
UC Updatable Databases and
Applications

AFRICACRYPT 2020

Aditya Damodaran and Alfredo Rial
SnT, University of Luxembourg

Supported by the Luxembourg National Research Fund
(FNR) CORE project C17/11650748

Index

1. Signature Schemes in PPB and POT protocols

2. Shortcomings of using signature schemes in PPB and POT protocols

3. Updatable Databases

4. Related Work

5. Our UD Scheme
5.1 Ideal Functionality for UD

Efficient updates, Read interface

5.2 Our UD protocol for FUD
Modular Design; Efficient updates; Read interface; Variants; Efficiency

6. Applications

7. Conclusion

2 / 26

• In a Priced Oblivious Transfer (POT) protocol, a user purchases a message mi from a set of N
messages held by a provider. Each message is associated with a price pi , and both i and pi are hidden
from the provider during each purchase.

• In a Privacy Preserving Billing (PPB) protocol, a meter measures the consumption of a service c, and
a user must pay a price for c to a provider, who defines a tariff policy, consisting of several functions.
For instance, one such policy could apply a rate ri to a time interval i of consumption, and the resulting
price would be p = ric. The user proves to the provider that p has been correctly computed, without
revealing ri or c.

Signature Schemes in PPB and POT
protocols

3 / 26

• In both cases, the provider typically computes signatures si on <i, pi> in POT protocols; or on <i, ri> in
the case of PPB protocols, using a signature scheme with efficient ZK proofs of signature
possession.

• The user can then prove knowledge of a signature si, to prove to the provider that prices have been
computed correctly.

• This is prone to be problematic because a signature revocation mechanism must be used in order to
revoke signatures to old entries when they are replaced by new entries.

Signature Schemes in PPB and POT
protocols

4 / 26

Shortcomings of using signature schemes
in PPB and POT protocols

1. Updates require signature revocation
- An updater would need to revoke signatures for old database entries, while updating them.

2. They do not support modularity in protocol design
- Most protocols use ZK proofs that involve statements that prove that a witness is stored in a data
structure, in addition to statements that prove something else about the witness; i.e., these two tasks are not
separated.

- Security analysis tends to be complex because the tasks of maintaining the database and for proving
statements about entries in the database are also intertwined. Security proofs in the hybrid model are
simpler because it is simpler to analyse the security of each building block in isolation of the others.

5 / 26

• An Updatable Database (UD) is a two party protocol between an updater and a reader.

• The updater sets up a database, and may update this database at any time during protocol execution.

• The contents of the database are visible by both parties.

• The reader computes zero knowledge proofs of knowledge of database entries to prove that a
certain value is stored at a specific position without revealing the position or the value to the updater.

Updatable Databases

6 / 26

Related Work (I)

• Accumulators
- They allow us to represent a set X as a single accumulator value A, and some schemes are equipped with
efficient ZK proofs to prove knowledge of Wx such that x ∈ X. However, NHVC schemes allow us to commit to a
vector of messages and prove statements about a message mi and additionally, its position i in the vector.

• Zero Knowledge Sets and Databases
- Zero knowledge Sets allow a prover to commit to a set X. The prover can then prove membership or non
membership of an element x in X to a verifier.
- In a Zero Knowledge Database, each element x is associated with a value v, and a proof for x reveals v to the
verifier.
- However, these datastructures hide the contents of X from the verifier. In our work, the database is public.
Existing ZK data structures also reveal i and v to the prover, but our database hides this information.

7 / 26

Related Work (II)

• ZK proofs for large datasets
- Computation and communication costs grow linearly with witness size in most ZK proofs.
- Although some techniques which enable costs sublinear in the size of the dataset N exist, the cost for the prover
is linear in N. On the other hand, in our construction, the verification cost of a proof is constant and independent
of N.
- Only the cost of computing an opening is linear in N, but this opening can be reused and updated with cost
independent of N. Thus, the computation of ZK proofs in our construction has an amortized cost independent of
N, which makes it practical for large databases.

8 / 26

We propose an UD scheme which solves the aforementioned shortcomings.

1. The scheme allows for efficient updates:
- Updates do not require a revocation mechanism, and the cost of updates is independent of database size.

2. The scheme has been designed modularly:
- Security analysis is simpler because the scheme is composed of several building blocks whose security can be analysed in

isolation.
- The ideal functionalities used can be replaced by protocols that realise them, and thus multiple instantiations of the

protocol are possible.
- The study of the task of creating an updatable database can be carried out in isolation, which eases the comparison of

different constructions for it.

Our contribution:

• Definition of a new Ideal Functionality for UD.

• A new UC-secure UD scheme.

Our UD scheme

9 / 26

The ideal functionality makes use of two interfaces:

1. Update

Allows an updater to update positions in the Updatable Database.

2. Read

Allows a reader to prove that an entry [i, vri] is contained in the Updatable Database.

Our Ideal Functionality FUD for Updatable
Databases

10 / 26

FUD : Efficient Updates (I)

• FUD maintains a database DB that consists of entries of the form [i, vri], for i=1 to N.

• In the update phase, an updater U sends one or more entries of the form [i,vri] to FUD. FUD updates DB
accordingly, so that the entries corresponding to all i have been updated.

• FUD also maintains a counter cu for the updater and a counter cr for the reader, and increments cu
upon updating the database.

• FUD Aborts if cr ≠ cu +1. Otherwise, FUD sends a copy of the updates to the reader.

11 / 26

FUD : Efficient Updates (II)

12 / 26

FUD RU
ud.update.ini, sid, (i, vui)∀ 𝑖 ∈ [1, 𝑁] ud.update.end, sid, (i, vui)∀ 𝑖 ∈ [1,𝑁]

FUD : Read interface

• The Reader receives a position value i, the value stored at that position in DB vri, and commitments
comi and comri to i and vri respectively, as input.

• FUD checks if the commitments comi and comri are valid, and if [i,vri] ∈ DB.

• FUD aborts if cr ≠ cu.

• FUD sends comi and comri to the Updater.

13 / 26

Our UD protocol for FUD

• We propose a protocol in the UC model that realises FUD.

• We describe how UD is designed modularly, and how it allows for efficient updates.

14 / 26

UD: Modular Design (I)

• We use a hybrid model to design the protocol modularly, as described in the UC framework.

• The hybrid protocol makes use of a Non Hiding Vector Commitment Scheme.

• The hybrid protocol also makes use of the following Ideal Functionalities:

1. FCRS – Ideal functionality for common reference string generation

2. FAUT – Ideal functionality for an authenticated channel

3. FNIC – Ideal functionality for non-interactive commitments

4. FR
ZK – Ideal functionality for zero knowledge

15 / 26

UD : Modular Design (II)

• However, because our hybrid protocol uses ideal functionalities as building blocks, instances arise
where we must ensure that two or more functionalities receive the same input.

• We use the functionality FNIC for non-interactive commitments in Camenisch et al CRYPTO 2016, to
commit to input values, so that these commitments may also be passed as input to the
functionalities.

• The functionalities used in our protocol have been modified to receive committed inputs.

• The functionalities can then verify the commitments they receive as input. The binding property for
commitments ensured by FNIC guarantees that these inputs are the same.

16 / 26

UD : Efficient Updates (I)

• In the first execution of the update phase, the updater sets up a counter cu = 0 and a vector x, such
that x[i] = vui for all i, and computes an NHVC commitment com to x. The updater then uses FAUT to
send (i,vui) for all i to the reader; and the reader also sets up cr, x, and computes a commitment to x.

• In subsequent executions of the update phase, the updater updates x as required based on the
tuples it receives as input, increments cu, and updates com. The updated values and cu are sent to
the reader via FAUT, and the reader also updates its copy of the database (if cu = cr +1), and updates
its commitment com.

• The costs for updating com are linear in the number of updates performed on the database, but
independent of the size of the database N.

17 / 26

UD : Efficient Updates (II)

• The reader might hold openings for database entries from previous executions of the read interface;
these openings are also updated by the reader after com has been updated, and the cost of these
updates is also independent of N.

• Thus, the construction allows for efficient updates, and is practical for large databases.

18 / 26

UD : Read Interface

• The reader computes commitments comi and comri to the position i and the value vri being read
from the database, respectively.

• If the reader has not already computed an opening wi for this entry, it uses the NHVC scheme to
compute an opening; otherwise, wi is reused.

• The reader then sends wi, i, vri, comi and comri, and the current counter value cr to FZK, in order to
prove to the updater that it is reading a valid entry from the database.

• The updater receives com and cr from FZK, and checks if these values are consistent with its own
com and cu. This also ensures that the reader and the updater have been working on the same
version of the database.

19 / 26

Variants

20 / 26

1. Reading several entries simultaneously
- The reader must simply compute openings wi for each entry read.
- The relation R used by FZK must also be modified accordingly, to replicate the equations needed for one entry
to all entries read.

2. Entries of the form [i,vri,1,…,vri,m]
- This variant of UD is useful in situations where a party needs to prove that a tuple of values belongs to the

same entry, and that each element in the entry is stored at a particular position within this entry.
- Com must commit to a vector of length N x m such that x[(i-1)m+j] = vri,j for all i ∈ [1,N] and j ∈ [1,m].
- In the update phase, each element of the vector can be modified independently of the others.
- In the read phase, the reader must compute openings (w(i-1)m+j,…,wm) to open the positions [(i-1)m+1,im] of the
committed vector.
- The relation R used by FZK must also be modified to prove that these positions belong to the same entry.

• As the protocol has been designed in the hybrid model, the computation and communication cost of
our UD depends on the building blocks used to instantiate each of its functionalities.

• FNIC introduces an overhead as commitments must be computed for every input value that must be
sent to multiple functionalities, but this overhead is small.

• As UD must be instantiated with a vector commitment scheme, it also involves the use of a common
reference string that grows linearly with the size of the database N.

Efficiency of our UD scheme (I)

21 / 26

• Although the commitments and their openings are of size independent of N, and the vector
commitment and its openings can be updated with cost independent of N, the cost of computation
of an opening grows with N. However, these openings can be updated and reused throughout the
execution of the protocol, yielding amortized computation cost independent of N.

• The ZK proofs of NHVC openings also offer computation and communication cost independent of N.

• Thus, the protocol remains efficient when N is large, under this instantiation.

Efficiency of our UD scheme (II)

22 / 26

• The following table lists execution times for an instantiation of our protocol using a NHVC scheme
secure under the l-DHE assumption, and the Pedersen commitment scheme for FNIC , against varying
database sizes N, and against the security parameters of the Paillier encryption scheme used for ZK
proof computation in the read phase (We use the compiler in Camenisch et al ASIACRYPT 2011).

Efficiency of our UD scheme (III)

23 / 26

1024 bit key 2048 bit key

Interface N = 100 N = 1000 N = 100 N = 1000

First update 0.6844 5.9952 0.7940 6.0822

Computation of
com or wi

0.0032 0.03787 0.0032 0.03787

1-entry update of
com or wi

0.0001 0.0001 0.0001 0.0001

Read 0.7496 0.7545 3.8945 3.5911

Applications (I)

24 / 26

1. POT protocols:
- FUD can be used to design a POT protocol modularly, whilst also using a functionality for oblivious transfer as a building
block. The provider can store the prices for each message in a database DB in the form [i, pi], where pi is the message price
for mi.

- The buyer can then use the read interface of FUD to prove to the provider that he/she has used the right prices for the
message being purchased, as FUD in turn invokes FZK. Thanks to the fact that FUD also computes commitments comi and
comri to i and pi respectively, comi can be sent as input to an OT functionality, and the buyer can retrieve mi.

Applications (II)

25 / 26

2. PPB protocols:
- FUD can be used to design a PPB protocol modularly, and the provider can make use of a database DB consisting of
entries of the form [i, fi], where fi represents a function corresponding to a time or consumption interval i.

- A meter outputs a signed reading of the form (c,i), and the user computes commitments comi and comri to i and fi

respectively. Comi can then be sent to FZK to prove that i is the value signed in the meter reading, and comri can be sent
to FZK to prove that p = fi(c). The provider can also modify tariff policy functions in the database efficiently and at any
time during the execution of the protocol.

Our UD scheme provides functionalities, such as those listed below, whilst also allowing for
instantiations that are practical for large datasets:

1. The scheme allows for efficient updates.

2. The scheme is UC secure and has been designed modularly.

Conclusion

26 / 26

