Cryptanalysis of FLEXAEAD

Mostafizar Rahman¹, Dhiman Saha², Goutam Paul¹

 1 Indian Statistical Institute, Kolkata 2 Indian Institute of Technology, Bhilai

Africacrypt 2020

Introduction

- ► FLEXAEAD is round 1 candidate of NIST LWC
- ► The underlying Blockcipher is *Internal Keyed Permutation*
- ▶ Block Size can be 64-bit, 128-bit or 256-bit
- Reported Key Recovery Attack for each variant
- ▶ The attacks are of two type
 - 1. Iterated Truncated Differential
 - 2. Yoyo Attacks

Internal Keyed Permutation of FLEXAEAD

- 1. x-bit Flex state is called FLEX-x
- 2. FLEX-128 round function
- 3. State Bifurcation
- 4. AES Sbox is used
- 5. Repeated several times

Effect of BlockShuffle

- ► Same Nibble in "Symmetric Bytes" transits to a single byte
- Number of active bytes can be decreased from two to one

Effect of SBoxes

- ► Due to the effect of XOR, one active byte activates two bytes
- ► A pair of "Symmetric Byte" activates a pair of "Symmetric Byte"

Effect of SBoxes: Byte to Nibble Transition

- Only upper or lower nibbles of "Symmetric Bytes" are activated
- ► If initially a pair of "Symmetric Bytes" are active, this event occurs with equal probability

Exploiting AES Sbox

$$\left| \left\{ (x_1, x_2) | (S(x_1) \oplus S(x_2)) & \text{OxfO} = 0, \forall x_1, x_2 \in \mathbb{F}_{2^8} \right\} \right| = 4096 \\ \left\{ (x_1, x_2) | (S(x_1) \oplus S(x_2)) & \text{Oxof} = 0, \forall x_1, x_2 \in \mathbb{F}_{2^8} \right\} \right| = 4096$$

With probability 2^{-7} two bytes transits to either upper or lower nibble

SuperSBox

- ► Two Super-Sbox exists in FLEX-128
- ► Initial BlockShuffle Layer is not considered in the Super-Sbox
- ► Super-Sbox spans over 2.5 round
- ► Each Super-Sbox is of 64-bit
- Super-Sbox in FLEX-64 and FLEX-256 spans over 1.5 and 3.5 round respectively

Iterated Truncated Differential

One Round Truncated Differential

- ► Effect of BlockShuffle and Byte to Nibble Transition is Combined
- ➤ The active nibbles in initial state and final state are in same position at the cost of 2⁻⁷

Iterated Truncated Differential

- ► The truncated differential can be iterated for *r* rounds
- Paying probability for r rounds
- ► Cost of the trail is 2^{-7*r}
- ► Some rounds at the end can be made free

Iterated Truncated Differential: Free Rounds=1

- ▶ 2 bytes are fully active
- Paying probability for r-1 rounds
- ► Cost of the trail is $2^{-7*(r-1)}$

Iterated Truncated Differential: Free Rounds=2

- ▶ 4 bytes are fully active
- Paying probability for r-2 rounds
- ► Cost of the trail is $2^{-7*(r-2)}$

Iterated Truncated Differential: Distinguisher

- ► Number of free rounds is 3
- ► Probability of 6-round FLEX-128 distinguisher is 2^{-7*3}
- ► In similar way, number of free rounds in 5-round FLEX-64 and 7-round FLEX-256 is 2 and 4 respectively

Iterated Truncated Differential: Key Recovery

- ► Find a right pair (P₁, P₂), such that difference is in byte 0 and 8
- ► Guess Key byte 0 and 8 (2¹⁶ possible guesses)
- ▶ Run one round encryption and check whether same of byte 0 and 8 are active or not in Y₁ (2⁹ key candidates remain)
- ► Use two more right pairs to reduce key candidates to 1
- Repeat the procedure for 8 more byte pairs

Iterated Truncated Differential Attacks: Summary

Block Size	#rounds	Data Complexity		Time Complexity	Memory Complexity
0.20		Encs	Decs	MAs	Complexity
64	7	2 ^{30.5}		2 ^{34.5}	2 ^{18.5}
128	16	2 ^{93.5}		2 ^{108.5}	2 ^{20.5}
256	21	2 ^{109.5}		2 ^{125.5}	2 ^{22.5}

Yoyo Attacks

$$G_2' = L \circ S \circ L \circ S$$

Two full generic Rounds

$$G_2 = S \circ L \circ S$$

← Dropping final linear layer (to simplify)

ν is the Zero Difference Pattern

Applied to AES

- ► First key-independent Yoyo distinguishers of AES
- ► 5-round Key Recovery

The Yoyo Trick

Zero Difference Pattern

- ► Two Super-Sbox in FLEX-128 state
- ► A fully inactive Super-Sbox is denoted by 1; otherwise, 0

MSwap

► Bytes are swapped between two texts according Super-Sbox output

Yoyo Attacks: Deterministic Distinguisher

- Super-Sbox and BlockShuffle are considered as S and L layer respectively
- ► FLEX-128 Super-Sbox spans over 2.5 rounds
- 6-round FLEX-128 Deterministic Distinguisher
- Apply Yoyo game

1.
$$P_1, P_2 \xrightarrow{ENC} C_1, C_2$$

2.
$$C_1$$
, $C_2 \xrightarrow{MSwap} C'_1$, C'_2

3.
$$C_1', C_2' \xrightarrow{DEC} P_1', P_2'$$

Yoyo Attacks: Key Recovery

- ► 6-round Deterministic Distinguisher is the building block of 7-round FLEX-128 Key Recovery attack
- ▶ Byte to Nibble Transition is used to extend for 1 round
- ► Similar kinds of attacks exist for FLEX-64 and FLEX-256

Yoyo Attacks: Key Recovery

- ▶ Choose P_1 , P_2 and encrypt them to obtain C_1 , C_2
- ▶ Apply *MSwap* on C_1 , C_2 and decrypt them to get P'_1 , P'_2
- ▶ Any one of the 8 active Bytes in W_2 can be zero w.p. 2^{-5}
- ► Trail probability is 2^{-12}
- ► Key Recovery part is same as Iterated Truncated Differential

Yoyo Attacks: Summary

Block Size	#rounds	Data Complexity		Time Complexity	Memory Complexity
Size		Encs	Decs	MAs	Complexity
64	5	2 ¹⁰	$2^{16.5}$	2 ^{15.5}	2 ¹⁰
128	7	2 ^{10.5}	2 ^{16.5}	2 ^{16.5}	2 ^{11.5}
256	9	2 ¹¹	2 ^{16.5}	2 ^{17.5}	2 ¹³

Forgery Attacks

Sequence Generation Step

- Sequence of bits are used for AF
- $ightharpoonup PF_k$ is used for sequence generation
- ► INC32 acts as XOR with probability 2⁻¹
- ► Last call to *PF_k* of two consecutive numbers differ by INC32

Differential Trail of Sequence Generation

- Differential Characteristics for Sequence Generation of FLEXAEAD-128
- ▶ Difference in Plaintext or Associated Data cancels out the difference in $S_i \oplus S_{i+1}$ with probability 2^{-8}

Forgery Attacks on FLEXAEAD

Scheme	Complexity	
FLEXAEAD-64	2 ⁵⁰	
FLEXAEAD-128	2 ⁶⁰	
FLEXAEAD-256	2 ⁸⁰	

Conclusion

- 1. Reported Iterated Truncated Differential which exploits AES Sbox and BlockShuffle operation
- 2. Generalized Yoyo Distinguishing Attack is applicable
- 3. All attacks are exploited to recover subkeys
- 4. Practical ones are experimentally verified
- 5. FLEXAEAD is out of 2nd round

Thank You