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Abstract

This paper addresses the problem of designing output feedback controllers for constrained linear systems subject to bounded
process and measurement disturbances. The proposed solution extends the set-theoretic model predictive control framework
to deal with constrained output regulation problems. In particular, this is here achieved by adequately exploiting the extended
Farka’s lemma to offline compute through bilinear optimization problems, a family of robust one-step controllable sets, and
associated output feedback control gains. It is then formally proved that such computations can be online leveraged to design
a simple switching controller capable of ensuring, by construction, that the state-trajectory of the system is always uniformly
ultimately bounded, in a finite number of steps, into a small robust control invariant region. Finally, the effectiveness and
benefits of the proposed solution are verified through a numerical example and compared with three alternative schemes.
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1 Introduction

This paper is interested in designing robust output feed-
back controllers for systems subject to state and input
constraints and persistent disturbances. Different solu-
tions have been proposed by resorting to robust Model
Predictive Control (MPC) frameworks. In [24], the au-
thors propose to decouple the state feedback controller
and state estimator’s design and then verify that robust
stability is preserved when the resulting augmented out-
put feedback controller is considered. In [10], theoret-
ical conditions are given to guarantee the stability of
nonlinear MPC when used tighter with a state-observer.
In [9], a sequence of the output feedback controller is
first offline designed for different bounds on the state-
estimation error set and then online used according to
the error realization. In [16], a robust output feedback
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MPC is designed, and the robust stability test is incor-
porated into a linear matrix inequality (LMI) condition
that is proved to be feasible under an appropriate small-
gain condition. In [18], the regulation problem is solved
employing a Luenberger state observe and a tube-based
robust MPC. Along similar lines, in [14], the conserva-
tiveness of the resulting tube-based MPC is reduced.
In [22], a tube-based MPC is also designed. However, dif-
ferent from other solutions, the proposed approach is in-
dependent of the used state-estimator algorithm. In [15],
a simplified single tube-based robust output feedback
MPC is proposed, and it is shown that its computational
complexity is equal to the one that would be obtained if
the full state would be available.

Among the non-MPC-based control strategies, of inter-
est are the solutions leveraging the concept of robust con-
trol invariant sets. By considering a polyhedral frame-
work (i.e., both the plant’s constraints and disturbances
are polyhedral sets), such a concept has been success-
fully employed to design robust state feedback control
strategies, see, e.g., [3,4,11,20,23] and references therein.
The control problem can be tackled either by directly
imposing the set-invariant property on the constraint
set or by indirectly looking for the largest invariant set
contained in it. While the first approach is desirable
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(i.e., the resulting control design problem can be formu-
lated as a Linear Programming (LP) problem), it is not
generally feasible. On the other hand, the indirect ap-
proaches are more flexible but have the drawback that
linear and convex programming approaches cannot be
directly used. Moreover, if output feedback controllers
are of interest, then the control design problem becomes
even more challenging, and very few solutions have been
proposed in the literature. In [8], by resorting to the con-
cept of output feedback control-invariant sets, the de-
sign of a robustly stabilizing dynamical output feedback
control is obtained by embedding the estimator in the
compensator structure. It is shown that the uncertainty
associated with the estimator is reduced using the con-
traction of the robust invariant set associated with the
implicit estimator. In [6], a static output feedback con-
troller is designed through new algebraic conditions en-
suring that the state trajectory is ultimately bounded
in a small robust control invariant set around the origin.
The joint design of the control gain, ultimate bounded
set, and ∆−invariant controller’s domain of attraction is
obtained through a bilinear optimization approach. The
authors also show the approach’s ability to deal with
state and dynamic-output feedback control laws.

1.1 Contribution

This paper proposes a novel set-theoretic output feed-
back controller to deal with the robust output regula-
tion problem of systems subject to process and mea-
surement disturbances and state and input constraints.
The proposed scheme resorts to the joint use of the
concepts of robust control invariant (RCI) set and ro-
bust one-step controllable sets (ROSC). In the state
feedback case, a similar paradigm has been successfully
employed to develop a computationally low-demanding
MPC solution known as dual-mode set-theoretic MPC,
see, e.g., [1,2,4,17]. However, to the best of the authors’
knowledge, such a framework has not been used to deal
with the output regulation problem. In this paper, we
show that a computationally affordable switching out-
put regulator can still be obtained in the output feed-
back case and that the design of such a controller can be
obtained by jointly leveraging extended Farkas’s lemma
arguments and bilinear programming tools. The main
features of the proposed controller can be summarized
as follows: (i) state/input constraints, as well as plant
and measurement disturbances, can be all taken into ac-
count, (ii) most of the required computations are moved
into an offline phase, so leaving online the computation
of simple set-membership tests, (iii) for any initial con-
dition belonging to the controller’s domain of attraction,
the controller ensures that the state trajectory is uni-
formly ultimately bounded into a small RCI set in a fi-
nite and offline known number of steps.

The paper is organized as follows: first, by considering
the class of static output feedback controllers, we ge-

ometrically characterized the RCI and ROSC set con-
cepts, and we present the proposed switching output
feedback control strategy. Then, by resorting to the ex-
tended Farkas lemma and bilinear optimization tools, we
provide a detailed computable control scheme. Finally,
simulation results are presented to contrast the proposed
solution with existing approaches.

Notation: The sets of real numbers, real-values column
vectors of dimension nv > 0 and real-values matrices of
dimension nr × nc, nr, nc > 0 are denoted with IR, IRnc

and IRnr×nc , respectively. A non-negative matrix M is
such that all its entries, namely Mij , are non-negative,
i.e. Mij ≥ 0,∀i, j. The vectors 0p ∈ IRn, 1p ∈ IRn

denotes columns vectors containing only zeros or ones
in all the components. Given a vector v ∈ IRnv , vk
represents the value of v at the discrete time instant
k ∈ ZZ+ := {0, 1, ...}. Given an invertible square matrix
M, M−1 denotes its inverse. Any closed convex poly-
hedral set P ∈ IRn, containing the origin in its inte-
rior, is represented by P = {x ∈ IRn : Px ≤ ϕ}, with
P ∈ IRlp×n and ϕ ∈ IRlp a positive vector; P is compact
(closed and bounded) ⇔ rank(P ) = n.

2 Preliminaries

Consider the following discrete-time Linear Time-
Invariant (LTI) system:

xk+1 =Axk +Buk +Bppk (1)
yk =Cxk +Dηηk (2)

where uk ∈ IRm is the control input, xk ∈ IRn the
state space vector, yk ∈ IRp the output vector, and
(A,B,C) are the system matrices of suitable dimensions
with rank(C) = p. The input and the state vectors
(uk, xk) are subject to the followings state and input
constraints

uk ∈ U , xk ∈ X , ∀k ≥ 0, (3)

where U ⊂ IRm, X ⊂ IRn are compact subsets with
0m ∈ U and 0n ∈ X . Moreover, pk ∈ IRs, ηk ∈ IRr

are exogenous and bounded process and measurement
disturbances, with

pk ∈ P, ∀k ≥ 0 (4)
ηk ∈ N , ∀k ≥ 0 (5)

and P ⊂ IRs and N ⊂ IRr compact subsets with 0s ∈ P
and 0r ∈ N , respectively. Without loss of generality, we
assume that all the bounding sets are described as the
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followings polyhedra:

X = {x ∈ IRn : Xx ≤ 1lx}, X ∈ IRlx×n

U = {u ∈ IRm : Uu ≤ 1lu}, U ∈ IRlu×m

P = {p ∈ IRs : Pp ≤ 1lp}, P ∈ IRlp×s

N = {n ∈ IRr : Nη ≤ 1ln}, N ∈ IRln×r

(6)

The following definitions are used along the rest of the
paper:

Definition 1 Let Q ⊂ X be a region of interest. The
system (1) under an admissible control law uk ∈ U is
said to be Uniformly Ultimately Bounded (UUB) in Q if
for all µ > 0, there exists a function T (µ) > 0 such that
∀ ∥x0∥ ≤ µ → xk ∈ Q, ∀dk ∈ D and ∀ k ≥ T (µ) [4].

Definition 2 A set Q ⊆ Xi is said Robust Control In-
variant (RCI) for (1) under (3)-(4) if [5]:

∀x ∈ Q → ∃u ∈U : Ax+Bu+Bpp ∈ Q, ∀p ∈ P (7)

Definition 3 Consider the plant model (1) under (3)-
(4), and a set Li ⊂ X . The set of states Robustly One-
Step Controllable (ROSC) to Li, namely Li+1 ⊂ X , is
defined as [5]:

Li+1 :={x ∈X : ∃u∈ U s.t. Ax+Bu+Bpp ∈ Li, ∀p ∈ P}
(8)

Definition 4 Given two sets S1,S2 ⊂ IRns , their
Minkowski/Pontryagin set sum (⊕) and difference (⊖)
are [5]:

S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}
S1 ⊖ S2 = {s1 ∈ S1 : s1 + s2 ∈ S1,∀s2 ∈ S2}

The following extension of the Farkas’ Lemma (see, for
instance, [4, 12]) plays a fundamental role in describing
the inclusion of two polyhedral sets. In this paper, the
following result will be used to describe the previous
definitions of RCI and ROSC sets algebraically.

Lemma 1 Extended Farkas’ Lemma (EFL): Consider
two polyhedral sets of IRn, defined by Pi = {x ∈ IRn :

Pix ≤ ϕi}, for i = 1, 2, with Pi ∈ IRlpi×n and positive
vectors ϕi ∈ IRlpi . Then P1 ⊆ P2 or, equivalently, P2x ≤
ϕ2, ∀x : P1x ≤ ϕ1, if and only if there exists a non-
negative matrix Q ∈ IRlp2×lp1 such that QP1 = P2 and
Qϕ1 ≤ ϕ2.

3 Problem Formulation

Consider the problem of stabilization the constrained
system (1)-(5) by means of an output feedback control
law

uk = f(yk) (9)
where f(yk) : IRp → IRm is a function characterizing the
output control logic.

The control problem addressed in this paper can be
stated as follows:

Problem 1 Find a stabilizing output feedback control
function (9) and its domain of attraction LD ⊆ X , 0n ∈
LD such that ∀x0 ∈ LD and persistent disturbances (4)-
(5), the following properties are met:

• LD is a RCI set for (1)-(5) under (9).
• There exist a small RCI region L0 ⊆ LD, 0n ∈ L0 for

(1)-(5) under (9), where the state trajectory is UUB
in a finite and a-priori known numbers of steps.

• The state and input constraints (3) are fulfilled.

To improve as much as possible the clarity of the presen-
tation, the rest of the manuscript is organized as follows.
First, by neglecting the computational details, the pro-
posed solution is geometrically described and its prop-
erties formally proved (Section 4). Then, all the compu-
tational aspects are presented (Section 5).

4 Proposed Solution

We propose solving Problem 1 by means of a switch-
ing output feedback controller exploiting set-theoretic
controllability arguments. The family of switching static
output feedback (SoF) controllers is offline designed as
follows:

• First, by considering a single SoF control law

uk = K0yk (10)

the gain K0 ∈ IRm×n is optimized to obtain a small
RCI region L0 ⊆ δX , 0n ∈ L0, 0 < δ0 ≤ 1 for (1)-(5)
satisfying the conditions (11)-(13):

(A+BK0C)L0 ⊕BpP ⊕BK0DηN ⊆ L0 (11)
L0 ⊆ δ0X (12)

K0CL0 ⊕K0DηN ⊆ U (13)

Notice that the conditions (11)-(12) enforce that L0

is an admissible small RCI set under (10) and (4)-
(5), and (13) guarantees that the input constraints
are fulfilled regardless any admissible measurement
error (5). It is worth to remark that the conditions
(11)-(13) defines a bilinear optimization problem and
that the related computational details are addressed
in subsection 5.1.
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• Second, the domain of the terminal controller, i.e.
L0, is enlarged by recursively computing a family
of robust one-step controllable (ROSC) sets, namely
{Li}N̄i=0, N̄ > 0 where each set Li ⊆ X is associ-
ated to a different SoF gain Ki ∈ IRm×n . Each pair
(Li,Ki) is computed to satisfy the inclusion condi-
tions (14)-(17):

(A+BKiC)Li ⊕BpP ⊕BKiDηN ⊆ Li−1 (14)
Li ⊆ X (15)

KiCLi ⊕KiDηNLi ⊆ U (16)
Li−1 ⊆ Li (17)

while N̄ (i.e., the number of ROSC sets computed) is
constructively obtained by recursively applying (14)-
(17) until the set growth saturates, i.e.,:

N̄ =

(
min
j≥1

j − 1

)
s.t. Lj = Lj−1 (18)

Therefore, LD :=
⋃N̄

i=1 Li ⊆ X defines the Domain
of Attraction (DoA) associated to the family of SoF
controllers {Ki}N̄i=0.

Remark 1 Please note that the set containment con-
ditions (14)-(16) are necessary to define a robust one-
step controllable set (see Definition 3) under the SoF law
uk = Kiyk. On the other hand, (17) is not strictly neces-
sary, however, it is instrumental to ensure the feasibility
of the proposed output feedback controller if rank(C) < n
and/or N ̸= 0r, see, e.g., Propositions 1. The computa-
tional details related to the bilinear optimization problem
(14)-(17) are given in subsection 5.2.

4.1 Set-theoretic with output feedback

In this subsection, we consider the case where the entire
state vector cannot be measured. Without loss of gen-
erality, in what follows we assume that C ∈ IRp×n and
p < n.

Proposition 1 Consider the plant model (1)-(5) with
p < n, a family of SoF controllers {Ki,Li}N̄i=0 satisfying
the conditions (10)-(18) and an initial condition x0 ∈
LD. If at each time instant the īk−th SoF controller (i.e.,
uk = Kīkyk) is selected according the switching rule (19)

īk =

{
N̄ − k if k < N̄

0 otherwise
(19)

then uk ∈ U and xk+1 ∈ Lmax(0, īk−1), ∀ k and the re-
cursive feasibility of the control strategy is guaranteed.
Moreover, LD is a RCI set and the state trajectory is
UUB into the terminal set L0 in at most N̄ steps.

Proof 1 If p < n, C is not invertible and the set Li

containing x0 cannot be found. On the other hand, by
leveraging the nested nature of the computed ROSC sets
(see condition (17)), it is always true that x0 ∈ LN̄ .
This choice, by construction, ensures that u0 = KN̄y0
is admissible (i.e., u0 ∈ U) and that the one-step evolu-
tion is constrained into the predecessor set LN̄−1 (i.e.,
x1 ∈ LN̄−1) regardless of any admissible disturbance re-
alization (4)-(5), see (14)-(17). As a consequence, the set
LD is a RCI set. Moreover, at k = 1, the SoF controller
u1 = KN̄−1y1 guarantees that u1 ∈ U and x2 ∈ LN̄−2.
By recursively applying the same procedure for k > 1,
i.e., by using the monotonically decreasing switching law
(19), the recursive feasibility of the strategy is guaran-
teed [1], the RCI region L0 is reached in N̄ steps, and the
UUB property is fulfilled.

4.2 Set-theoretic with noisy state feedback

In this subsection, we consider the case where the en-
tire state vector is measured with a bounded distur-
bance ηk ∈ N (or equivalently, that the state measure-
ments are subject to a bounded measurement noise ηk
uniformly distributed in its domain N ). Without loss of
generality, in what follows, we assume that C ∈ IRn×n

and rank(C) = n, which implies that C is invertible.

Proposition 2 Consider the plant model (1)-(5) with
C ∈ IRn×n and invertible, a family of SoF controllers
{Ki,Li}N̄i=0 satisfying the conditions (10)-(18), the sets
{L̃i}N̄i=0, L̃i := Li ⊖ C−1DηN , and an initial condition
x0 ∈ LD. If at each time instant the ik−th SoF controller
(i.e., uk = Kik

yk) is selected according to the switching
rule (20)

ik=

{
min

(
J(yk, N̄), N̄

)
if k = 0

min
(
J(yk, ik−1 − 1), max(ik−1 − 1, 0)

)
if k > 0

(20)
J(yk, imax) := min

0≤i≤imax

i s.t. C−1yk ∈ L̃i (21)

then uk ∈ U , xk+1 ∈ Lmax(0, ik−1), ∀ k, and the recursive
feasibility of the control strategy is guaranteed [1]. More-
over, the state trajectory is UUB into the terminal set L0

in at most i0 steps.

Proof 2 If C is invertible, we can estimate xk from yk
as:

x̂k = C−1yk (22)
By expanding the right hand side, we obtain that

x̂k = C−1(Cxk +Dηηk) = xk + C−1Dηηk (23)

Therefore, since ηk ∈ N , the resulting estimation error
xk − x̂k is bounded by the set Ek = −C−1DηN . By re-
sorting to Minkowski set difference arguments, we can
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conclude that

if x̂k∈L̃i=Li ⊖ (−C−1DηN ) then xk ∈ Li (24)

Consequently, at each time instant, the switching index
(20) prescribes the use of the SoF associated with the
smallest set Li ensuring that xk ∈ Li. By following the
same arguments used in the proof of Proposition 1, at
each time step, the switching index ik decreases at least by
one unit. The latter is sufficient to ensure the recursive
feasibility of the strategy, that L0 is reached in at most i0
steps and that the UUB property holds true.

Remark 2 In the worst-case scenario, the switching sig-
nal ik obtained by (20) is upper bounded by īk computed
as in (19), i.e. ik ≤ īk, ∀ k. As a consequence, the switch-
ing logic (19) can still be used if C is invertible. On the
other hand, the logic (20), by exploiting that C is invert-
ible, is capable of better estimating the set containing the
current measurement yk. As a consequence, with (20), a
faster convergence to L0 is expected. 2

Remark 3 Note that the containment condition (17)
can be removed/relaxed if C is invertible and N = 0r.
The main rationale is that in this case there is no am-
biguity to determine (using the switching logic (20)) to
which set the state xk belongs ∀ k. The problem of relax-
ing the condition (17) in the output feedback case, when
p < n, is an open problem not addressed in this work. 2

4.3 Algorithm

The complete control algorithm is here summarized:

Algorithm 1 Set-Theoretic Output Feedback (ST-OF)
—Offline (given (1)-(5))—

1: Build a small terminal RCI region L0 and associated
SoF gain K0 pair (L0, K0) as in (11)-(13);

2: Build a family of ROSC sets {Li} and associated
SoF controller gains {Ki} as in (14)-(17), until the
stopping condition (18) is satisfied;

3: if rank(C) = n then compute

{L̃i}N̄i=0, L̃i := Li ⊖ C−1DηN

4: end if
5: Store {Ki, L̃y

i }N̄i=0 for online use.
—Online (∀ k, x0 ∈ LD)—

1: Given yk, compute ik as follows:

ik =

{
īk by (19) if rank(C) < n

ifk by (19) or (20) if rank(C) = n
(25)

2: Apply uk = Kikyk;

Remark 4 Please note that if rank(C) = n and N =
0r then the ST-OF algorithm defines a switching set-
theoretic state feedback (ST-SF) controller, similar to the
dual-mode solution proposed in [1]. Differently from [1],
the proposed algorithm does not require the online solu-
tion of an optimization problem to compute the control
action. Indeed, the controller gains Ki are offline com-
puted along with the controllable sets Li. 2

5 Implementation Details

In this section, the geometric conditions (11)-(13) and
(14)-(17) are translated into computable algebraic rela-
tions. From now on, we assume that the controllable sets
Li, for i = 0, . . . , N̄ , are compact.

According to (12), (13), (15) and (16), any candidate set
Li must satisfy Li ⊆ X and the control admissibility
condition

xk ∈ Ux
i ,∀xk ∈ Li and ηk ∈ N , (26)

where, by definition,

Ux
i ={xk∈ IRn, ηk∈ IRr :U(KiCxk+Dηηk)≤1lu ,∀ηk∈N}

(27)
Since any admissible RCI and ROSC set must satisfy
the state constraints X , the inclusion Li ⊆ X must be
imposed. Moreover, to provide some degrees of freedom
in the shape of Li, we add further auxiliary constraints
defined by the following closed polyhedral set Ri,

Ri = {x ∈ IR : Rixk ≤ 1ri}, Ri ∈ IRri×n (28)

As a consequence, Li is described as

Li = {x ∈ IR : Lixk ≤ 1li}, Li ∈ IRli×n, rank(Li) = n,
(29)

where, by construction,

Li =

[
Ri

δiX

]
, and 1li =

[
1ri

1lx

]
, (30)

with li = ri + lx > n, and 0 < δi ≤ 1,∀ i.

Remark 5 A necessary and sufficient condition for
Li ∈ IRn to be compact, is that the associated matrix
Li ∈ IRli×n has full-column rank and li > n. Alge-
braically, these properties can be described by the ex-
istence of a left-inverse matrix Ji ∈ IRn×li such that
JiLi = In [21]. 2

5.1 Small Robust Control Invariant Region L0 and K0

In this subsection, we directly leverage the Extended
Farkas’ Lemma to build an admissible small RCI set
from the definition (11)-(13).
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The small RCI-set L0, can be obtained from (29)-(30)
(for i = 0) by minimizing the real non-negative scalar
δ0 ≤ 1 in (12). However, to obtain well-conditioned ini-
tial solutions, we add a further set inclusion

S ⊆ L0, (31)

where S is a given compact and small shape-set defined
by the polyhedron

S = {x ∈ IRn : Sx ≤ 1ls} , S ∈ IRls×n, ls > n. (32)

The following algebraic relations, obtained by applying
the Extended Farkas’ Lemma (refer to Remark 6 and to
the proof of Proposition 3 for further details) describe,
in a matrix form, the conditions that the pair (L0,K0)
must satisfy:

• the RCI conditions (11)-(13) ⇔ ∃ non-negative ma-
trices H0 ∈ IRl0×l0 , V0 ∈ IRl0×lp and W0 ∈ IRl0×lη :

H0L0 =L0(A+BK0C) (33)
V0P =L0Bp (34)
W0N =L0BK0Dη (35)

H01l0 + V01lp +W01lη ≤ 1l0 (36)
M0L0 =UK0C (37)
Z0N =UK0Dη (38)

M01l0 + Z01lη ≤ 1lu (39)

• the inclusion (31) ⇔ ∃ a non-negative matrix T0 ∈
IRl0×ls :

T0S = L0, T01ls ≤ 1l0 (40)

• L0 compact (see Remark 5) ⇔ ∃ J0 ∈ IRn×l0 :

J0L0 = In (41)

Notice that the algebraic relation (33) presents two
bi-linear terms involving the pair of matrix deci-
sion variables (H0, L0) in its left-hand side, and
(L0,K0) in the right-hand side. This last bi-linearity
also appears in (35). Likewise, the left hand side
of inequality (37) has a bilinear product involving
the pair (M0, L0). The remaining conditions are all
linear with regard to the set of decision variables
Γ0 = {H0, V0,W0, L0,K0,M0, Z0, T0, J0, δ0}. Thus, a
solution for Step 1 in Algorithm 1 can be obtained from
the following bi-linear optimization problem:

minimize
Γ0

δ0

subject to (33) − (41), 0 < δ0 ≤ 1

fℓ(·) ≤ φℓ

(42)

where fℓ(·) ≤ φℓ, for ℓ = 1, . . . , ℓ̄, are additional con-
straints used to reduce the decision variable space. These

bounds are essential to deal with non-linear or non-
convex optimization problems and promote an efficient
search of the optimal solution. Please refer to section 6
for a discussion about the implementation of (42) using
the nonlinear KNITRO solver.

5.2 Family of one-step controllable sets Li and Ki

The computation of the ROSC polyhedral sets is based
on the following Proposition.

Proposition 3 Consider L0 obtained from (42). Then
let the compact sets Li, for any i = 1, . . . , N̄ , be defined
by (29)-(30). Then,Li is ROSC toLi−1 by SoF, andLi ⊇
Li−1, if and only if there exist Ki ∈ IRm×p, Li ∈ IRli×n

and non-negative matrices Hi ∈ IRli−1×li , Vi ∈ IRli−1×lp ,
Wi ∈ IRli−1×lη , and Ti ∈ IRli×li−1 such that

HiLi =Li−1(A+BKiC) (43)
ViP =Li−1Bp (44)
WiN =Li−1BKiDη (45)

Hi1li + Vi1lp +Wi1lη ≤ 1li−1
(46)

MiLi =UKiC (47)
ZiN =UKiDη (48)

Mi1li + Zi1lη ≤ 1lu (49)
TiLi−1 =Li (50)
Ti1li−1 ≤ 1li (51)

JiLi = In (52)

Proof: By definition, the setLi is ROSC toLi−1 by SoF,
with matrix Ki, if it satisfies (14)-(17). The conditions
(14)-(15) can be equivalently described by

Li−1

[
AKi Bp BKiDη

]
xk

pk

ηk

 ≤ 1li−1 ,

∀xk, pk and ηk : diag(Li, P,N)


xk

pk

ηk

 ≤


1li

1lp

1lη

 ,

(53)

where AKi
= (A + BKiC) and diag(Li, P,N) stands

for the block-diagonal matrix formed from the argument
matrices.

Thus, by the Extended Farkas’ Lemma, (53) is equiv-
alent to the existence of a non-negative matrix Qi =[
Hi Vi Wi

]
∈ ℜli−1×(li+lp+lη) such that:

Qidiag(Li, P,N) = Li−1

[
AKi

Bp BKiDη

]
,

Qi [1
T
li
1T
p 1T

η ]T ≤ 1li−1

(54)
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which corresponds to (43)-(46). Moreover, the condition
(16), which is algebraically described by (26), can be re-
written in the matrix form

U
[
KiC Dη

] [ xk

ηk

]
≤ 1lu ,

∀xk and ηk : diag(Li, N)

[
xk

ηk

]
≤

[
1li

1lη

]
.

(55)

By resorting to the extended Farka’s Lemma and by fol-
lowing the same reasoning used for (54), (55) is equiva-
lent to the existence of non negative matrices Mi and Zi

verifying (47)-(49). Furthermore, the inclusion Li−1 ⊆
Li (see (17)), which, in a matrix form, reads

Lixk ≤ 1li ,∀xk : Li−1xk ≤ 1li−1
,

is equivalently described (using the extended Farka’s
Lemma) by the existence of a non-negative matrix Ti

such that conditions (50) and (51) hold true. Finally, the
condition (52) imposes that the set Li is compact (see
Remark 5). 2

Remark 6 In the above demonstration if we consider
i = 0 and Li−1 = L0, then it is possible to prove, see
[6,19], that the algebraic relations (33)-(41) describe the
RCI set L0. 2

Now, notice that the algebraic relations (43) and (47)
present bi-linear terms involving the pairs of matrix de-
cision variables (Hi, Li) and (Mi, Li). Furthermore, be-
cause both Li−1 and Ki−1 are known in the current
step i, the other ROSC and inclusion conditions are
all linear with regard to the set of decision variables
Γi = {Hi, Vi,Wi,Mi, Zi, Li,Ki, Ti, Ji, δi}. In order to
maximize the size of Li, we introduce the following aux-
iliary inequalities

γt,iLivt ≤ 1li , t = 1, . . . , t̄. (56)

where γt,i, for t = 1, . . . , t̄, are real positive scaling fac-
tors associated to a given set Vi of t̄ > 0 directions
vt ∈ IRn, where

Vi = {γt,ivt, t = 1, . . . , t̄}. (57)

Hence, the computation of the ROSC set Li and associ-
ated SoF matrix Ki can be obtained from the following
bi-linear optimization program

maximize
Γi,γt,i

Ji =

n∑
t=1

γt,i

subject to (43) − (52) and (56),
δi−1 < δi ≤ 1,

fℓ(·) ≤ φℓ.

(58)

Remark 7 Note that the condition (56) imposes that
Vi ⊆ Li. Moreover, at each step i, the objective function
Ji =

∑n
t=1 γt is used to maximize the size of Li w.r.t. the

set of directions in Vi.Notice that the setLi obtained from
(58) depends on the used directions, which are designer’s
choices. Moreover, the criterion

Ji − Ji−1 =

n∑
t=1

(γt,i − γt,i−1) ≤ tol. (59)

with tol a small tolerance value, can be used to numeri-
cally approximate the stopping condition (18) used by the
ST-OF offline algorithm. In simpler terms, if at the iter-
ation i > 0 the condition (59) is verified, then N̄ = i−1.

Remark 8 In the proposed solution, the computation
of the RCI and ROSC sets is obtained by resorting to
the bilinear optimization problems (42) and (58), respec-
tively. Consequently, the complexity of the provided so-
lution increases with the dimensions of the plant (i.e.,
system model, state and input constraints, and distur-
bances). For the sake of completeness, Table 1 summa-
rizes the number of variables and constraints (equalities
and inequalities) used in the proposed RCI and ROSC
optimization problems. 2

6 Numerical Examples

In this section, some numerical results are presented to
verify the proposed control strategy’s effectiveness and
compare it with three existing approaches. The simu-
lations have been performed on Matlab 2019b, using a
Windows 10 PC equipped with an AMD Ryzen 5 3600
6-Core Processor (3.59 GHz) and 16,0 GB of RAM.

6.1 Example 1

In particular, we consider a LTI system (1) defined by
the matrices

A =

[
1 1

0 1

]
, B =

[
2

1

]
, Bp =

[
1

1

]
.

The state and control constraints, and the disturbance
limits in (6) are shaped by the matrices

X =


0.8 0

0 1

−1 0

0 −1

 , U =

[
1.25

−1

]
, P =

[
10

−10

]
, N =

[
10

−10

]
,

corresponding to −1 ≤ x1 ≤ 1.25, |x2| ≤ 1, −1 ≤ u ≤
0.8, |p| ≤ 0.1, and |η| ≤ 0.1, respectively. The matrices
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RCI set L0 ROSC sets Li

# of Variables mp+ l0(n
2 + l0 + lp + ln + lu + ls) + luln mp+ li−1(n+ l2i + lp + ln) + lu(li + ln) + nli

# of Equalities l0(n
2 + s+ r) + lu(n+ r) + n2 li−1(n+ s+ r) + lu(n+ r) + lin+ n2

# of Inequalities l0 + lu + ls li−1 + lu + li
Table 1
Number of variables, equality and inequality constraints used in the RCI and ROSC optimization problems.

C and Dη related to output equation (2) will be defined
in the sequel, depending if the used control law is ST-SF
or ST-OF.

As in [6], the efficient KNITRO solver [7] has been used
to solve the required bilinear optimizations. In particu-
lar, in the optimization problems (42) and (58), fℓ and
φℓ are tuned such that each element of the positive defi-
nite variables is bounded in the interval [0, 100], each el-
ement of R,K is in [−100, 100], and each element of J is
in [−1000, 1000]. Note that by using KNITRO, we have
obtained an optimal hybrid solution that can be consid-
ered halfway between a local and a global optimum. This
is obtained by applying a local solver (Interior/CG al-
gorithm) starting from multiple initial guesses properly
covering the decision space.

6.1.1 State feedback controller

In this subsection, we assume a scenario where the entire
state vector can be measured with some bounded errors,

i.e., C = I2 and Dη =
[
1 1

]T
. Therefore, in this partic-

ular setup, the proposed strategy is a ST-SF controller
(see Remark 4).

The ST-SF controller is offline designed considering t̄ =
4 auxiliary constraints (56), where the normalized vec-
tors vt point towards the vertices of the state constraints
set X . Furthermore, the auxiliary polyhedral sets Ri in
(28) are such that ri = 3,∀ i. By following the offline
steps indicated in Algorithm 1, N̄ = 6 pairs (Ki,Li)
have been computed, see Table 2. Moreover, in the table,
it is possible to note that the cost function Ji and area
of the polyhedral sets, namely “Li area," monotonically
increase with i while the ∥Ki∥∞ decreases. In Fig. 1, the
obtained ROSC sets Li are plotted, showing that their
union covers the entire admissible state constraint re-
gions X . Moreover, in the same figure, we have shown
(using a black dashed dot (-.) line) the plant’s state tra-
jectory evolution applying the proposed controller (us-
ing the switching rule (20)) starting from an initial con-
dition x0 = [1.25, −1]T ∈ L6 (i.e., i0 = 6). The obtained
results show that in 5-step the state enters the terminal
RPI region, i.e., x5 ∈ L0, where it remains confined de-
spite the presence of process and measurement bounded
noises. Such a result is compatible with the theoretical
worst-case convergence time equals to i0 = 6 (see Propo-
sition 2).

Step i Ki Li Area Ji

0 [-0.4805 -0.5000] 0.2584 1.2887

1 [-0.4967 -0.4966] 0.7330 2.6329

2 [-0.8407 -0.4966] 1.8310 3.4379

3 [-0.5032 -0.1955] 2.9355 4.4746

4 [-0.2088 -0.4665] 3.7965 5.0647

5 [-0.2250 -0.3861] 4.4456 5.8774

6 [-0.1772 -0.4914] 4.5000 6.0299
Table 2
ST-OF, offline design for ri = 3 and t̄ = 4.

Fig. 1. ST-SF: ROSC sets and state trajectory evolution from
x0 = [1.25, −1]T .

6.1.2 State feedback: comparison

Here, the ST-SF controller performance are compared
with the dual-mode state feedback controller proposed
in [1]. To provide a fair comparison, here we assume the
absence of measurement noise (ηk = 0, ∀ k as assumed
in [1]). Moreover for [1], exact polyhedral robust one-
step controllable sets are computed [5]. Furthemore, the
same terminal RPI set L0 is used in the offline computa-
tions of both strategies, and, the online simulation has
been repeated 1000 times considering different noise re-
alizations, and different initial states x0 belonging to the
two outermost ROSC sets.

The obtained results are summarized in Table 3. First,
it is possible to note that a slightly smaller number of
ROSC sets is computed in [1] to cover X . The latter finds
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Fig. 2. State trajectory for x0 = [1, −0.8]T , under state
feedback control, and until the RCI region L0 is reached:
proposed solution vs [1].

Avg. CPU time
[s] until
xk ∈ L0

N̄
Avg.
steps to
L0

Alg. 1 with (19) 5.9770e-07 6 5.00

Alg. 1 with (20) 2.8134e-05 6 3.90

[1] 0.05s 5 3.04
Table 3
State feedback control: proposed solution vs [1].

justification in the fact that for [1] we have computed, at
each step, the biggest controllable sets, while in the pro-
posed approach, we impose the further constraint that
Li is an admissible ROSC set if and only if each x ∈ Li

is one-step controllable to Li−1 under the same admis-
sible control gain Ki. This also justifies why in our so-
lution, the converge of xk to L0, requires, in average a
slightly bigger number of steps (5 using (19), 3.90 using
(20), and 3.04 in [1]). This can also be noted in Fig. 2,
where the state trajectory for a single initial condition
is reported. On the other hand, the proposed solution
outperforms [1] in terms of average computation time
needed to online compute the control action. The latter
is justified by the fact that contrary to [1], the proposed
approach offline computes also the controller gain Ki,
so making the strategy better suited for strict-real time
control system contexts or where limited computational
capabilities are available. Last but not least, differently
from our approach, the solution in [1] cannot be used if
the entire state vector cannot be measured.

6.1.3 Output feedback controller

In this subsection, we assume that only a noisy version
of the first state x1 can be measured. In particular, C =
[1 0] and Dη = 1. To build the RCI and ROSC sets, we
have used a configuration with more degrees of freedom
by choosing (t̄ = 8, ri = 4). This setup, with respect to

Fig. 3. ST-OF: DoA for (t̄ = 8, ri = 4), and state trajectory
for x0 = [1.25, 0.047]T ∈ L6.

Step i Ki Li Area Ji

0 [-0.7500] 0.3120 2.3466

1 [-0.7803] 0.4054 2.7227

2 [-0.8686] 0.7949 4.1941

3 [-0.8476] 1.7372 5.9305

4 [-0.6979] 2.5962 7.3990

5 [-0.6111] 3.0652 8.0587

6 [-0.6111] 3.1510 8.2741
Table 4
ST-OF, offline design for (t̄ = 8, ri = 4).

the state-feedback case, contains four more additional
normalized vectors vi, each orthogonal to one face of X ,
and one more face in Ri. In Table 4, a summary of the
results for the case (t̄ = 8, ri = 4) is reported, where the
stopping condition (59) is reached for N̄ = 6 when the
ROSC sets do not entirely cover X , see, e.g., the DoA
shown in Fig. 3. Finally, the black dashed dot (-.) line in
Fig. 3, representing the state-trajectory under ST-SOF
(for x0 = [1.25, −1]T ∈ L8), confirms that the proposed
output controller can robustly steer, is a finite number
of steps (by design ≤ 8), the state vector inside the RPI
region L0. By observing the results in Tables 2 and 4, it
is possible to note that in the state feedback case, the
DoA of the controller covers the whole state-constraint
region; whereas, in the output feedback case, the DoA is
only a subset.

6.1.4 Output feedback: comparison

We contrasted our approach with the output feedback
controllers proposed in [6,8]. First, it is worth mention-
ing that all the strategies share the same idea of comput-
ing the DoA offline. However, in [6], the DoA is associ-
ated with a single control gain, while in [8], an LP opti-
mization problem is used to online compute the control
inputs.
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K DoA Area L0 Area

[6] for max DoA [-0.6111] 3.1510 3.1510

[6] for min L0 [-0.7500] 2.1698 0.1600

[8] - 2.5962 -
Table 5
ST-OF: comparative results

Table 5 summarizes some relevant facts about the con-
trol solutions in [6, 8]. First, since the solution in [6] re-
sorts to a single controller gain, a trade-off exists be-
tween the size of the terminal RCI set and the DoA of
the controller. This is shown in the first two rows of Ta-
ble 5 where [6] is tuned to either maximize the DoA or
minimize the RCI set L0. In the first case, the area of
the DoA and the control gain K are exactly equal to the
ones computed by our proposed strategy (see Table 6).
However, the strategy fails to find a smaller RCI set L0.
In the second case, the area of the RCI set L0 is 95%
smaller than the one computed by our solution, but the
estimated DoA is 45% smaller.On the other hand, the
last line of the table shows the domain of attraction com-
puted by resorting to the methodology described in [8,
section III]. In this case, the obtained DoA is equal to
L4 computed by our approach. Consequently, the DoA
of [8] is contained inside the DoA of the proposed solu-
tion and 21.4% smaller. Moreover, [8] does not compute
any inner RCI set L0.

6.2 Example 2

In this subsection, we apply the proposed solution to a
Multi-Input-Multi-Output (MIMO) system. As bench-
mark system, we consider the continuous-time model
of a four-tank system [13], whose parameters, state
and control constraints are borrowed from [25]. The
corresponding discrete-time system, obtained via ZOH-
discretization with sampling period Ts = 5 seconds, has
the following system’s matrices:

A =


0.9705 0 0.0207 0

0 0.9663 0 0.0195

0 0 0.9790 0

0 0 0 0.9802

 ,

B =


24.6291 0.5213

0.5737 32.7684

0 49.4735

57.7531 0

 , CT =


1 0

0 1

0 0

0 0

 .

The state and control constraints are−0.45 ≤ x1 ≤ 0.71,
−0.46 ≤ x2 ≤ 0.7, −0.45 ≤ x3 ≤ 0.65, −0.46 ≤ x4 ≤
0.64, |u1| ≤ 0.4528 × 10−3, |u2| ≤ 0.5556 × 10−3. The
system is subject to a process disturbance acting on the
control inputs, with Bp = B and |p1| ≤ 0.1132 × 10−4,

Step i Li hyper-volume Li hyper-volume % of X

0 1.1120 68.3

1 1.1808 72.5

2 1.2604 77.4

3 1.3480 82.8

4 1.4271 87.6

5 1.5025 92.3

6 1.6003 98.3

7 1.6271 99.9
Table 6
ST-OF, offline design for (t̄ = 16, ri = 12).

|p2| ≤ 0.1389 × 10−4. Moreover, the output measure-
ments are noiseless, i.e., Dη = 0.

The numerical results shown in Table 6 have been ob-
tained for (t̄ = 16, r = 12), where the chosen 16 di-
rections for Vi corresponds to the vertices of the state-
constraint set X . The computed RCI set L0 presents a
hyper-volume of 1.1120 that is 68.3% of X . On the other
hand, the latest ROSC set, namely L7, presents a hyper-
volume of 1.6271 that is 99.9% of X . Such results im-
ply that the DoA of the proposed controller is almost
equal to the admissible region X and that the proposed
controller will confine, in at most 7 steps, the state tra-
jectory within an RCI region L0 that is roughly 32%
smaller than the DoA. For the same MIMO system, the
strategy in [6], which considers a single constant control
gain, obtains a DoA equal to X , but the RCI set has
a hyper-volume of 1.3542 that is 21.8% bigger than the
one obtained with the proposed switching controller.

7 Conclusion

This paper has presented a novel output feedback con-
troller for constrained linear systems subject to bounded
process and measurement noises. The proposed solution
has exploited the extended Farkas’ lemma, controllabil-
ity, and set invariance arguments to offline design a fam-
ily of static output feedback control gains and associ-
ated domains of attraction. Online admissible and ro-
bust control actions have been computed by resorting
to a switching policy defined on the offline determined
gains. Given the absence of online optimizations, the pro-
posed strategy is well-suited for strict real-time applica-
tions. Moreover, as one of its main features, it can be
formally proved that the proposed controller guarantees
that the state trajectory is always uniformly ultimately
bounded, in a finite number of steps, into a small control
invariant region. A promising research direction to ob-
tain less conservative output feedback solutions points
to switched dynamic controllers, whose structure may
be inspired by [6].
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