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Abstract— The proliferation of cloud computing tech-
nologies has paved the way for deploying networked en-
crypted control systems, offering high performance, re-
mote accessibility and privacy. However, in scenarios
where the control algorithms run on third-party cloud ser-
vice providers, the control’s logic might be changed by a
malicious agent on the cloud. Consequently, it is imperative
to verify the correctness of the control signals received
from the cloud. Traditional verification methods, like zero-
knowledge proof techniques, are computationally demand-
ing in both proof generation and verification, may require
several rounds of interactions between the prover and veri-
fier and, consequently, are inapplicable in real-time control
system applications. In this paper, we present a novel
computationally inexpensive verifiable computing solution
inspired by the probabilistic cut-and-choose approach. The
proposed scheme allows the plant’s actuator to validate
the computations accomplished by the encrypted cloud-
based networked controller without compromising the con-
trol scheme’s performance. We showcase the effectiveness
and real-time applicability of the proposed verifiable com-
putation scheme using a remotely controlled Khepera-IV
differential-drive robot.

Index Terms— Verifiable computing, cloud-based con-
trol, encrypted control

I. INTRODUCTION

CCLOUD-based control systems [1] exploit the well-
established advantages of cloud and edge computing,

such as increased reliability, easier scalability and reduced
IT expenses to enhance the performance of various Cyber-
Physical Systems (CPSs). However, these cloud-based systems
hinge on communication links for exchanging measurement
data and control signals between the plant and the cloud-based
controller. Thus, the early research in the field of CPS security
has been mainly centered on safeguarding these systems from
network attackers with access to the measurement and/or
control channels [2]. Various control theory based approaches
were proposed to mitigate the vulnerability to false data injec-
tion attacks [3]. To ensure the privacy of the computation at the
cloud controller, homomorphic encryption (HE) schemes were
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proposed to implement polynomial control laws on encrypted
data [4], [5], [6]. On the other hand, given the safety-critical
nature of such systems, it is also necessary to provide the
physical plant/smart actuator with an efficient mechanism to
validate the correctness of the computations conducted by the
cloud-based controller on encrypted data. Verifiable computing
aims not only to obtain the control input computed by the
cloud and a proof of its correctness, but also to enable the
plant/smart actuator to verify this proof with significantly
less computational effort than calculating the control input
from scratch. The simplest, yet least efficient, approach for
verifiable computation is replication. In this scenario, the veri-
fier (pant/actuator) utilizes multiple, presumably non-colluding
cloud-based controllers to perform identical computation tasks.
Upon receiving a minimum consensus of results from these
multiple controllers, the verifier assumes those results are
correct. An alternative method to ensure the integrity of the
computation at the cloud based controller employs a hardware-
based Trusted Execution Environment (TEE) such as Intel
SGX, as demonstrated in [7]. Nevertheless, the latest attacks
on SGX have revealed that hardware remains vulnerable
to compromise and this could lead to jeopardize both the
TEE and the overall systems’ security. Although advanced
cryptographic techniques for verifiable computation(e.g., see
[8]–[10], can be used to verify the integrity of outsourced
computations, integrating them with the complex structure of
HE schemes remains a challenge [11], [12]. The (Boolean)
circuit representations for control theory algorithms are too
complex to implement using these techniques. Additionally,
certain techniques like interactive proofs demand multiple
rounds of communication between prover and verifier. In
the context of CPS, Cheon et al. [13] proposed a verifiable
computation scheme which enables the actuator to verify the
non-encrypted controller’s computation. However their scheme
is only applicable to linear systems and it cannot be used for
encrypted control scenarios. Mahfouzi et al. [14] presented a
proof of concept of an industrial controller in a cloud-based
verifiable computation framework using the Pequin, an end-
to-end toolchain for verifiable computation, SNARKs, and
probabilistic proofs. However, the authors did not consider
preserving the confidentiality of messages transmitted between
the local controller and the cloud.

A. Paper’s contribution
The state-of-the-art lacks solutions capable of detecting

attacks against the integrity of cloud-based encrypted con-



trollers. In this paper, we present a verifiable computing
solution inspired by the cut-and-choose cryptographic tech-
nique, commonly employed in secure multiparty computation
protocols [15], and cut-and-choose auditing [16]. In this ap-
proach, the party wishing to perform a secure computation
first generates a set of computations and then sends them to
a verifier, who proceeds to randomly select a subset from the
set and asks the party to disclose the input and output of each
computation. In the event that the computations within the
chosen subset prove to be correct, the verifier can trust that
the remaining computations are correct too, enabling the party
to proceed with the secure computation. However, if any of
the computations in the subset are found to be incorrect, the
protocol is terminated. Our contributions can be summarized
as follows.

• We propose a practical verifiable computing solution for
encrypted control systems. The proposed probabilistic
scheme allows the plant’s actuator to efficiently validate
the computations accomplished by the cloud-based en-
crypted networked controller without compromising the
control system’s performance. Moreover, we prove that
the proposed solution ensures asymptotic detection of any
integrity attack. These results are achieved by leveraging
two essential ingredients: (i) an offline pre-computed
set of control signals complying with the control law
for a given set of decoy input parameters, and (ii) a
semantically secure encryption mechanism which does
not allow the adversary to distinguish the decoys from
the actual measurements/control inputs.

• We experimentally validate the performance and effec-
tiveness of the proposed approach using a remotely
maneuvered Khepera IV robot1.

II. PRELIMINARIES AND PROBLEM FORMULATION

Given a vector v and a matrix M, vi denotes the i − th
element of v and Mi,j the (i, j)−entry of M. Moreover,
I2 denotes a 2 × 2 identity matrix while 12 and 02 denote
column vectors of size two where both elements are equal to
1 and 0, respectively. Given a number z in the message space
of a cryptosystem, we denote the encryption and decryption
procedures as E[z] and D[z], respectively. Consider a random
variable X with binary possible outcomes “success” and “fail.”
The probability of getting a “success” in a single trial is
denoted as p, while the probability of k+1 successes in k+1
binary independent experiments is denoted as p[0, k].

Definition 1: Homomorphic Encryption (HE) refers to a
particular class of encryption mechanisms that enables mathe-
matical operations (limited in their type and/or number) to be
carried out directly on encrypted data. □

Definition 2: Consider two arbitrary numbers, z1 and z2,
in the message space of the cryptosystem. A cryptosystem
is said to be multiplicatively homomorphic if there exists an
operation “⊗” allowing encrypted multiplications, i.e., z1z2 =
D[E[z1] ⊗ E[z2]]. Analogously, a cryptosystem is said to be
additively homomorphic if there exists an operation “⊕” such

1http://www.k-team.com/khepera-iv

that encrypted additions can be performed, i.e., z1 + z2 =
D[E[z1]⊕ E[z2]].

A. Networked control system setup
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Fig. 1: Cloud-based encrypted control scheme

Of interest is the class of networked control systems shown
in Fig. 1, where the plant’s dynamic is described by the
discrete-time model

x(k + 1) = f(x(k), u(k)), y(k) = g(x(k), u(k)) (1)

with k ∈ ZZ+ = {0, 1, . . .} the discrete-time index, x ∈
IRn, u ∈ IRm, y ∈ IRp the state, input, and output vectors,
and f : IRn × IRm → IRn, g : IRn × IRm → IRp . Moreover,
a semantically secure [17] randomized HE scheme is used
to transmit signals between the plant and the cloud-based
controller, allowing the control logic to be executed directly on
the encrypted data. The considered dynamic output feedback
tracking controller presents the following plaintext dynamic

xc(k + 1) = fc(xc(k), y(k), r(k))
u(k) = gc(xc(k), y(k), r(k))

(2)

where xc ∈ IRnc is the state of the controller, r(k) ∈ IRp

the reference signal, and fc : IRnc × IRp × IRp → IRnc , gc :
IRnc × IRp × IRp → IRm the control strategy.

Assumption 1: The control (2) can be implemented on the
encrypted data. □

In what follows, the encrypted-version of (2) is generically
described by:

E[xc(k + 1)] = fE
c (E[xc(k)],E[y(k)],E[r(k)])

E[u(k)] = gEc (E[xc(k)],E[y(k)],E[r(k)])
(3)

where fE
c (·, ·, ·) and gEc (·, ·, ·) denote the encrypted con-

troller’s operations corresponding to fc(·, ·, ·) and gc(·, ·, ·).

B. Threat model and Problem formulation

An adversary wants to replace the executed encrypted
control operations (3), i.e.,{

fE
c (·, ·, ·), gEc (·, ·, ·)

}
→

{
fE
a (·, ·, ·), gEa (·, ·, ·)

}
(4)

where
{
fE
a (·, ·, ·), gEa (·, ·, ·)

}
̸=

{
fE
c (·, ·, ·), gEc (·, ·, ·)

}
define

the adversary encrypted control logic. Consequently, the en-
crypted E[u(k)] and E[xc(k+1)] signals received by the plant
from the cloud might be the result of the adversary control
logic (4). In this work, we assume that the attacker’s actions do
not force the plant to reach a configuration outside of working
domain of the legitimate control law (3). Consequently, the
considered class of attacks is sufficiently intelligent to be

http://www.k-team.com/khepera-iv


stealthy against safety-preserving mechanisms on the plant’s
side, see e.g., [18].

Problem 1: Given the encrypted networked control archi-
tecture shown in Fig. 1, design a secure verifiable computing
solution capable of assessing the integrity of the encrypted
control logic (3). Moreover, the solution must perform com-
putations in real-time, avoid interference with control actions,
and probabilistically ensure the absence of stealthy control
logic alterations over time.

III. PROPOSED SOLUTION
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Fig. 2: Proposed verifiable computing scheme for encrypted
control systems.

The proposed solution (see Fig. 2) is inspired by the cut-
and-choose cryptographic technique, commonly employed in
secure multiparty computation protocols [15]. For the consid-
ered encrypted networked control system setup, we customize
the cut-and-choose paradigm as follows:

• The cloud-based encrypted controller is the party per-
forming the agreed upon encrypted control system logic,
as described by equation (3).

• A decoy module, local to the plant, is in charge of
generating a set of nd > 0 decoy (e.g., artificial) mea-
surement vectors, namely yid(k), i = 1, . . . , nd. The nd+
1 measurement vectors (decoys + actual measurement)
are encrypted and sent to the controller. The controller
executes (3) for each received measurement vector and
produces a set of nd + 1 computations (i.e., encrypted
control inputs).

• The verifier is a subsystem local to the plant checking the
validity of the decrypted control input vectors obtained
from the cloud for all nd decoy measurement vectors
(disclosed to the verifier by the decoy subsystem). If all
the decoy computations are deemed accurate, then u(k)
is assumed correct and applied to the plant.

Moreover, to ensure that the proposed decoy-based verifi-
able computing paradigm provides a solution to Problem 1,
the following objectives must be achieved:

(O1) The verification of the computations for each decoy
must be real-time affordable and not require the online
local re-computation of the control algorithm itself.

(O2)The decoy measurements should not interfere with the
computation of the control action E[u(k)] for the actual
sensor measurements E[y(k)].

(O3)The attacker’s probability p[0, k] of changing the con-
trol logic as in (4) without being detected asymptotically
converges to zero, i.e. limk→∞ p[0, k] = 0.

A. Proposed verifiable computing scheme
In what follows, first the proposed verifiable computing

scheme is presented and then its effectiveness in addressing
the points (O1)-(O3) is proven.
◦ For each required computation, the encrypted controller

receives from the plant the set {E[xc(k)],E[y(k)],E[r(k)]}.
The encrypted controller first resets its state to E[xc(k)],
then computes the updated internal state E[xc(k + 1)] and
control input E[u(k)] which are both transmitted to the plant.
If the computation is pertaining to the real measurement,
the plaintext corresponding to E[xc(k)] is equal to the one
provided by the controller at the previous iteration.

◦ Offline, a set D of Nd tuples (ūd, x̄
+
cd
, x̄cd , ȳd, r̄d), com-

plying with the controller’s logic (2) is defined, i.e.,

D = {(ūj
d, x̄

j+

cd
, {x̄j

cd
, ȳjd, r̄

j
d}︸ ︷︷ ︸

decoy

), j = 1, . . . , Nd :

ūj
d = gc(x̄

j
cd
, ȳjd, r̄

j
d)︸ ︷︷ ︸

expected control input

}, x̄j+

cd
= fc(x̄

j
cd
, ȳjd, r̄

j
d)︸ ︷︷ ︸

expected next state

}
(5)

◦ At each k ≥ 0, a set of nd ≥ 1 decoys is selected
(with possible repetitions) from D and freshly encrypted into
{E[xi

cd
(k)],E[yid(k)],E[r

i
d(k)]}

nd
i=1.

◦ At each k ≥ 0 the nd decoys are randomly arranged with
the actual vector {xc(k), y(k), r(k)} to form the following
encrypted matrices which are sent to the controller (see Fig. 2):

E[Xc(k)] :=
[
E[xc(k)],E[x1

cd
(k)], . . . ,E[xnd

cd
(k)]

]
Ωk

E[Y (k)] :=
[
E[y(k)],E[y1d(k)], . . . ,E[y

nd

d (k)]
]
Ωk

E[R(k)] :=
[
E[r(k)],E[r1d(k)], . . . ,E[r

nd

d (k)]
]
Ωk

(6)

with Ω(k) ∈ IR(nd+1)×(nd+1) a random permutation matrix.
On the other hand, the controller, without the knowledge of
Ωk, performs the encrypted control algorithm (3) for each
column of the received matrices and arranges the outputs into
the following, which are sent to the plant (see Fig. 2):

E[U(k)] := [E[u(k)],E[u1
d(k)], . . . ,E[u

nd

d (k)]]Ωk

E[Xc(k + 1)] := [E[xc(k + 1)],E[x1
cd
(k + 1)],

. . . ,E[xnd
cd
(k + 1)]]Ωk

(7)

◦ The verifier decrypts (7) and checks, for each used decoy
{xi

cd
(k), yid(k), r

i
d(k)}

nd
i=1, if the computed control inputs and

next states are equal to the expected values {ui
d(k)}

nd
i=1 and

{xi
cd
(k + 1)}nd

i=1 in (5).
Proposition 1: If Nd ≥ 2, the proposed verifiable comput-

ing scheme achieves the objectives (O1)-(O3).
Proof: The proof can be divided into three parts:

- (O1) : by constructions, the decoy set (5) is
pre-computed. Therefore, for each used decoy
{E[xi

cd
(k)],E[yid(k)],E[r

i
d(k)]}, the verification of ui

d(k)
and xi

cd
(k + 1) prescribes only their comparison with the

pre-computed value in (5). Consequently, the computational
overhead of the proposed solution is mainly related to the
encryption and decryption of the decoys.
- (O2) : The controller resets the internal state before each
computation. Moreover, for the actual measurement, the reset
value is equal to the controller’s state at the previous iteration.
Consequently, regardless of nd, Nd, Ωk, the computations
pertaining to the decoys do not affect E[u(k)].



- (O3) : If the attacker is only interested in arbitrarily affecting
the control logic and nd = 1, Nd = 1 (i.e., 1 decoy from
a pool of a single decoy), then the attacker can guess at
k = 0 the decoy measurement vector and use the valid decoy
output E[u1

d(0)] to send to the plant the matrix E[U(k)] =
[E[u1

d(0)],E[u
1
d(0)]]Ωk, ∀ k which would trigger an anomaly

with probability 0.5, irrespective of k. To avoid copying the
same ciphertext, which could lead to trivial detection, the
attacker can re-encrypt it. On the other hand, for Nd = 2, or
any other greater value, the probability that an attacker can, in
a single trial, successfully change E[u(k)] while leaving the
decoy computation unchanged is equal to the probability of
guessing in which column of E[Y (k)] the measurement vector
E[y(k)] is contained. Given the randomized nature of the used
homomorphic encrypting scheme and Ωk, each column vector
has an equal probability, resulting in a Bernoulli probability
of cheating p = 1/(nd + 1). Consequently, in the interval
[0, k], the probability p[0, k] that the attacker remains always
undetected follows the Binomial distribution ( 1

nd+1 )
k+1 that

asymptotically converges to zero as k → ∞.

IV. PROOF-OF-CONCEPT VALIDATION USING A
REMOTELY CONTROLLED MOBILE ROBOT

In what follows, by considering as case of study a remotely
controlled differential-drive robot, we verify the effectiveness
of the proposed verifiable computing scheme.

A. Robot Model

We consider a differential-drive robot equipped with two
real independently driven wheels and a front castor wheel for
body support. The pose of the robot is described by the planar
coordinates (px, py) of its center of mass and orientation θ.
By resorting to the forward Euler discretization method and
a sampling time ts > 0, the discrete-time kinematic model of
the differential-drive is:

px(k + 1) = px(k)+
tsR
2 cos θ(k)(ωr(k) + ωl(k))

py(k + 1) = py(k)+
tsR
2 sin θ(k)(ωr(k) + ωl(k))

θ(k + 1) = θ(k)+ tsR
D (ωr(k)− ωl(k))

(8)

where R > 0 is the radius of the wheels, D > 0 the rear axle
length, and uD = [ωr, ωl]

T ∈ IR2 the control input vector,
which consists of the angular velocities of the right and left
wheel, respectively. Moreover, x(k) = [px(k), py(k), θ(k)]

T ∈
IR3 denotes the robot’s state vector.

By denoting with v(k) and ω(k) the linear and angular
velocities of the center of mass of the robot, it is possible
to apply to (8) the static transformation[

v(k)
ω(k)

]
= H

[
ωr(k)
ωl(k)

]
, H :=

[
R
2

R
2

R
D

−R
D

]
, (9)

and describe the robot’s behavior by means of the following
discrete-time unicycle model:

px(k + 1) = px(k) + tsv(k) cos θ(k)

py(k + 1) = py(k) + tsv(k) sin θ(k)

θ(k + 1) = θ(k) + Tω(k)

(10)

Since (10) has been obtained using an Euler forward dis-
cretization and a static transformation, we can exploit the
commutative property between feedback linearization and the
input-output linearization used in [19, Property 1] to linearize
the discrete-time model of the unicycle. In particular, by
considering a small scalar b > 0 and two virtual outputs

y(k) =
[
px(k) + b cos θ(k), py(k) + b sin θ(k)

]T
, (11)

representing the coordinates of a fictitious point B displaced
at a distance b from [px, py]

T , the state-feedback law[
v
ω

]
=TFL(θ)

[
u1

u2

]
, TFL(θ)=

[
cos θ sin θ
− sin θ

b
cos θ
b

]
(12)

recasts (10) into a two-single integrator model with a decou-
pled nonlinear internal dynamics [19, Property 1]:

y(k + 1) = Ay(k) +Bu(k), A = I2, B = TI2 (13a)

θ(k + 1) = θ(k) + T
− sin θ(k)u1(k) + cos θ(k)u2(k)

b
(13b)

where u(k) = [u1(k), u2(k)]
T ∈ IR2 are the control inputs

of the feedback-linearized robot model. As stated in [19,
Remark 1], any linear tracking controller for (11) allows
y(k) to track any reference trajectory with a stable internal
dynamics for θ(k).

B. HE cryptosystem

The data exchanged with the controller are encrypted using
the Paillier cryptosystem [20]. The Paillier cryptosystem is
a randomized and semantically secure partially homomorphic
encryption scheme which allows encrypted additions of two
ciphertexts (see Definition 2) and multiplications of a cipher-
text by a plaintext number, i.e., z1z2 = D[E[z1]⊗ z2].

C. Tracking controller

Consider a desired robot’s reference pose pr(k) =
[prx(k), p

r
y(k), θ

r(k)]T ∈ IR3,∀ k ≥ 0 and the associated 2D
reference trajectory, namely rB(k), for the B point

r(k) = [prx(k) + b cos θr(k), pry(k) + b sin θr(k)]T , ∀ k ≥ 0.
(14)

A standard discrete-time Proportional Integral (PI) controller
is used to allow the B point to track r(k). The PI control’s law
can be written as in (2), resulting in the following state-space
representation

xc(k + 1) = xc(k) + Ts(r(k)− y(k))
u(k) = Kixc(k) +Kp(r(k)− y(k))

(15)

where xc ∈ IR2, Kp = kpI2 ∈ IR2×2 is the controller
integral state vector, Ts = tsI2 ∈ IR2×2, and Ki = kiI2 ∈
IR2×2, kp, ki ∈ IR are the controller’s gains. Equivalently, (15)
can be represented as the following input-output linear relation[

xc(k + 1)
u(k)

]
=

[
I2 Ts −Ts

Ki Kp −Kp

]
︸ ︷︷ ︸

K

xc(k)
r(k)
y(k)

 . (16)



To allow the control law (16) to be executed in encrypted form
on the cloud, the matrix K ∈ IR4×6 is there pre-uploaded
and available in plaintext (non-encrypted matrix). On the
other hand, the vector v(k) =

[
xc(k) r(k) y(k)

]T ∈ IR6,
before transmission to the cloud, is encoded. Consequently,
the control law (16) is computed on the cloud, in an encrypted
form, as:

E[xc,l(k + 1)] = (Vl,1 ⊗ E[v1(k)])⊕. . .⊕(Vl,6 ⊗ E[v6(k)])
E[ul(k)] =(Zl,1 ⊗ E[v1(k)])⊕. . .⊕(Zl,6 ⊗ E[v6(k)]),

l = 1, 2,
(17)

where V =
[
I2 Ts −Ts

]
∈ IR2×6, Z =[

Ki Kp −Kp

]
∈ IR2×6 . On the plant’s side, after

decryption, i.e., u(k) = [D[E[u1(k)]],D[E[u2(k)]]]
T
, the

angular velocities of right and left wheels are recovered as

uD(k) = H−1TFL(θ(k))u(k). (18)

D. Setup and experimental results
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Fig. 3: Experimental setup.

The used experimental networked control system setup is
illustrated in Fig. 3, where a Khepera IV robot is remotely
and wirelessly controlled by a workstation acting as the
remote cloud. The Khepera IV is a differential-drive robot
with R = 0.0210[m] and D = 0.10470[m], and it is
equipped with an 800MHz ARM Cortex-A8 Processor with
C64x Fixed Point DSP core and 256 MB of RAM. The
cloud is simulated using a workstation running Windows
10 with an Intel Core i9-13900KF processor with 24 cores,
where the robot’s encrypted control law (17) is executed.
The Verifier, Decoder, Encryption and Decryption modules
and (18) are all executed on the Khepera robot’s. The re-
mote exchange of encrypted data between the robot and
the workstation has been implemented using the 802.11 b/g
WiFi protocol has been used. The encrypted control law
has been implemented using Phyton and the eclib library
(https://pypi.org/project/eclib/) and using as
control knobs ts = 0.15[sec], b = 0.1, kp = 4, and ki = 0.2.
Moreover, the Paillier encryption is performed using |p| =
|q| = 512 and a quantization parameter δ = 0.0001. To speed-
up the arithmetic operations necessary to perform encryption,
decryption and homomorphic multiplications, the C-coded
Python extension module gmpy2 (https://pypi.org/
project/gmpy2/) has been used. The reference trajectory
(14), whose path in the dashed red line shown in Fig. 4b, has
been obtained interpolating a set of 22 waypoints distributed

along the path using a cubic spline configured such that the
average longitudinal velocity between any two consecutive
waypoints is fixed and equal to 0.09[m/s].

The decoy module is configured with nd = 1, Nd = 2,
i.e., to randomly choose a single decoy from a pool of 2 pre-
computed decoy tuples:

D = {(2 · 12, 0.075 · 12, {02, 2 · 12, 2.5 · 12}︸ ︷︷ ︸
decoy 1

),

(−3 · 12, 4.85 · 12, {5 · 12,12,02}︸ ︷︷ ︸
decoy 2

)}. (19)

Consequently, for the given choices, the probability that any
attack remains undetected over the discrete time interval [0, k]
is ( 12 )

k+1. At each k, the cloud receives

E[Xc(k)] =
[
E[xc(k)],E[x1

cd
(k)]

]
Ωk

E[Y (k)] =
[
E[y(k)],E[y1d(k)]

]
Ωk

E[R(k)] =
[
E[r(k)],E[r1d(k)]

]
Ωk

and without the knowledge of Ωk, it executes the en-
crypted PI control law (17) starting for each column of
E[Xc(k)],E[Y (k)],E[R(k)]. Then, all the encrypted outputs
are collected into the following vectors

E[U(k)] = [E[u(k)],E[u1
d(k)]]Ωk

E[Xc(k + 1)] = [E[xc(k + 1)],E[x1
cd
(k + 1)]]Ωk

and sent to the robot’s Paillier HE decryptor module, which
decrypts and sends the plaintext vectors to the Verifier. If at the
time instant k̄ ≥ 0, the Verifier finds an incorrect computation
related to the decoy, it will stop the robot in the current
position, i.e., uD(k) = [0, 0]T ,∀ k ≥ k̄.

Two experiments have been performed to verify that the
proposed verifiable computing protocol (i) does not interfere
with tracking operations of the networked control system,
(ii) and it is able to promptly detect cyber-attacks affecting
the integrity of the encrypted control logic. In particular, in
the first experiment, we consider a scenario where no cyber-
attacks affect the encrypted computation, while in the second,
a cyber-attack violates the integrity of the PI Encrypted
controller starting from k = 200 (t = 30 [sec]) to disrupt
the reference tracking task. We have configured the attacker
to disrupt the encrypted PI logic as follows. First, it allows
the computation of (17) for the first set of measurements and
records the obtained encrypted outputs. Then, instead of re-
computing (17) for the second set of data, it forces the output
to be equal to the outcome of the first computation. As a
consequence, ∀ k ≥ 200, the transmitted values are (with an
equal probability of 0.5) either

• (Case 1): E[U(k)] = [E[u1
d(k)],E[u

1
d(k)]], E[Xc(k+1)] =

[E[x1
cd
(k + 1)],E[x1

cd
(k + 1)]], or

• (Case 2): E[U(k)] = [E[u(k)],E[u(k)]], E[Xc(k + 1)] =
[E[xj

c(k + 1)],E[xj
c(k + 1)]],

where only Case 1 bypasses the verification performed on
the decoy. Note that even if the attack is aware of the used
decoy set D, the randomized nature of the used cryptosystem
does not allow it to distinguish between real and decoy
measurements. Consequently, the considered attack scenario
is representative of any other deception attack against the
integrity of the encrypted controller.

https://pypi.org/project/eclib/
https://pypi.org/project/gmpy2/
https://pypi.org/project/gmpy2/
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Fig. 4: Robots trajectory.
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Fig. 5: Robot’s orientation.

The experimental results are collected in Figs. 4-6. In the
subplots 4a and 5a it is possible to observe that, as expected,
the proposed verifiable computing operations do not interfere
with the real-time operations of the control loop. Indeed, as
shown in the box plot of Fig. (6), the maximum time to
execute the control loop of Fig. 3 is equal to 0.0631[sec]
which is smaller than the used sampling time. Moreover,
the computational overhead caused by the proposed scheme,
mainly due to the encryption and decryption of the decoys,
is smaller than 0.005 [sec] with an average of 0.0032 [sec].
On the other hand, the subplots 4b and 5b show that the
Verifier module was able to detect the attack at t = 30[sec]
and to stop the robot after such occurrence. The instantaneous
detection finds justification in the fact that at t = 30[sec],
decoy 1 was sent along the real measurement vectors while the
cloud returned U(30) = [[0.045, 0.082]T ], [0.045, 0.082]T ]
(Case 2 for the attacker’s strategy) which was not compatible
with the expected decoy output. The demo pertaining to the
performed experiments is available at the following YouTube
link: http://tinyurl.com/4a8u4y9r.
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Fig. 6: Boxplot for encrypted control loop execution time.

V. CONCLUSIONS

We presented an efficient verifiable computing solution
for encrypted cloud-based control systems. The proposed ap-

proach relies on probabilistically checkable proof that enables
the plant’s actuator to authenticate the computations performed
by the encrypted networked controller without compromising
the performance of the control scheme. The effectiveness
and real-time applicability of the proposed scheme have been
demonstrated through experiments using a remotely controlled
Khepera-IV differential-drive robot.
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