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Abstract— In this paper, we propose a novel approach
for computing robust backward reachable sets from noisy
data for unknown constrained linear systems subject to
bounded disturbances. We develop an algorithm for obtain-
ing zonotopic inner approximations that can be used for
control purposes. It is shown that such sets, if built on an
extended space including states and inputs, can be used
to embed the system’s one-step evolution in the computed
extended region. Such a result is then exploited to build a
set-theoretic model predictive controller that, offline, builds
a recursive family of robust data-driven reachable sets and,
online, computes recursively admissible control actions
without explicitly resorting to either a model of the system
or the available data. The validity of the proposed data-
driven solution is verified by means of a numerical sim-
ulation and its performance is contrasted with the model-
based counterpart.

Index Terms— Data-driven backward reachable sets,
data-driven control, set-theoretic MPC.

I. INTRODUCTION

Forward reachable sets (FRS) and backward reachable sets
(BRS) are important set-theoretic concepts in control theory
because they allow us to analyze and predict admissible
behaviors of a system over time. Such concepts are particularly
important for constrained safety-critical systems where it is
imperative to ensure that given unsafe configurations (e.g.,
vehicle collisions) are not reached [1], [2].

In the literature, FRS and BRS have been largely employed
to design robust and model predictive control strategies, see,
e.g., [3]–[8] and references therein. FRS and BRS are typ-
ically represented by means of polytopes, ellipsoidal sets,
or zonotopes, and each representation has its own bene-
fits/drawbacks in terms of accuracy and computational com-
plexity [2], [4], [8]. Polytopes are closed under Minkowski
set sum/difference; consequently, for linear systems subject
to polyhedral constraints and disturbances, polytopes allow
the exact computation of FRSs and BRSs. However, if N -
step FRS and BRS are of interest, then such a representation
suffers from an increasing number of vertices that limits its use
for low-dimensional systems [9]. Consequently, approximated
FRS and BRS representations via ellipsoids or zonotopes are
often used. The use of ellipsoidal shapes is very compact,

This work was supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

Mehran Attar and Walter Lucia are with the Concordia Institute for
Information Systems Engineering (CIISE), Concordia University, Mon-
treal, QC, H3G 1M8, CANADA, mehran.attar@concordia.ca,
walter.lucia@concordia.ca

but the resulting reachable sets might be conservative [10];
on the other hand, zonotopes are interesting because they
are closed under Minkowski sums and linear mappings, and
they typically allow to achieve a good compromise between
accuracy and compactness of representation [11]–[13]. FRS
and BRS can be exactly or approximately computed by
resorting to a mathematical description of the plant’s dynamics
or resorting to a given collection of input-output data. Model-
based reachability relies on a priori accurate knowledge of the
system’s dynamics and allows accurate predictions; in contrast,
data-driven reachability is inferred from a set of observed
system’s trajectories, and it is used when the mathematical
model is difficult to obtain or when the system’s behavior is
affected by unknown or uncertain factors such as disturbances
[14].

In the literature, particular attention has been given to the
problem of computing outer approximations of data-driven
FRS for control purposes [6], [14], [15]. In [15], the authors in-
troduced two data-driven approaches for computing FRS with
probabilistic guarantees. In [14], starting from a collection of
noisy input-state trajectories for an unknown linear system,
a procedure to compute zonotopic outer approximations of
the FRS is developed. Such a solution leverages the system
descriptions proposed in [16] and [17], and it can be extended
to compute data-driven FRS for polynomial and Lipschitz non-
linear systems. In [6], the FRS outer approximation developed
in [14] is leveraged to design a data-driven model predictive
controller.

A. Contribution
To the best of the author’s knowledge, the problem of

computing robust BRS (also known as robust one-step control-
lable sets) from a collection of noisy input-state trajectories
has not yet been explored in the literature. In this regard,
this paper extends the data-driven approach developed in [14]
(computing over approximations of forward reachable sets)
to compute data-driven zonotopic inner approximations of
robust backward reachable sets for unknown linear systems
subject to bounded state and input constraints as well as
disturbances. We develop a novel augmented description of
BRS, which is then used to obtain a novel data-driven im-
plementation of the Set-Theoretic MPC (ST-MPC) controller
developed in [8]. A Matlab implementation of the here-
developed algorithm is available on the following GitHub
page: https://github.com/PreCyseGroup/Data-Driven-ST-MPC.
The proposed solution borrows from [14] only the charac-
terization, via a matrix zonotope, of all the linear models
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consistent with the available data. Starting from this common
point, the here proposed methodology to compute BRS and
a data-driven ST-MPC are different and provide solutions to
challenges not faced in [14]: (i) zonotopes not closed under
Minkowski difference and set intersection operations required
to compute BRS, and (ii) exponential number of constraints in
the data-driven implementation of ST-MPC. In addition, while
the data-driven MPC proposed in [6] is based on the online
computation of FRS for the required prediction horizon, the
proposed data-driven ST-MPC resorts to a family of offline
computed BRS. Consequently, the proposed controller is ca-
pable of moving offline most of the required computations,
leaving online an MPC problem with a prediction horizon
equal to one.

B. Notation

Given a matrix M ∈ IRn×m, we denote its column
vectors as m(j), 1 ≤ j ≤ m, and the right pseudo
inverse as M†. Given a matrix M ∈ IRn×n−1,
its n−dimensional cross-product is CPn(M) :=
[det(M [1]), · · · , (−1)j+1det(M [j]), · · · , (−1)n+1det(M [n])]T

[18], and M [j] ∈ IRn−1×n−1 is the sub-matrix of M where
the j− th row is removed. 0n ∈ IRn and In ∈ IRn×n indicate
a vector of zeros and the identity matrix, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

The following definitions are adapted from [4], [6], [19]:

Definition 1. Give two sets S1 ⊂ IRs and S2 ⊂ IRs, the
Minkowski/Pontryagin set sum (denoted as ⊕) and difference
(denoted as ⊖) between S1 and S2 are defined as:

S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}
S1 ⊖ S2 = {s1 ∈ IRs : s1 + s2 ∈ S1,∀s2 ∈ S2}

(1)

Definition 2. Given q halfspaces, a polytope P is defined as

P =
{
x ∈ IRn |Cx ≤ d,C ∈ IRq×n, d ∈ IRq×1

}
(2)

Definition 3. Given a center vector c ∈ IRn and p ∈ N
generator vectors g(i) ∈ IRn collected in a matrix G =[
g(1) . . . , g(p)

]
∈ IRn×p, referred to as the generator matrix.

Then, a zonotope is defined as (using the G−representation)

Z(c,G)=

{
x ∈ IRn : x=c+

p∑
i=1

β(i)g(i),−1≤β(i)≤1

}
(3)

Lemma 1. [20, Theorem 2] Consider Z(c,G), with p in-
dependent generators, c ∈ IRn, G ∈ IRn×p. Let v =

(
p

n−1

)
be the number of combinations of n − 1 distinct generators,
and Ii = {δi1, . . . , δin−1} the column indices associated to
each i− th combination. The polytopic H−representation of
Z(c,G) is Z(c,G) = {x ∈ IRn : Cx ≤ d}, where

C =

[
C̄
−C̄

]
, C̄ =

C̄1

...
C̄v

 , C̄i =
CPn(G

<Ii>)T

∥CPn(G<Ii>)∥2
,

d =

[
C̄c+∆d
−C̄c+∆d

]
,∆d =

p∑
v=1

|C̄g(v)|.

(4)

and G<Ii> contains the column in G specified by Ii.
Definition 4. Given a center matrix C ∈ IRn×p and q ∈ N
generator matrices G

(i)
M ∈ IRn×p collected in a matrix GM =[

G
(1)
M , . . . , G

(q)
M

]
∈ IRn×(pq). Then, a matrix zonotope is

M(C,GM ) = {X ∈ IRn×p : X=C +

q∑
i=1

β(i)G
(i)
M ,

−1 ≤ β(i) ≤ 1}
(5)

Definition 5. Consider a set of nv > 0 vertex matrices VP =

{V (i)
P }nv

i=1, V
(i)
P ∈ IRn×p . A matrix polytope MP (VP ) =

{M ∈ IRn×p : M=

nv∑
i=1

ρiV
(i)
P , 0 ≤ ρi ≤ 1,

nv∑
i=1

ρi = 1}.

Remark 1. A zonotope (matrix zonotope) can always be
represented as the convex hull of its vertices (matrix vertices)
[2, Sec. 3.3.3], [12].

A. Constrained Plant Model

Consider the class of discrete-time linear time-invariant
systems subject to a bounded but unknown process disturbance
and described by

xk+1 = Axk +Buk + wk (6)

where k ∈ Z+ = {0, 1, ...} and A ∈ IRn×n, B ∈ IRn×m

are the system matrices. Moreover, xk ∈ IRn, uk ∈ IRm,
and wk ∈ IRn are the state, control, and disturbance vectors,
respectively. In addition, it is prescribed that:

xk ∈ X ⊂ IRn, uk ∈ U ⊂ IRm, wk ∈ W ⊂ IRn (7)

where X , U , W are convex, compact, and contain the origin.

Definition 6. A set T 0 ⊆ X is called Robust Control Invariant
(RCI) for (6)-(7) if ∀x ∈ T 0,∃u ∈ U : Ax + Bu + w ∈
T 0,∀w ∈ W.

Definition 7. Consider (6)-(7) and a target set T j−1 ⊆ X . The
set of states Robust One-Step Controllable (ROSC) to T j−1

is
T j = {x ∈ X : ∃u ∈ U :x+ ∈ T j−1,∀w ∈W} (8)

and x+ := Ax+Bu+ w.

B. Model-based Set-Theoretic MPC (ST-MPC)

In this subsection, the dual-mode MPC controller developed
in [8], hereafter denoted as ST-MPC, is summarized. Given the
constrained plant model (6)-(7), a stabilizing receding-horizon
controller capable of fulfilling all the prescribed constraints
and capable of robustly confining, in a finite number of steps,
the state trajectory into terminal RCI set T0 can be designed
as follows [21, Section II.A]:
- Offline:

1) Consider the constraint-free and disturbance-free model
(6) and compute a stabilizing state-feedback control law,
e.g., uk = −Kxk, where (A−BK) is a stable matrix.
Then, compute the smallest RCI region associate to T 0

for (6)-(7), see, e.g., [22].



2) Starting from T 0, recursively compute a sequence of
N > 0 ROSC sets

{
T j

}N

j=1
, where

T j={x ∈ X :∃u ∈ U : x+∈ T j−1,∀w ∈ W} (9)

- Online (∀ k):
1) Find jk := min

j∈{0,...,N}
{j : xk ∈ T j}

2) If jk = 0, then uk = −Kxk. Else solve the following
Quadratic Programming (QP) problem:

uk = argmin
u∈U

J(xk, u) s.t.

Ax+Bu ∈ (T jk−1 ⊖W)
(10)

where J(xk, u) is a convex cost function.
Property 1. The ST-MPC algorithm enjoys the following
properties [8]:

1) The optimization (10) enjoys recursive feasibility.
2) The terminal region T 0 is reached in at most j0 steps

(with j0 the set membership index at k = 0) regardless
of any admissible disturbance realization.

C. Problem Statement
Assumption 1. The matrices A, B in (6) are unknown, and the
disturbance set W can be represented (or over-approximated)
as a zonotope described in the G− or H− representation, i.e.,

W = Zw(cw, Gw) = {w ∈ IRn : Hww ≤ hw}, (11)

where cw ∈ IRn, Gw ∈ IRn×pw and Hw ∈ IRnw×n, hw ∈
IRnw . On the other hand, the state and input constraint sets
can be either zonotopes or polytopes, and they are described
using the H−representation

X ={x∈ IRn :Hxx ≤ hx} , U={u∈ IRm :Huu ≤ hu} (12)

where Hx ∈ IRnx×n, Hu ∈ IRnu×m, hx ∈ IRnx , hu ∈ IRnu .
Moreover, the following collection of Nt > 0 input-state
trajectories is available:{{

u
(i)
k

}N(i)
s −1

k=0
,
{
x
(i)
k

}N(i)
s −1

k=0

}Nt

i=1

(13)

where N
(i)
s > 0 is the number of samples in each trajectory.

Moreover, the matrix
[
XT

− UT
−
]T

has full row rank, i.e.,

rank(
[
XT

− UT
−
]T

) = n+m (14)

X−=
[
x
(1)
0 , · · · , x(1)

N
(1)
s −1

, · · · , x(Nt)
0 , · · · , x(Nt)

N
(Nt)
s −1

]
(15)

U−=
[
u
(1)
0 , · · · , u(1)

N
(1)
s −1

, · · · , u(Nt)
0 , · · · , u(Nt)

N
(Nt)
s −1

]
(16)

and X ∈ IRn×(Ns+1)Nt , X− ∈ IRn×NsNt , and U− ∈
IRm×NsNt .

Remark 2. The condition (14) is fairly standard in the related
literature, see, e.g., [16] and references therein. In particular,
it ensures that the collected data (13) have been obtained for
sufficiently persistent exciting input sequences and that[

A B
]
= X+

[
X−
U−

]†
X+ =

[
x
(1)
1 , · · · , x(1)

N
(1)
s

, · · · , x(Nt)
1 , · · · , x(Nt)

N
(Nt)
s

] (17)

Moreover, the set descriptions (11)-(12) are similar to the ones
made in [14], with the only difference being that we do not
restrict the constraints (7) to be described by zonotopes.
Problem of interest: Given the input-state trajectories (13)
collected for the linear model (6)-(7) with unknown system
matrices (A,B) :

1) Design a data-driven algorithm computing an inner
approximation of the ROSC set (8).

2) Design a Data-Driven Set-Theoretic MPC (D-ST-MPC)
controller for (6)-(7) enjoying the same properties of
ST-MPC (see Property 1).

III. PROPOSED SOLUTION

The proposed solution is developed as follows. First, we
characterize the set of all system matrices MÂB̂ consistent
with the assumed disturbance bound Zw and data (13) (see
Section III-A). Then, we show how a data-driven zonotopic
inner approximation of the ROSC set (9) can be obtained from
the vertex representation of the set of all compatible system
matrices (see Section III-B). Finally, we design a data-driven
version of the ST-MPC control strategy by leveraging a family
of ROSC sets computed into an extended space domain (see
Sections III-C and III-D).

A. Data-Driven Representation of Linear Systems With a
Bounded Disturbance

In the presence of noise, there generally exist multiple ma-
trices [A, B] that are consistent with the data. The following
Lemma describes all the linear models consistent with the
available data and noise bound Zw.

Lemma 2. ( [14], [23]) Let T =

Nt∑
i=1

N (i)
s and consider the

following concatenation of multiple noise zonotopes

Mw = Mw(Cw, [G
(1)
Mw

, . . . , G
(qT )
Mw

]),

where Cw ∈ IRn×(n+m) = [cw, . . . , cw], and GMw
∈

IRn×T (n+m) is built ∀ i ∈ {1, . . . , q}, ∀ j ∈ {2, . . . , T − 1}
as

G
(1+(i−1)T )
Mw

=
[
g
(i)
w 0n×(T−1)

]
G

(j+(i−1)T )
Mw

=
[
0n×(j−1) g

(i)
w 0n×(T−j)

]
G

(T+(i−1)T )
Mw

=
[
0n×(T−1) g

(i)
w

] (18)

Then, the matrix zonotope

MAB =(X+ −Mw)

[
X−
U−

]†
:={[Â, B̂] : [Â, B̂]=CAB +

T∑
i=1

β(i)G
(i)
MAB

,

−1 ≤ β(i) ≤ 1}

(19)

where

CAB = (X+ − Cw)
(
[XT

− , U
T
− ]T

)†
GMAB

=
[
G

(1)
Mw

(
[XT

− , U
T
− ]T

)†
, . . . , G

(qT )
Mw

(
[XT

− , U
T
− ]T

)†]
contains the set of all system matrices [Â, B̂] that are consis-
tent with the data (13) and disturbance bound Zw and such
that [A,B] ∈ MAB . □



B. Data-Driven ROSC Sets
If the system matrices (A,B) are known the ROSC set (8)

can be computed as [24, Sec. 11.3]:

T j =
((
T j−1 ⊖Zw)⊕ (−BU

))
A ∩ X (20)

In what follows, we aim at computing zonotopic inner approx-
imations of T j given the set of all consistent matrices (19).
To this end, the following issues must be addressed:

1) The ROSC set T̂ j consistent with MAB and Zw and
such that T̂ j ⊆ T j is:

T̂ j=

 ⋂
[Â,B̂]∈MAB

((
T̂ j−1 ⊖Zw

)
⊕ (−B̂U)

)
Â

 ∩ X (21)

However, since there are infinite matrices [Â, B̂] ∈
MAB , the above is not computable.

2) According to (21), T̂ j is not (in general) a zonotope
even if we assume that T̂ j−1, U and X are all zonotopes.
Indeed, zonotopes are not closed under Minkowski dif-
ference operations and set intersections.

The following proposition is instrumental to obtaining a com-
putable definition of the ROSC set (21) and solving the first
issue.

Proposition 1. Let VAB be the set of vertices {Âi, B̂i}nv
i=1 of

the matrix polytope associated to MAB . If T̂ j−1 is a convex
set, then the ROSC set T̂ j in (21) can be computed as

T̂ j=

 ⋂
[Âi,B̂i]∈VAB

((
T̂ j−1 ⊖Zw

)
⊕ (−B̂iU)

)
Âi

 ∩ X (22)

Proof. Given VAB , we can write any admissible system one-
step evolution as x+(α) = A(α)x+B(α)u+ w where

Â(α) =

nv∑
i=1

αiAi, B̂(α) =

nv∑
i=1

αiBi

[α1, . . . , αnv
]
T∈P={α ∈ IRnv: αi ≥ 0,

nv∑
i=1

αi = 1}
(23)

Consequently, the set (8) can be written as

T̂ j ={x ∈ X : ∃u ∈U :

nv∑
i=1

αi(Âix+ B̂iu+ w) ∈ T̂ j−1,

∀w ∈ Zw,∀α ∈ P}
(24)

Then, definition (24) implies that any convex combination
of the vertices must belong to T̂ j−1. However, if T̂ j−1 is
a convex set, then such a requirement is satisfied iff ∀ i =
1, . . . , nv, (i.e., for any vertex model (Âi, B̂i)) x+

i = Âix +
B̂iu + w ∈ T̂ j−1, ∀w ∈ Zw. Consequently, the ROSC set
(21) can be computed as in (22), concluding the proof. ■

The second issue can be addressed directly through com-
putation of a polytopic set. However, in this case, the num-
ber of vertices necessary to describe the ROSC sets will
increase exponentially with the number of computed sets,
making such an option not suitable for implementing the
ST-MPC controller. On the other hand, a zonotopic inner
approximation of the exact ROSC sets can be derived as

follows. Consider the H− representation of Zw and T̂ j−1 ={
x∈ IRn :HT̂ j−1x ≤ hT̂ j−1

}
, then, we can first compute the

polytope T̂ j using (21) and then compute a zonotopic inner
approximation of T̂ j , using, e.g., the algorithm proposed in
[9, Section IV.A.2] and summarized in Lemma 3.

Remark 3. The above solution to compute data-driven ROSC
set T̂ j is still not suitable to efficiently implement a data-
driven ST-MPC. Indeed, if a family of zonotopic data-driven
ROSC sets {T̂ j}Nj=0 is computed as prescribed by the offline
phase of the ST-MPC algorithm (see Section II-B), then the
data-driven equivalent of the optimization (10) would be

uk = argmin
u∈U

J(xk, u) s.t.

Âix+ B̂iu ∈ (T jk−1 ⊖Zw), ∀i = 1, . . . , nv

(25)

The above presents a number of constraints which scale
exponentially with the number of matrix generators describing
MAB [25]. Consequently, the resulting optimization problem
presents a computational complexity much higher than the
model-driven counterpart (10). In the next section, we solve
such an issue by computing an augmented zonotopic repre-
sentation of the ROSC sets.

C. Augmented Data-Driven ROSC Sets

The model-based ROSC set (8) can be equivalently re-
defined as [21]:

Ξj =
{
(x, u) ∈ X × U : Ax+Bu+ w ∈ T j−1,∀w ∈W

}
T j = Projx(Ξ

j)
(26)

where Ξj is the (x, u)− augmented space description of the
ROSC set and Projx(Ξ

j) performs a projection operation
of Ξj into the x−domain. Consequently, for the data-driven
model described by the matrix vertices VAB , we can write

Ξ̂j
AB=

⋂
[Âi,B̂i]∈VAB

{
z = [xT , uT ]T ∈ IRn+m :Hi

zz ≤ hi
z

}
T̂ j = Projx(Ξ̂

j
AB)

(27)

where

Hi
z =

 Hx 0

HT̂ j−1Âi HT̂ j−1B̂i

0 Hu

 , hi
z =

 hx

h̃T̂ j−1

hu

 (28)

and
h̃T̂ j−1

r
= min

w∈W
(hT̂ j−1

r
−HT̂ j−1

r
w) (29)

Remark 4. For similar reasons to the ones explained in
Section III-B, the augmented ROSC set Ξ̂j is a polytope.
Moreover, the projection operation required to obtain T̂ j is
computationally demanding if performed on a polytope [9].

To obtain a zonotopic inner approximation of Ξ̂j we can
resort to the following lemma:

Lemma 3. (Adapted from [9, Section IV.A.2]) Consider a tem-
plate zonotope Z(c,G), with c ∈ IRn+m denoting any center
vector and G ∈ IR(n+m)×p a fixed set of chosen generators.
The set Ξ̂j

z = Z(c∗, β∗G) is an inner approximation of Ξ̂j



(i.e., Ξ̂j
z ⊆ Ξ̂j) if c∗ ∈ IRn+m, β∗ =∈ IRp×1 are computed

solving the following optimization problem

{c∗, β∗} = arg max
c, β=[β1,...,βl]T

p∑
l=1

dl log(βl), s.t.

HΞ̂jc+ |HΞ̂jG|β ≤ hΞ̂j , 0 ≤ β ≤ 1

(30)

where (HΞ̂j , hΞ̂j ) denotes the H−representation of Ξ̂j , dl ≥ 0
are weighting factors, and |HΞ̂jG| denotes a matrix obtained
taking the element-wise absolute value of HΞ̂jG.

By denoting with Inz(Ξ̂
j) the approximation performed by

(30), the inner zonotopic approximation of (27) is

Ξ̂j
AB=

⋂
[Âi,B̂i]∈VAB

{
z = [xT , uT ]T ∈ IRn+m :Hi

zz ≤ hi
z

}
Ξ̂j
z= Inz

{
Ξ̂j
AB

}
, T̂ j

z = Projx(Ξ̂
j
z)

(31)

D. Data-Driven Set-Theoretic MPC

It is now shown how the augmented ROSC sets (31) can
be used to implement a data-driven ST-MPC strategy, solving
the issue discussed in Remark 3.

Proposition 2. Given a collection of input-state trajectories
satisfying (14), then, the Data-Driven Set-Theoretic MPC
controller described in Algorithm 1 enjoys the same properties
as the model-based ST-MPC (see Property 1).

Proof. First, in the offline phase, the proposed algorithm com-
putes, using (22), a family of pair of ROSC sets {Ξ̂j

z,
ˆT j
z }Nj=1,

where ˆT j
z is an inner zonotopic approximation of (9) and Ξ̂j

z

is an augmented ROSC set representation of ˆT j
z ensuring,

by construction, that if [x, u]T ∈ Ξ̂j
z then u ∈ U and

Âix + B̂iu + w ∈ ˆT j−1
z ,∀w ∈ W,∀{Âi, B̂i} ∈ VAB .

Consequently, Ξ̂j
z implicitly embeds the worst-case admissible

one-step evolution of the underlying linear system, and the
optimization (32) defines the data-driven equivalent of (10).
Since by construction (10) is recursively feasible, then the
data-driven MPC Algorithm 1 enjoys the same properties as
its model-based counterpart.

Algorithm 1 Data-Driven Set-Theoretic MPC (D-ST-MPC)
Input: Ver(MAB), RCI set T 0, X , U and W

Offline
1: Let T̂ 0

z = T 0 a given terminal RCI set
2: Compute the ROSC sets {Ξ̂j

z , T̂ j
z }Ni=1 using (31)

Online (∀ k)
1: Find set membership index jk := min

j∈{0,...,N}
{j :xk ∈T̂ j

z}
2: if jk = 0 then uk = −Kxk

3: else compute uk by solving the following QP problem

uk = argmin J(xk, u) s.t.
[
xT
k , u

T
]T ∈ Ξ̂j

z
(32)

4: end if

Remark 5. The computation of the RCI region T 0 is outside of
the scope of this paper. However, it can be computed/estimated
using data-driven strategies [26]. In alternative, T 0 can be
chosen as an arbitrary small set that is only used to initialize
the ROSC set computation. With such a solution, the proposed
strategy is feasible if T 0 ⊆ T̂ 1

z . Indeed, according to Defini-
tion 6, if T 0 ⊆ T̂ 1

z , then T 0 is an RCI set and the associated
terminal control law for any xk ∈ T 0 is

uk = argmin J(xk, u) s.t.[
xT
k , u

T
]T ∈ Ξ̂1

z

(33)

IV. ILLUSTRATIVE EXAMPLE

Consider the discrete-time linear time-invariant system sub-
ject to a bounded disturbance described in [22], where

A =

[
0.7969 −0.2247
0.1798 0.9767

]
, B =

[
0.1271
0.0132

]
(34)

|uk| ≤ 3, |xl
k| ≤ 10, l = 1, 2 and the disturbance set is

Zw(02, 0.005I2). Note that the choice of a two-state system
is motivated by the desire to plot the computed data-driven
backward reachable sets and better explain the modus operandi
of the proposed data-driven ST-MPC. The here shown sim-
ulations have been implemented in Matlab R2021a on a
Windows 11 pc (16 GB of RAM, I7-11800H - 2.30GHz
CPU). The optimizations (10)-(32) have been solved using
SeDuMi and Yalmip, while the CORA toolbox has been used
to compute MAB and VAB . By assuming that the pair (A,B)
is unknown, we have simulated the system considering random
admissible inputs to collect two input-state trajectories (13),
each containing Ns = 10 samples. After verifying that the
rank condition (14) is fulfilled, we have computed the set
MAB of all system matrices consistent with (13) and W.
Then, we computed the vertices VAB of MAB and used
(31) to build a family of N = 15 data-driven ROSC sets
{Ξ̂j

z, T̂ j
z } (dashed red zonotopes in Fig. 1). Since T̂ 1

z ⊆ T̂ 2
z ,

T̂ 1
z has treated as the terminal RPI set with control law (33),

see Remark 5. To contrast the proposed data-drive ST-MPC
with its model-based counterpart, we have also computed a
model-based RCI set T 0 using K = [−0.47,−0.19] and the
algorithm in [27]. Then, N = 5 model-based ROSC sets {T j}
has been computed as prescribed by (9) (solid black polytopes
in Fig. 1). Note that the discrepancies in the number of ROSC
sets computed for the model-based and data-driven approaches
are justified by the fact that the data-driven approach computes
inner zonotopic approximations of the actual polytopic sets
computed with the model. The results shown in Figs. 1-2 have
been obtained for an initial plan’s initial state x0 = [−2, 1.1]T

(i.e., x0 ∈ T̂ 15
z and x0 ∈ T 5) and configuring the ST-MPC

and D-ST-MPC schemes to minimize the control effort, i.e.,
J(xk, u) = 0.5u2. In Fig. 1, it is possible to appreciate how
both ST-MPC and D-ST-MPC controller are able to confine, in
a finite number of steps, the state trajectory in the RCI set T̂ 1

z

and T0, respectively (see the zoom-in in Fig. 1). This is also
confirmed by the set-membership index shown in Fig. 2 (top
subplot). In addition, in Fig. 2 (bottom subplot), it is possible
to note that both controllers produce control input sequences
fulfilling the prescribed input constraints. As per the design,



D-ST-MPC shows the same behavior as ST-MPC, however, as
expected, D-ST-MPC is slightly more conservative in terms of
the controller’s domain of attraction (the union of the ROSC
sets shown in Fig. 1) and in terms of time required to reach the
terminal RCI set (5 steps for ST-MPC and 8 steps for D-ST-
MPC). The average CPU times required to compute the ROSC
sets from data and model are 1.61 s and 0.22 s, respectively.
On the other hand, the average CPU times to online compute
uk (until T 0 is reached) using D-ST-MPC and ST-MPC are
0.18 s and 0.08 s, respectively.
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Fig. 1. Model-based controllable sets {T j}5
j=0 (black polyhedral)

of system (34), projection of augmented data-driven controllable sets
{Ξ̃j}15

j=0 on x1 and x2 axis (red dashed polyhedral)
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Fig. 2. Set membership index (top) and control input signals (bottom)

V. CONCLUSIONS

This paper proposes a novel data-driven method for com-
puting ROSC sets for an unknown linear system subject to
bounded disturbances, state, and input constraints. In par-
ticular, it has been shown that using a collection of input-
output trajectories, a zonotopic inner approximation of the
backward reachable sets can be obtained by resorting to an
extended space representation. The peculiar feature of the
proposed solution is that the computed sets can also be used
to efficiently implement a data-driven dual-mode receding
horizon controller. Future studies will be devoted to mitigate
the computational complexity and conservativeness of the
proposed procedure to compute ROSC sets.
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