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What is a lattice?

Definition

A lattice L is a discrete additive subgroup of Rn.
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What is a lattice?

A lattice is an infinite grid of points in the n-dimensional space.
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What is a lattice?

A lattice: The set of all integer linear combinations of some basis B where
B = {b1, . . . , bn} ⊂ Rn.
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What is a lattice?

A lattice: The set of all integer linear combinations of some basis B where
B = {b1, . . . , bn} ⊂ Rn.
A lattice has many bases.
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The Shortest Vector Problem (SVP)

Shortest Vector Problem (SVP)

Given an arbitrary basis for L, find a shortest non-zero vector s in L i.e.
‖s‖ = minv∈L\{0}‖v‖. We denote λ1(L) = minv∈L\{0}‖v‖.
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The Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

Given an arbitrary basis for L and a target vector t, find the closest lattice
vector v in L such that ‖t − v‖ = d(t,L).
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The Approximate Closest Vector Problem (CVPκ)

Approximate Closest Vector Problem (CVPκ)

Given an arbitrary basis for L, a target vector t and an approximation
factor κ ≥ 1, find a lattice vector v in L such that ‖t − v‖ ≤ κd(t,L).
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The Closest Vector Problem with Pre-processing (CVPP)

The CVPP variant

Given an arbitrary basis for L, compute some pre-processing data such that
when later given a target vector t, it will be ”easy” to solve the CVP for t.
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Solving SVP

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We know that λ1(L) ≤ ‖b1‖.

Enumeration explores all the choices of the xi such that
‖x1b1 + · · ·+ xnbn‖ ≤ ‖b1‖.
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Enumeration tree (example)
0

−1

(−1,−1)(0,−1)

0

(−1, 0) (0, 0) (1, 0)

(−1, 1, 0)(0, 1, 0)

...

(1, 1, 0)

1

(0, 1) (1, 1)

root

bn

bn−1

...

b1
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Enumeration costs in small depth

Lemma (Costs of enumeration HS07)

Let B be a strongly reduced basis of a lattice. Then the number of nodes
Ek at depth k = o(n), k = n1−o(1), satisfies:

Ek = nk/2+o(k).

Enumerating all these nodes can be done in time Tenum and space Senum,
with:

Tenum = Ek · nO(1), Senum = nO(1).
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Solving CVP(P)

We have t ∈ t + L and t ′ = t − s so t ′ ∈ t + L as well...
It suffices to find t ′.
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The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.
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The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.
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The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.

AfricaCrypt 2020 15



t
O

r1

r2
r3

−2r1

The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.

AfricaCrypt 2020 15



t O

r1

r2
r3

+r3 t′

The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.
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The iterative slicer (in practice)

Computing t ′ correctly depends on the list L. Computing “the proper” list L

is too costly. We can use approximations instead.

Disadvantage: We might get a wrong t ′.
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The randomized slicer

Create a list L of lattice vectors (e.g. by running a sieving algorithm).
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The randomized slicer

Create a list L of lattice vectors (e.g. by running a sieving algorithm).

Randomize t sufficiently many times (as ti ) and reduce it.
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The randomized slicer

Create a list L of lattice vectors (e.g. by running a sieving algorithm).

Randomize t sufficiently many times (as ti ) and reduce it.

Keep the shortest t ′i found as t ′.
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The randomized slicer algorithm
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Costs of preprocessing

Lemma (Costs of lattice sieving BDGL16)

Given a basis B of a lattice L, the LDSieve heuristically returns a list
L ⊂ L containing the (4/3)n/2+o(n) shortest lattice vectors, in time Tsieve

and space Ssieve with:

Tsieve = (3/2)n/2+o(n), Ssieve = (4/3)n/2+o(n).

With the LDSieve we can therefore solve SVP with the above complexities.
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Costs of the randomized slicer

Lemma (single target DLW20)

Given a list of the (4/3)n/2+o(n) shortest vectors of a lattice L and a
target t ∈ Rn, the randomized slicer solves CVP for t in time Tslice and
space Sslice, with:

Tslice = 2ζn+o(n), Sslice = (4/3)n/2+o(n).

In our case ζ = 0.2639 . . .
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Costs of the randomized slicer

Lemma (many targets DLW20)

Given a list of the (4/3)n/2+o(n) shortest vectors of a lattice L and a batch
of N ≥ (13/12)n/2+o(n) target vectors t1, . . . , tN ∈ Rn, the batched
randomized slicer solves CVP for all targets ti in total time Tslice and
space Sslice, with:

Tslice = N · (18/13)n/2+o(n), Sslice = (4/3)n/2+o(n).
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Solving SVP via CVPP (Part 1)

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

Choose 0 ≤ k ≤ n and split B as B = Bbot ∪Btop where
Bbot := {b1, . . . ,bn−k} and Btop := {bn−k+1, . . . ,bn}.

This partitions the lattice as L = Lbot ⊕ Ltop where
Lbot := L(Bbot) and Ltop := L(Btop).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We can also split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.
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Solving SVP via CVPP (Part 1)
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Solving SVP via CVPP (Part 2)

We split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

Two cases:

I If stop = 0 then s = SVP(Lbot).
I If stop 6= 0 then s = stop − CVP(Lbot, stop).

The vector stop will be one of the vectors ti in the enumeration tree.
We do not know in advance which one.

Solve CVP(Lbot, ti ) for all ti ⇒ CVPP.

Keep the shortest ti − CVP(Lbot, ti ) as s.
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Solving SVP via CVPP (Part 2)

0
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where wi = CVP(Lbot, ti )
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Hybrid 1 (sieve, enumerate–and–slice)

Step 1: Generate a list L ⊂ Lbot (running a lattice sieve on Lbot).

Step 2: Run enumeration in Ltop, where for each leaf ti ∈ Ltop run
the randomized slicer to find the closest vector CVP(ti ) ∈ Lbot.
Output the shortest vector ti − CVP(ti ) found.

Balancing and minimizing the costs between the two steps leads to a
choice of k = αn/ log2 d where α < 0.0570.

Proposition (Heuristic result 1)

Let be k as above and let T
(n)
1 and S

(n)
1 denote the overall time and space

complexities of the sieve, enumerate–and–slice hybrid algorithm in
dimension n. Then:

T
(n)
1 = T

(n−k)
sieve · (1 + o(1)), S

(n)
1 = S

(n−k)
sieve · (1 + o(1)).
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Hybrid 2 (sieve, enumerate, slice)

Step 1: Generate a list L ⊂ Lbot (running a lattice sieve on Lbot).

Step 2: Enumerate all nodes ti ∈ Ltop at depth k and store them in a
list of targets T ⊂ Ltop.

Step 3: Run the batched randomized slicer to solve CVP on Lbot for
all targets ti ∈ T .

Output the shortest vector ti − CVP(ti ) found.

Proposition (Heuristic result 2)

Let k = αn/ log2 n with α < log2(1312) = 0.1154 . . . .

Let T
(n)
2 and S

(n)
2 denote the overall time and space complexities of the

batched sieve, enumerate, slice hybrid algorithm in dimension n. Then:

T
(n)
2 = T

(n−k)
sieve · (1 + o(1)), S

(n)
2 = S

(n−k)
sieve · (1 + o(1)).
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Further Hybrids

A basis B could be partitioned as B = Bbot ∪Bmid ∪Btop. The three
bases Bbot, Bmid, and Btop generate lattices Lbot,Lmid,Ltop such that
L = Lbot ⊕ Lmid ⊕ Ltop.

Step 1: Generate a list L ⊂ Lmid (running a lattice sieve on Lmid).

Step 2:
I Enumerate all nodes t ∈ Ltop.
I For each t run the slicer with the list L to find close vectors v ∈ Lmid.
I For each pair t, v add the vector t − v to an output list S .

Step 3: Extend each vector s ′ ∈ S to a candidate solution s ∈ L by
running Babai’s nearest plane algorithm.

Output the shortest lifted vector.
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Further Hybrids

This hybrid depends on

Assumption (Hybrid assumption)

The list S, output by the slicer, contains the 2(α+log2(16/13))·n/2+o(n)

shortest lattice vectors of Lmid ⊕ Ltop.

Léo Ducas and Wessel van Woerden later informed us that
counterexamples can be found where S might only contain at most an
exponentially small fraction of the shortest vectors of Lmid ⊕ Ltop.
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Visualisation of the assumption

Split L as L = L1 ⊕ L2.

Enumerate targets in L2.
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Visualisation of the assumption

Split L as L = L1 ⊕ L2.

Enumerate targets ti in L2.

Randomise the ti using vectors in L1.
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Reduce all the randomised vectors by short vectors in L1.
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Visualisation of the assumption

Reduce all the randomised vectors by short vectors in L1.

Keep the resulting vectors as the set S .
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Experimental results
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Thank you!
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