Bf(x) +Bdd ∈ Ξ, ∀d ∈ D (5)

Definition 2: Given two sets S1 ⊂ IRns and S2 ⊂ IRns ,
their Minkowski/Pontryagin set sum (⊕) and difference (	)
are [23]:

S1 ⊕ S2 := {s1 + s2|s1 ∈ S1, s2 ∈ S2}
S1 	 S2 := {s1 ∈ IRns |s1 + s2 ∈ S1,∀s2 ∈ S2}

B. Controller
The networked controller is a tracking state-feedback con-

troller designed to comply with the constraints (3)-(4) despite
the disturbance realization (2). By denoting with xc(k) ∈ IRnc

the state of the controller, its actions are generically described
as

u(k) = f(xc(k), x(k), r(k)) (6)

where r(k) is the desired reference signal and f(·, ·, ·) the
control logic. In what follows, we assume that the control
logic (6) is given and its Domain of Attraction (DoA) is X .

C. Anomaly detector
A dynamic passive anomaly detector, leveraging the re-

ceived state measurements {x′(k)} and computed control
inputs {u(k)}, is used to reveal anomalies/cyber-attacks, see
[19] for a survey paper. Without loss of generality, the anomaly
detection rule can be described as

anomaly(k) = Φ({x′(t)}kt=0 , {u(t)}k−1
t=0 ,D) (7)

where Φ(·, ·, ·) is the binary attack detection logic. Moreover,
anomaly(k) = 1 if an attack is detected, 0 otherwise.

D. Cyber-attack assets
The attacker is capable of corrupting the communication

channels between the plant and the controller. In particular,
the three-dimensional characterization of the attack is [8]:
• The attacker is aware of the plant model (1);
• The attacker can read the control signal u(k) and the state

measurement vector x(k).
• The attacker can produce a deception attack to change

the control signal (u(k) → u′(k) ∈ IRm) and state
measurements (x(k) → x′(k) ∈ IRn) received by the
plant and the networked controller, respectively.

Given the available resources, and a desired target state xd ∈
IRn, the attacker is able to compute (e.g., by resorting to the
method described in [24]) an admissible small RCI target set
Xd ⊂ IRn, centered in xd.

E. Problem Formulation
In this paper, the existence and design of finite-time covert

attacks, undetectable in the post-attack phase, are investigated.
The problem of interest can be formulated as follows:

Undetectable Finite-Time Covert Attack (UFTCA): Consider
the networked control system shown in Fig. 1, and the target
RCI region Xd ⊂ IRn centered in xd ∈ IRn . Design a finite-
time deception attack of duration T̄ ∈ ZZ+, i.e.

u′(k) = u(k) + ua(k), x′(k) = x(k) + xa(k)
k ≤ k ≤ k̄, k̄ − k = T̄

(8)



with ua(k) ∈ IRm and xa(k) ∈ IRn arbitrarily FDI vectors,
such that:
• (O1) The attack is capable of steering the state trajectory

within the target set Xd for at least one time instant, i.e.
x(k) ∈ Xd, ∀ k ∈ [kin, kout], where kin ≥ k, kout ≤ k̄,
and kout − kin ≥ 0.

• (O2) Regardless of the used dynamic detector (7), the
attack does not trigger any alarm during its actions (k ≤
k ≤ k̄) and afterward (k > k̄).

III. FINITE-TIME STEALTHY COVERT ATTACK

In this section, first the detectability in the post-attack phase
of the covert attack, introduced in [13], is discussed. Then,
the conditions under which the deception attack fulfills the
UFTCA objectives are presented and the proposed attack is
designed.

A. Basic Covert Attack
Under the presence of FDI attacks on the control signal (i.e.

ua(k) 6= 0), the system (1) evolves as:

x(k + 1) = Ax(k) +B(u(k) + ua(k)) +Bdd(k) (9)

For linearity, it is possible to write

x(k) = xu(k) + xu
a

(k) (10)

where

xu(k) = Akx(0)+

k−1∑
j=0

Aj (Bu(k−1−j) +Bdd(k−1− j))

(11)

xu
a

(k) =

k−1∑
j=0

AjBua(k−1− j) (12)

Notice that xu(k) denotes the state evolution of the system
due to the initial condition, control input, and disturbance
realization, while xu

a

(k) is the state evolution of the system
due to the presence of the input attack vector ua(k).

According to the covert attack introduced in [25], an
attacker can arbitrarily affect the state trajectory (9) while
remaining undetected by (7) if

u′(k) = ua(k) + u(k) ∈ U , ∀k s.t. k ≤ k ≤ k̄ − 1 (13)

xa(k) = −xu
a

(k), ∀k s.t. k + 1 ≤ k ≤ k̄ (14)

Remark 1: The above attack is, by construction, unde-
tectable for k ≤ k ≤ k̄ irrespective of Φ used in (7) [13].
Visually, by referring to Fig. 2a, regardless of ua(k) 6= 0, the
system state received by the controller is always equal to the
expected one, i.e. x′(k) = xu(k), ∀ k ≤ k ≤ k̄.
On the other hand, when the covert attack is terminated (i.e.,
k > k̄) we have that

x(k) = xu(k) +Ak−k̄xu
a

(k̄)
x′(k) = x(k), k > k̄

Therefore, if xu
a

(k̄) 6= 0n, then for some k > k̄, x′(k) 6=
xu(k) and such discrepancy can be leveraged by (7) to detect
an anomaly (see Fig. 2b). Finally, attack stealthiness in the
post-attack phase (i.e., ∀ k > k̄) is guaranteed irrespectively of
the detector logic and any disturbance realization if xu

a

(k̄) =
0n. �

(a) k ≤ k ≤ k̄ (b) k > k̄

Fig. 2: State mismatch during and after the attack.

B. UFTCA design
In this section, we design a finite-time covert attack ful-

filling the objectives (O1)-(O2) stated in the UFTCA problem
formulation.

First, the challenges of such a design are highlighted:
1) The attack must determine a control sequence
{ua(k)}k̄−1

k=k where ∃ k ∈ [k, k̄) such that the state
trajectory enters the desired RCI region Xd for at least
one time instant. Moreover, the control actions must
fulfill the input saturation constraint (3) and be robust
against any admissible disturbance realization (2) and
controller (6) actions.

2) The attacker, to avoid any possibility of post-attack
detection, must make sure that xu

a

(k̄) = 0n (see the
analysis in Remark 1). Such an objective must be robust
against disturbance realization (2) and controller (6)
actions.

3) Given a finite amount of time T̄ , the attacker must be
able to determine (before starting the attack), the set of
initial state conditions Xa ⊆ X , from which the attack
is guaranteed to succeed.

Given the constrained and uncertain nature of the above
problem, here we provide a solution, based on a robust
set-theoretic model predictive control (ST-MPC) paradigm
[22], [26], [27]. Please note that other MPC paradigms or
constrained control strategies can, in principle, be used instead
of ST-MPC. Such a choice is mainly motivated by the fact that
ST-MPC will allow to offline define the controller’s domain
of attraction (union of robust one-step controllable sets) and
the worst-case number of steps required to robustly reach the
attacker’s objectives.

By resorting to a divide et impera approach, the UFTCA
design problem is divided in two phases (see Fig. 3). In the
first phase, a covert attack is designed to ensure that ∀x(k) ∈
X , there exists a sequence of attack actions {ua(k)} such
that the state trajectory is driven within Xd. In the second
phase, an attack deletion strategy is designed to ensure that
xu

a

(k̄) = 0n.

Covert Attack Attack Deletion

Fig. 3: Finite-time attack: phases and actions.



1) Phase I - reaching Xd: In this phase, the attack control
input ua(k) is designed to replace u(k) and robustly steer the
plant’s trajectory into the desired RCI region Xd.

By resorting to the ST-MPC paradigm such a problem can
be solved in finite-time as follows:

Offline attack preparation

By considering Xd as the terminal RCI region (target set)
of the attacker, a family of robust one-step controllable sets
{T i

d }
Nd
i=0, Nd ≥ 0 is computed according to the following

recursive definition:

T 0
d := Xd

T i
d := {x∈ IRn :∃ud ∈ U s.t. Ax+Bud∈T̃ i−1

d }, i > 0
(15)

where T̃ i
d = T i

d 	 BdD, and ud ∈ U is the control input
desired by the attacker. Such a recursion is terminated when
the union of controllable sets covers the admissible state space
region X , i.e.

X ⊆
Nd⋃
i=0

T i
d (16)

Remark 2: Please note that efficient tools and toolboxes
exist to compute exact or approximated robust one-step con-
trollable sets (15) for linear systems, see e.g. [22], [23], [27]–
[30] and references therein. �

Attack actions (k ≤ k ≤ kout):

By taking advantage of the offline computations, the at-
tacker’s actions on the actuation channels reduce to the so-
lution of a simple Quadratic Programming (QP) optimization
problem forcing (at each step), the state trajectory to evolve
within the family of controllable sets {T i

d }
Nd
i=0, until the

terminal region T 0
d ≡ Xd is reached, i.e.

if x(k) ∈ T i
d compute ud(k) ∈ U s.t. x(k+1) ∈ T i−1

d (17)

As a consequence, the following FDI attack is performed to
replace u(k) with ud(k), i.e.,

ua(k) = ud(k)− u(k)→ u′(k) = ud(k) (18)

On the other hand, on the measurement channel, to avoid
detection, the covert FDI in (14) is used.
The attacker’s actions are summarized in the following algo-
rithm:

Algorithm 1: Phase I (covert attack) - attacker’s algorithm
k < k ≤ kout

Offline: Compute {T i
d }

Nd
i=0 as in (15)-(16)

Online: Compute ua(k), xa(k) as follows:
1: Find the smallest set index 0 ≤ i ≤ Nd containing x(k) :

i(k) := min
0≤i≤Nd

i : x(k) ∈ T i
d (19)

2: if i(k) == 0 then T next
d = T i(k)

d

3: else T next
d = T i(k)−1

d

4: end if

5: Compute ud(k) solving the QP problem

ud(k) = arg min
ud
‖Ax(k) +Bud − xd‖22 s.t. (20)

Ax(k) +Bud ∈ T̃ next
d , ud ∈ U (21)

6: Determine ua(k) and xa(k) as in (18) and (14)

Lemma 1: If the Phase I duration is greater or equal than
Nd, i.e. kout − k ≥ Nd, then Algorithm 1 ensures that
the attack complies with the objective (O1) regardless of
any admissible disturbance realization (2). Moreover, kin ≤
k +Nd, and x(k) ∈ Xd,∀ kin ≤ k ≤ kout.
Proof - By construction, the QP optimization problem (20)
is guaranteed to admit a solution ∀ k [27]. Moreover, if
x(k) ∈ T i(k)

d then Ax(k) + Bud ∈ T̃ i(k)−1
d and x(k +

1) ∈ T i(k)−1
d . As a consequence, regardless of any initial

condition x(k) ∈ X , the set-membership index i(k) has a
monotonically decreasing behaviour until i(k) = 0 is reached.
When i(k) = 0, then the attacker’s control inputs aim to keep
x(k) into the RCI set Xd. Therefore, Algorithm 1 ensures
that in the worst-case scenario x(k + Nd) ∈ T 0

d = Xd,
x(k) ∈ Xd, ∀kin ≤ k ≤ kout, where kin ≤ k +Nd. �

Remark 3: In the worst-case scenario, Nd time steps are
needed to fulfill the requirements of Phase I (see Lemma 1).
As a consequence, the duration of Phase I should be greater
or equal to Nd. �

2) Phase II - attack deletion (xu
a
(k̄) = 0n): In phase II, the

attacker, after achieving its primary objective (e.g., x(k) ∈
Xd), wants to remove any trace of its presence to avoid
detection in the post-attack phase. Specifically, as discussed
in Remark 1, no passive anomaly detector (7) can discover
anomalies in the post-attack phase if xu

a

= 0n,∀ k ≥ k̄.
Therefore, the attacker’s action ua(k) for kout < k ≤ k̄
must be devoted to ensure that the state evolution due to the
attacker actions (xu

a

) vanishes in a finite number of steps.
Different from Phase I, where the attacker’s actions aimed to
replace u(k) with ud(k) (see(18)), here the attacker wants to
control only xu

a

. As a consequence, while removing xu
a

the
attacker must make sure that the signal u′(k) = u(k) +ua(k)
is admissible, i.e. u′(k) ∈ U , regardless of the controller input
u(k) computed by (6).

Assumption 2: There exists a small convex compact set
∆ ⊂ IRn, 0n ∈ ∆, s.t. such that

u(k)⊕∆ ⊆ U , ∀ k (22)
Remark 4: Note that such an assumption assumes that the

control action u(k) computed by (6) are contained into a
proper inner set of U . Such an assumption is reasonable in
uncertain constrained setups where the controller actions are
typically mapped into a smaller input set to ensure constraint
satisfaction despite any disturbance realization (2) [31], [32].
Moreover, it is also fulfilled when the state trajectory is in
proximity of the equilibrium state [31]. �

In what follows, Assumption 2 is instrumental to ensure that
the attack deletion problem has a guaranteed solution in a finite
number of steps. Then, in Remark 5, such an assumption is
relaxed, and other conditions under which the attack deletion
problem can be accomplished are investigated.



Offline attack deletion preparation

Lemma 2: Consider the attacker’s desired region Xd, the
Phase I attacker’s algorithm, and kout ≥ k + Nd. Then,
regardless of any admissible disturbance (2) realization

xu
a

(kout) ∈ (Xd ⊕−X ) := X ua

(23)
Proof - According to (10), we have that

xu
a

(kout) = x(kout)− xu(kout) (24)

Moreover, by noticing that if kout ≥ k + Nd then x(kout) ∈
T 0
d ≡ Xd and that xu(kout) ∈ X , we have that (23) holds

true, concluding the proof. �
By considering xu

a

(k̄) = 0n as the target state and X ua

as the initial admissible set for xu
a

(kout), a family of robust
one-step controllable sets in the attacker’s state space xu

a

,
namely {T j

a }
Na
j=0, Na > 0, is built considering ua(k) ∈ ∆ as

the attacker’s worst-case input constraint set, i.e.,

T 0
a :=0n
T j
a :={xua∈ IRn :∃ua ∈ ∆ s.t. Axu

a

+Bua∈T j−1
a }, j > 0

(25)
Such a recursion is terminated when the admissible set of
initial states xu

a

(kout) is covered, i.e.,

X ua

⊆
Na⋃
i=0

T j
a (26)

Lemma 3: Under Assumption 2, if there exist a family of
robust one-step controllable sets {T j

a }
Na
j=0, built as in (25)

and satisfying (26), then there exists a sequence of control
inputs {ua(k)}k̄−1

k=kout+1 such that xu
a

(k̄) = 0n and u′(k) =
u(k) + ua(k) ∈ U , ∀ kout < k ≤ k̄ − 1

Proof - By construction, recursion (25) ensures that at each
time steps there exists ua(k) ∈ ∆ such that the one-step
evolution xu

a

(k+1) belongs to a controllable set whose index
is strictly lower than the current one, e.g. if xu

a

(k) ∈ T j
a , j >

0→ xu
a

(k+ 1) ∈ T j−1
a . Therefore, recursively, we have that

xu
a

(k̄) ∈ T 0
a = 0n. Moreover, according to Assumption 2,

we are guaranteed that u′(k) ∈ U , ∀ kout < k ≤ k̄ − 1. �

Attack deletion (kout < k ≤ k̄)

Similarly to what is done by the attacker in Phase I, in
Phase II, the attacker’s actions ua(k) and xa(k) are computed
according to the following algorithm:

Algorithm 2: Phase II (attack deletion) - attacker’s
algorithm kout < k ≤ k̄

Offline: Compute {T j
a }

Na

k=0 as in (25)-(26)
Online: Compute ua(k), xa(k) as follows:

1: Find the smallest set index 0 ≤ j ≤ Nd containing x(k) :

j(k) := min
0≤j≤Na

j : x(k) ∈ T j
a (27)

2: if j(k) == 0 then ua(k) = 0m
3: else
4: Compute ua(k) solving the QP problem

ua(k) = arg min
ua
‖Axu

a

(k) +Bua‖22 s.t. (28)

Axu
a

(k) +Bua ∈ T j(k)−1
a (29)

ua ∈ U − u(k) (30)

5: end if
6: Determine xa(k) as in (14)

Lemma 4: If the Phase II duration is greater than Na, i.e.
k̄−kout > Na, then Algorithm 2 ensures that the attack is not
detectable for k ≥ k̄, regardless of any admissible disturbance
(2) realization.
Proof - First, under Assumption 2, it is guaranteed that
∆ ⊆ (U − u(k)), ∀u(k). Moreover, by following the same
reasoning used in Lemma 1, if k̄−kout > Na then the mono-
tonically decreasing set-membership index j(k) is guaranteed
to be zero for k = k̄. Therefore, since T 0

a = 0n, we have
that ∀ k ≥ k̄, the contribution of the attack on the state of the
system will be zero and detection in the post-attack phase is
avoided. �

C. Proposed finite-time attack: feasibility, undetectability
and possible extension

In the following propositions, the properties of the finite-
time attack developed in subsection III-B are investigated.

Proposition 1: Consider the constrained plant model (1)-
(4) and the anomaly detector (7). If, for a given target RCI
set Xd, there exist 0 ≤ Nd <∞ such that (15) satisfies (16),
0 ≤ Na < ∞ such that (25) complies with (26), and ∆ 6= ∅
in (22). Then, Algorithm 1 and Algorithm 2 ensure that:
• the finite-time covert attack (Phase I + Phase II) fulfills

the objectives (O1)-(O2), i.e. ∃k : x(k) ∈ Xd and the
attack is undetectable by (7) for k > k.

• irrespective of any admissible initial plant condition
x(k) ∈ X and bounded disturbance realization d(k) ∈
D, the minimum attack duration T̄ to fulfill (O1)-(O2) is
T̄ = Nd +Na.

Proof - By collecting the results in Lemmas 1-4, Algo-
rithm 1 ensures undetectability for k ≤ k ≤ kout and that
x(k) ∈ Xd for kin ≤ k ≤ kout. Moreover, Algorithm 2 guar-
antees that the post-attack undetectability condition xu

a

(k̄) =
0n is reached for k ≥ kout + Na. Therefore, the minimum
finite-time attack duration that ensures fulfilling (O1)-(O2)
regardless of x(k) ∈ X is obtained for kout = kin and
T̄ = Nd +Na. �

Proposition 1 implies that if the attack duration, namely T̄ ,
is bigger or equal to Na + Nd, then the proposed finite-time
covert-attack is feasible starting from any x(k) ∈ X . In the
next proposition, this is formalized, and it is also shown that
for T̄ < Na + Nd, the attack might still be feasible starting
from a subset of X .

Proposition 2: Given a desired attack duration T̄ , the set
of initial state condition Xa ⊆ X , x(k) ∈ Xa such that finite-
time attack (Algorithm 1-2 ) can be successfully completed in
T̄ -steps can be offline determined and it is equal to:

Xa =

min(T̄−Na,Nd)⋃
i=0

T i
d

⋂X (31)

Proof - First, it is important to underline that regardless of the
initial state condition, the attack duration cannot be lower than
Na (number of steps required to cancel out the presence of the
attack in Phase II). Therefore, the number of steps available to



the attacker to steer x(k) into Xd is T̄−Na. As a consequence,
since X ⊆

⋃Nd

i=0 T i
d , if T̄ ≥ Nd+Na, then min(T̄−Na, Nd) =

Nd and the set of admissible initial condition is equal to entire
set of admissible states, i.e. Xa = X . On the other hand, if
T̄ < Na+Nd, then min(T̄−Na, Nd) = T̄−Na and Xa ⊂ X ,
see Fig. 4 for an illustration. �

Fig. 4: The state subspace Xa ⊆ X (blue region) from which
the attack can successfully perform the finite-time attack for
T̄ < Nd +Na.

Remark 5: The finite-time attack is guaranteed to exist
under Assumption 2, i.e. ∆ 6= ∅, ∀ kout < k ≤ k̄. However, it
is important to underline that this is only a sufficient condition
and that the attack might be feasible otherwise. For the sake
of completeness and to open the floor to further research
directions, three different situations can be analyzed:
• Consider the case where ∆ = ∅ and A is Nilpotent with

index N , i.e., AN = 0n×n. In this case, since xu
a

(k) =∑k−1
j=0 A

jBjua(k− 1− j), then, regardless of the initial
attack state xu

a

(kout), x
ua

(kout + N) = 0n if ua(k) =
0m,∀ k ≥ kout. Therefore, in Phase II, the attacker does
not need to take any actions on the actuation channel
to ensure that xu

a

(k) converges to zero in N-steps (see
(12)). In particular for kout < k ≤ k̄, k̄ − kout > N,
the attacker can use Algorithm 2 where in Step 4 the
optimization problem (28)-(30) is replaced by ua(k) =
0m.

• Consider the case where ∆ = ∅ and the matrix A is
Schur stable, i.e., its eigenvalues have modulus less than
1. In this case, in Step 4 of Algorithm 2, the attacker can
evaluate if the optimization problem (28)-(30) admits a
solution for the input constraint ua(k) ∈ U−u(k). If such
a problem does not admit a solution then the attacker can
apply ua(k) = 0m, and exploit the contracting nature of
A. In such a circumstances, the attack is guaranteed to
end when the optimization problem (28) admits a solution
for at-most Na time steps. However, in this case it is not
possible to offline determine the number of steps needed
to complete Phase II.

• Consider the case where ∆ = ∅ and the matrix A is
unstable. In this case, it is not possible to guarantee
that the attack can terminate in a finite-amount of time.
Furthermore, xu

a

is not guaranteed to remain inside⋃Na

j=0{T j
a } and the recursive feasibility of Algorithm 2

is not ensured. �
Remark 6: The proposed finite-time attack has been de-

signed under the assumption that the entire state vector can be

measured. Nevertheless, such an attack can be also designed to
deal with a plant model (1) characterized by an output equation
y(k) = Cx(k) + dy(k), where C ∈ IRp×n, y(k) ∈ IRp is
the sensor measurement vector, and dy(k) ∈ Dy ⊂ IRp is a
compact but unknown measurement disturbance set containing
the origin. In general, if C 6= I, the extension is possible if
(i) a state-estimator capable of dealing with bounded process
and measurement disturbances can be designed, (ii) the worst-
case state-estimation error can be characterized. The first is
needed to reconstruct x(k), while the second is important to
properly build a family of robust one-step controllable sets
(see e.g. (15)) that takes into account the bounded errors
introduced by the estimator. Please refer to, e.g., [22, Chapter
11] and reference therein, for exhaustive details on the design
of state estimators fulfilling the requirements (i)-(ii). On the
other hand, a straightforward extension can be provided if
C = I (i.e., the entire state vector can be measured with a
bounded error). Note that in this particular case, if y(k) is
measured, then x(k) is also known with some uncertainty,
i.e., x(k) ∈ y(k) ⊕ (−Dy). Therefore, such extra uncertainty
can be then taken into account in the construction of the
robust one-step controllable sets (15) by simply computing
T̃ i
d = T i

d 	 (BdD ⊕ (−ADy)), see [33]. �

IV. SIMULATION EXAMPLE

In this section, the industrial Continuous-Stirred Tank Re-
actor (CSTR) system used in [34] and shown in Fig. 5 has
been considered to show in simulation the effectiveness of the
proposed constrained finite-time attack.

Motor

Stirrer

S
e
n
s
o
r
s

M

Fig. 5: Continuous-Stirred Tank Reactor (CSTR) system

In this system, the chemical species A react with the
chemical species B at a specific temperature. The output of the
system is a mixture of these two chemicals (see Fig. 5). The
state vector of the CSTR system is x = [CA, Tr]T where CA
is the concentration of the chemical species A, and Tr is the
reaction temperature. On the other hand, u = [TC , CAi]

T is the
control vector where TC is the cooling controlled temperature
and CAi is the input concentration of the chemical species A.
The linearized discrete-time model of CSTR, for a sampling
time Ts = 1, is characterized by the following system matrices



[34]:

A=

[
0.9719 −0.0013
−0.0340 0.8628

]
, B=

[
−0.0839 0.0232
0.0761 0.4144

]
Bd =

[
1 0
0 1

]
(32)

The admissible disturbance set is

D = {d ∈ IR2 :

[
−0.01
−0.08

]
≤ d ≤

[
0.01
0.08

]
} (33)

and the states and inputs are subject to the following constraint
sets:

X = {[CA, Tr]T ∈ IR2 : −2 ≤ CA ≤ 2,−10 ≤ Tr ≤ 10}
U = {[TC , CAi]

T ∈ IR2 : −2 ≤ TC ≤ 2,−2 ≤ CAi ≤ 2}
(34)

The controller (6) is a stabilizing state-feedback controller
u(k) = −K(x − r(k)) + ueq(k), with ueq the equilibrium
input associated to the desired equilibrium state xeq = r(k),
and K (the controller gain) is:

K =

[
−10.903 0.560

1.921 1.978

]
(35)

Moreover, the used set ∆ is:

∆={[TC , CAi]
T ∈ IR2 : −0.5 ≤ TC ≤ 0.5,−0.5 ≤ CAi ≤ 0.5}

(36)
The finite-time attack is offline configured as follows. The

attacker wants to steer the state of the system in the proximity
of the equilibrium pair (xd, ud), where xd = [−2.5, 0]T and
ud = [0.74,−0.34]T Please note that the equilibrium state is
outside of the admissible safe region X . Moreover, the desired
RCI region Xd, centered in xd, is computed as in [24] (see the
blue region in Fig. 7). Then, the attacker builds the families
of robust one-step controllable sets {T i

d }
Nd
i=0 (see Fig. 7) and

{T j
a }

Na
j=0 (see Fig. 8) as in (15) and (25), respectively. In

particular, the terminal conditions (16) and (26) are reached
for Nd = 28 and Na = 47. As a consequence, the minimum
number of steps required to complete the attack for any
x(k) ∈ X is Nd + Na = 75 (see Proposition 1 and Fig. 8).
Please note that by exploiting the result in Proposition 2, given
a finite duration T̄ , the attacker is able to offline determine
the sets of states Xa ⊆ X from where the attack can be
successfully completed. In Fig. 8, Xa is shown for T̄ equals
to 60, 70 and 75.

In the carried out simulation, the attacker launches for two
times the finite-time covert attack described by Algorithm 1
and 2. The details of the attacks, i.e. k, kin, kout, k̄ are shown
in Table I. The plant initial condition is x(0) = 02, and r(k)
is shown in Fig. 6.

TABLE I: Finite-time covert attacks timing information

first attack second attack
k 31 s 200 s
kin 53 s 223 s
kout 59 s 234 s
k̄ 72 s 245 s

Fig. 6 shows the evolution over time for the two components
of r(k), x(k) and x′(k). It is possible to notice that during
the two attacks x(k) deviates significantly from r(k) causing a
constraint violation for 31 ≤ k ≤ 72 and 200 ≤ k ≤ 245. On
the other hand x′(k) (i.e. the signal received by the controller
and detector) is unaffected by the presence of the attack.
Moreover, the difference between x′(k), and x(k), i.e. the
attack’s state xu

a

(k) becomes exactly zero when each attack
is terminated at k = 72 and k = 245, respectively. As a
consequence, the designed attack can be repeatedly executed
avoiding detection during the attack and afterwards. To better
appreciate the modus operandi of the attack, Fig. 7 and Fig. 8
show the state trajectory of the plant (x(k)) and attacker
(xu

a

(k)). In Fig. 7, the state trajectory has been divided in
four different colors to better highlight the phases of the
two attacks. Regardless of the state x(k), it is possible to
notice that the attacker is capable of steering the trajectory
in the RCI region Xd. In particular, as shown in Table I,
for the first and second attack, the RCI region is reached in
12 and 23 steps, respectively. Moreover, as better shown in
Fig. 8, in Phase II, regardless of xu

a

(kout) ∈ Xd⊕ (−X ), the
attack termination condition xu

a

= 02 is reached in a finite
number of steps. Moreover, the time required for the attacker
to completely execute attack 1 and 2 (i.e. k̄ − k) is equal to
41s and 45s, respectively. Such a duration is lower of the
worst-case execution time of 75s that can be offline predicted
by the attacker using (31), see e.g. Xa in Fig. 7. Finally, in
Fig. 9, the control signal u(k), u′(k) and ua(k) are shown. It
is possible to appreciate that the attacker’s input vector ua(k)
always ensures that the control signal received by the plant,
i.e u′(k), complies with the input constraints.
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Fig. 6: CSTR Plants states evolution in the presence of the
finite-time covert attack
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V. CONCLUSION

In this paper, we have shown the existence of finite-time
attacks against constrained CPS. The proposed finite-time
covert attack has been designed by jointly combining robust
controllability arguments and a set-theoretic-based receding
horizon control paradigm. It has been formally proved that
the designed attack is stealthy regardless of any anomaly
detector deployed on the controller side of the networked CPS.
Furthermore, under proper feasibility conditions, it has been
proved that such an attack terminates in a finite number of
steps and that the worst-case execution time, as well as the
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Fig. 9: Control signals u(k), ua(k) and u′(k).

set of admissible initial states, can be offline determined.
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