
Round Optimal Secure Multisignature Schemes
from Lattice with Public Key Aggregation and

Signature Compression

Meenakshi Kansal and Ratna Dutta

Department of Mathematics
Indian Institute of Technology Kharagpur

INDIA

Multisignature

Unlike ordinary digital signature schemes, multisignatures are aimed to
achieve the following objectives.

(i) A group of users will collaboratively produce the signature on the
same message.

(ii) The size of the multisignature is asymptotically same as the size of a
single signature.

(iii) The public keys should also be aggregated into a single public key
where the size of the aggregated public key is asymptotically same
as that of a single public key.

Security. No one should be able to approve the document on behalf of
any of the N signers.

Unforgeability: Even if a single signer say Uj is honest among Ui’s then
any set of signers {Ui}li=1 containing Uj should not produce a valid
multisignature.

Plain Public Key Model. In this model, the users do not need to prove
the knowledge or possession of their secret key.

Application. Storage and bandwidth costs are subject to minimization
like blockchain.

Multisignature: History

1983 Itakura and Nakamura: Introduced multisignature.

2016 Bansarkhani and Sturm: First lattice based multisignature.

2018 Boneh, Drijvers and Neven: First compact multisignature
and short accountable subgroup multisignature using
pairings.

2020 Kansal and Dutta: First lattice based multisignature
achieving both public key aggregation and signature
compression. First lattice based accountable subgroup
multisignature.

Table : Comparative summary of multisignature resistant to rogue key attack and
secure in the ROM

MS
Communication Storage Computation
|apk| |msig| Rs |pk| |sk| sign verify

[1] |G2| |G1| 1 |G2| |Zq| 1E 2P
[2] |G| 2|G|+ 3|Zq| 2 |G|+ 2|Zq| |Zq| 5E 6E

[3] |G| 2|G| 1 |G|+ 2|Zq| O(l2) 4E 3P+1E
[4] |G| |G|+ |Zq| 3 |G| |Zq| 2E 1E
[5] − O(λ) 3 O(λ) O(λ) 2PM (N + 1)PM

Ours O(λ2) Õ(λ2) 1 Õ(λ2) Õ(λ2) 2MM 2MM

[1] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multisignatures for smaller
blockchains. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 435464. Springer, 2018.
[2] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multisignatures. In On the Security of Two-Round
Multi-Signatures, page 0. IEEE, 2019.
[3] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel: Multisignatures for
consensus.
[4] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr
multisignatures with applications to bitcoin. Designs, Codes and Cryptography, 87(9):21392164,
2019.

[5] Rachid El Bansarkhani and Jan Sturm. An efficient lattice-based multisignature scheme with

applications to bitcoins. In International Conference on Cryptology and Network Security, pages

140155. Springer, 2016.

Table : Comparative summary of accountable subgroup multisignature resistant to
rogue key attack and secure in the ROM

ASM
Communication Storage Computation
|apk| |msig| |pk| |sk| |mk| sign verify

[1] |G2| |G1|+ |G2| |G2| |Zq| |Zq| 1E 3P

Ours O(λ2) O(λ2) Õ(λ2) Õ(λ2) O(λ2) 1MM (2 + |S|)MM

|apk|: size of the aggregated public key, |msig|: size of the compressed signature, |pk|: size of a

public key, |sk|: size of a secret key, |mk|: size of group membership key, G, G1, G2 are groups of

prime order q, |G|: bit size of an element of the group G, λ: security parameter, Rs: number of

rounds in the signature generation algorithm, E: number of exponentiations, P: number of pairings,

N : number of signers, |S|: size of the subgroup S, PM: number of polynomial multiplications,

MM: number of matrix multiplications.

[1] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multisignatures for smaller

blockchains. In International Conference on the Theory and Application of Cryptology and

Information Security, pages 435464. Springer, 2018.

The MS

MS.pg(1λ)→ (Y = (n, q,m, σ,H0, H1, H2,A)).

I n of size O(λ),

I q of size O(n3),

I m ≥ 2ndlog qe,
I σ of size Ω(

√
n log q log n),

I H0 : {0, 1}∗ → Zm×nq ,

I H1 : {0, 1}∗ → Dm×n
Zq,σ

,

I H2 : {0, 1}∗ → Dn×n
Zq,σ

,

I A ∈ Zn×mq .

MS.kg(Y, i)→ (pki, ski).

I Chooses Vi ∈ Dm×m
Zq,σ

.

I Computes Yi = A · Vi mod q ∈ Zn×mq .

I Sets pki = Yi ∈ Zn×mq and ski = Vi ∈ Dm×m
Zq,σ

.

MS.kag(Y,PK)→ pkagPK.

I PK = {pki1 , pki2 , . . . , pkil}.
I IPK = {i1, i2, . . . , il}.
I computes pkagPK =

∑
i∈IPK

pki ·H1(pki,PK) ∈ Zn×nq .

Figure : Multisignature Outlook

U
1

U
2

U
n

Designated
Combiner

mSig Anyone
Verify

kag

T
1,M

T
2,M

T
n,M

kg

kg

kg

sg

MS.sg(Y,PK,SK,M)→ msigPK,M . Each signer i ∈ IPK does the
following.

I Generates

Ti,M = H0(M,PK) + ski ·H1(pki,PK) ·H2(M).

I Sends Ti,M to the designated signer.

The designated signer does the following.

I Verify
||Ti,M || ≤ ||H0(M,PK)||+ σ3m

√
n,

A · Ti,M = A ·H0(M,PK) + Yi ·H1(pki,PK) ·H2(M).

I If the verification fails, return ⊥.

I Otherwise, issue the multisignature msigPK,M where

msigPK,M =
(
TM , pkagPK, IPK,M

)
,

TM =
∑
i∈IPK

Ti,M mod q

MS.vrf
(
Y,msigPK,M

)
→ (0 or 1).

I Verify

A · TM = A · |IPK| ·H0(M,PK) + pkagPK ·H2(M),

||TM || ≤ |IPK| · (||H0(M,PK)||+ σ3m
√
n).

Theorem 1
suppose that there exists a forger F running in time tF can break the
security under unforgeability of our scheme MS with non-negligible
advantage εF making qs signature queries and qH hash queries. Then
there exists an algorithm S running in time
(tF + tqH + tqs + textra) · 8q2H · εF · log(8qH/εF), that for a given
P ∈ Zn×mq finds a nonzero V ∈ Zm×mq satisfying ||V|| ≤ σ

√
m and

P · V = 0 mod q with non negligible advantage εF
8qH

. Here

m ≥ 2ndlog qe, σ is of size Ω(
√
n log q log n), q is of size O(n3), tqH , tqs

respectively denote the time taken to answer hash and signature queries
and textra is extra time taken by the algorithm S.

Accountable Subgroup Multisignature

It enables a subset S of a set of potential signers G to jointly produce a
multisignature on a given message such that it satisfies flexibility and
accountability.

I Flexibility means that the verification is upto the verifier.

For instance, consider a case when a company X signs a contract of
a company Y. Suppose a subset S of X containing chief operating
officer, chief financial officer and chief marketing officer sign the
contract and sends the signature to Y. If Y prefers to have the
signature of the chief executive officer then Y may reject the
signature.

I Accountability refers to the fact that the set S is known to the
verifier.

The ASM

ASM.pg(1λ)→ Y = (n, q,m, σ,H0, H1, H2, H3,A).

I n of size O(λ), q of size O(n3), m ≥ 2ndlog qe, σ of size
Ω(
√
n log q log n),

I H0 : {0, 1}∗ → Zm×nq , H1 : {0, 1}∗ → Dm×n
Zq,σ

,

H2 : {0, 1}∗ → Zn×nq , H3 : {0, 1}∗ → Dn×n
Zq,σ

where

Dk×l
Zq,σ

= {M ∈ Zk×lq : ||M|| ≤ σ
√
k},

I A ∈ Zn×mq .

ASM.kg(Y, i)→ (pki, ski). Each user i does the following.

I Choose Vi ∈ Dm×m
Zq,σ

and compute Yi = A · Vi mod q ∈ Zn×mq .

I Set pki = Yi ∈ Zn×mq and ski = Vi ∈ Dm×m
Zq,σ

.

ASM.kag(Y,PK)→ pkagPK.

I Outputs the aggregated public key

pkagPK =
∑
i∈IPK

pki ·H1(pki,PK) ∈ Zn×nq .

ASM.gmk(Y,PK,SKPK)→ mki,PK. Each user i ∈ IPK does the
following.

I Generate pkagPK ← ASM.kag(Y,PK).

I Compute Mj,i = H2(pkagPK, j) + ski ·H1(pki,PK) ·H3(j) for all
j ∈ IPK.

I Send Mj,i to signer j with ||Mj,i|| ≤ ||H2(pkagPK, j)||+ σ3m
√
n.

On receiving Mi,j \ {i} from all signers j ∈ IPK, the i-th signer verifies

I A ·Mi,j = A ·H2(pkagPK, i) + pkj ·H1(pkj ,PK) ·H3(i).
I ||Mi,j || ≤ ||H2(pkagPK, i)||+ σ3m

√
n.

I If the verification fails, it returns ⊥.
I Otherwise, it computes the group membership key

mki,PK =
∑
j∈IPK

Mi,j =
∑
j∈IPK

[
H2(pkagPK, i)+skj ·H1(pkj ,PK)·H3(i)

]

i2

il

mki1,PK

M
i1
,i2

Mi1,i3

M
i1 ,il

(ski2)

(skil)

i1
(ski1)

i3
(ski3)

i1

il

mki2,PK

M
i2
,i1

Mi2,i3

M
i2 ,il

(ski1)

(skil)

i2
(ski2)

i3
(ski3)

i1

il−1

mkil,PK

M
i l
,i1

Mil,i2

M
il ,il−

1

(ski1)

(skil−1
)

il
(skil)

i2
(ski2)

Figure : Group membership key generation of an user ij ∈ IPK where
Mi,j = H2(pkagPK, i) + skj ·H1(pkj ,PK) ·H3(i) for j ∈ PK and
mki,PK =

∑
j∈IPK

Mi,j

ASM.sg(Y, L,PK,SKL,GL,M)→ accmsigPK,L,M . Each signer i ∈ IL
performs the following steps.

I Generate pkagPK ← ASM.kag(Y,PK) where
pkagPK =

∑
i∈IPK

pki ·H1(pki,PK).

I Compute Ti,M = ski ·H0(pkagPK,M) + mki,PK with ||Ti,M || ≤
σ
√
m ·H0(pkagPK,M) + |IPK| · ||H2(pkagPK, i)||+ |IPK| · σ3m

√
n.

I Send Ti,M to the designated signer.

I The designated signer verifies

A·Ti,M = pki·H0(pkagPK,M)+
∑

j∈IPK

[
A·H2(pkagPK, i)+pkj ·H1(pkj ,PK)·H3(i)

]
,

||Ti,M || ≤ σ
√
m ·H0(pkagPK,M)+ |IPK| · ||H2(pkagPK, i)||+ |IPK| ·σ3m

√
n.

I If it does not pass the verification, it aborts and returns ⊥.

I Otherwise, computes

TM =
∑
i∈IL

Ti,M

with

||TM || ≤ |IL| ·σ
√
m ·H0(pkagPK,M)+ |IPK| ·max

i∈IL
||H2(pkagPK, i)||

+|IL| · |IPK| · σ3m
√
n.

I Generates aggregated subgroup public key

spkagL =
∑
i∈IL

pki.

I Returns

accmsigPK,L,M = (TM , spkagL, pkagPK, IPK, IL,M).

ASM.vrf(Y, accmsigPK,L,M)→ (0 or 1).

I A · TM = spkagL ·H0(pkagPK,M) + |IPK| ·
∑
i∈IL

A ·H2(pkagPK, i)

+pkagPK ·
∑
i∈IL

H3(i),

I ||TM || ≤ |IL| ·σ
√
m ·H0(pkagPK,M)+ |IPK| ·max

i∈IL
||H2(pkagPK, i)||

+|IL| · |IPK| · σ3m
√
n.

Theorem 2
The scheme ASM is unforgeable in the random oracle model if SIS
problem is hard.

Thank You!

