Sieve, Enumerate, Slice, and Lift: Hybrid Lattice Algorithms for SVP via CVPP

Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger

Technische Universiteit Eindhoven

July 2020

AfricaCrypt 2020, Cairo, Egypt

Outline

- Introduction
- 2 Enumeration
- The slicer algorithms
- 4 Hybrid algorithms

Outline

- Introduction
- 2 Enumeration
- The slicer algorithms
- 4 Hybrid algorithms

Definition

A lattice \mathcal{L} is a discrete additive subgroup of \mathbb{R}^n .

Definition

A lattice \mathcal{L} is a discrete additive subgroup of \mathbb{R}^n .

A lattice is an infinite grid of points in the n-dimensional space.

A lattice: The set of all integer linear combinations of some basis \mathbf{B} where $\mathbf{B}=\{b_1,\ldots,b_n\}\subset\mathbb{R}^n$.

A lattice: The set of all integer linear combinations of some basis $\ensuremath{\mathbf{B}}$ where

 $\mathbf{B} = \{b_1, \ldots, b_n\} \subset \mathbb{R}^n.$

A lattice has many bases.

The Shortest Vector Problem (SVP)

Shortest Vector Problem (SVP)

Given an arbitrary basis for \mathcal{L} , find a shortest non-zero vector s in \mathcal{L} i.e. $||s|| = \min_{v \in \mathcal{L} \setminus \{0\}} ||v||$. We denote $\lambda_1(\mathcal{L}) = \min_{v \in \mathcal{L} \setminus \{0\}} ||v||$.

The Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

Given an arbitrary basis for $\mathcal L$ and a target vector t, find the closest lattice vector v in $\mathcal L$ such that $\|t-v\|=d(t,\mathcal L)$.

The Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

Given an arbitrary basis for $\mathcal L$ and a target vector t, find the closest lattice vector v in $\mathcal L$ such that $\|t-v\|=d(t,\mathcal L)$.

The Approximate Closest Vector Problem (CVP $_{\kappa}$)

Approximate Closest Vector Problem (CVP $_{\kappa}$)

Given an arbitrary basis for \mathcal{L} , a target vector t and an approximation factor $\kappa \geq 1$, find a lattice vector v in \mathcal{L} such that $||t - v|| \leq \kappa d(t, \mathcal{L})$.

The Closest Vector Problem with Pre-processing (CVPP)

The CVPP variant

Given an arbitrary basis for \mathcal{L} , compute some pre-processing data such that when later given a target vector t, it will be "easy" to solve the CVP for t.

Outline

- Introduction
- 2 Enumeration
- The slicer algorithms
- 4 Hybrid algorithms

Solving SVP

• Let \mathcal{L} be a lattice with basis $\mathbf{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \} \subset \mathbb{R}^n$. Question: Find \boldsymbol{s} in \mathcal{L} with $\|\boldsymbol{s}\| = \lambda_1(\mathcal{L})$.

Solving SVP

- Let \mathcal{L} be a lattice with basis $\mathbf{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \} \subset \mathbb{R}^n$. Question: Find \boldsymbol{s} in \mathcal{L} with $\|\boldsymbol{s}\| = \lambda_1(\mathcal{L})$.
- As $\mathbf{s} \in \mathcal{L}$ then $\exists x_1, \dots, x_n \in \mathbb{Z}$ such that $\mathbf{s} = x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n$.

Solving SVP

- Let \mathcal{L} be a lattice with basis $\mathbf{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \} \subset \mathbb{R}^n$. Question: Find \boldsymbol{s} in \mathcal{L} with $\|\boldsymbol{s}\| = \lambda_1(\mathcal{L})$.
- As $\mathbf{s} \in \mathcal{L}$ then $\exists x_1, \dots, x_n \in \mathbb{Z}$ such that $\mathbf{s} = x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n$.
- We know that $\lambda_1(\mathcal{L}) \leq \|\boldsymbol{b}_1\|$.
- Enumeration explores all the choices of the x_i such that $||x_1 \mathbf{b}_1 + \cdots + x_n \mathbf{b}_n|| \le ||\mathbf{b}_1||$.

Enumeration tree (example)

Enumeration costs in small depth

Lemma (Costs of enumeration HS07)

Let **B** be a strongly reduced basis of a lattice. Then the number of nodes \mathbb{E}_k at depth k = o(n), $k = n^{1-o(1)}$, satisfies:

$$E_k = n^{k/2 + o(k)}.$$

Enumerating all these nodes can be done in time $T_{\rm enum}$ and space $S_{\rm enum}$, with:

$$T_{\text{enum}} = E_k \cdot n^{O(1)}, \qquad S_{\text{enum}} = n^{O(1)}.$$

Outline

- Introduction
- 2 Enumeration
- 3 The slicer algorithms
- 4 Hybrid algorithms

Solving CVP(P)

We have $t \in t + \mathcal{L}$ and t' = t - s so $t' \in t + \mathcal{L}$ as well... It suffices to find t'.

The iterative slicer (in practice)

• Computing t' correctly depends on the list L. Computing "the proper" list L is too costly. We can use approximations instead.

The iterative slicer (in practice)

- Computing t' correctly depends on the list L. Computing "the proper" list L is too costly. We can use approximations instead.
- Disadvantage: We might get a wrong t'.

The randomized slicer

ullet Create a list L of lattice vectors (e.g. by running a sieving algorithm).

The randomized slicer

- ullet Create a list L of lattice vectors (e.g. by running a sieving algorithm).
- Randomize t sufficiently many times (as t_i) and reduce it.

The randomized slicer

- Create a list L of lattice vectors (e.g. by running a sieving algorithm).
- Randomize t sufficiently many times (as t_i) and reduce it.
- Keep the shortest t'_i found as t'.

The randomized slicer algorithm

Algorithm 2 The randomized heuristic slicer for finding closest vectors

```
Require: A list L \subset \mathcal{L} and a target t \in \mathbb{R}^d
Ensure: The algorithm outputs a closest lattice vector s \in \mathcal{L} to t
 1: s \leftarrow 0
                                                                \triangleright Initial guess s for closest vector to t
 2: repeat
         Sample t' \sim D_{t+C,s}
 3:
                                                                \triangleright Randomly shift t by a vector v \in \mathcal{L}
         for each r \in L do
 5:
              if ||t'-r|| < ||t'|| then
                                                                         \triangleright New shorter vector t' \in t + \mathcal{L}
                   Replace t' \leftarrow t' - r and restart the for-loop
 6:
      \text{if } \|t'\|<\|t-s\| \text{ then }
              s \leftarrow t - t'
                                                                       \triangleright New lattice vector s closer to t
 9: until s is a closest lattice vector to t
10: return s
```

Costs of preprocessing

Lemma (Costs of lattice sieving BDGL16)

Given a basis ${\bf B}$ of a lattice ${\cal L}$, the LDSieve heuristically returns a list $L\subset {\cal L}$ containing the $(4/3)^{n/2+o(n)}$ shortest lattice vectors, in time $T_{\rm sieve}$ and space $S_{\rm sieve}$ with:

$$T_{\text{sieve}} = (3/2)^{n/2 + o(n)}, \qquad S_{\text{sieve}} = (4/3)^{n/2 + o(n)}.$$

With the LDSieve we can therefore solve SVP with the above complexities.

Costs of the randomized slicer

Lemma (single target DLW20)

Given a list of the $(4/3)^{n/2+o(n)}$ shortest vectors of a lattice $\mathcal L$ and a target $\mathbf t \in \mathbb R^n$, the randomized slicer solves CVP for $\mathbf t$ in time $T_{\rm slice}$ and space $S_{\rm slice}$, with:

$$T_{\rm slice} = 2^{\zeta n + o(n)}, \qquad S_{\rm slice} = (4/3)^{n/2 + o(n)}.$$

In our case $\zeta = 0.2639...$

Costs of the randomized slicer

Lemma (many targets DLW20)

Given a list of the $(4/3)^{n/2+o(n)}$ shortest vectors of a lattice $\mathcal L$ and a batch of $N \geq (13/12)^{n/2+o(n)}$ target vectors $\mathbf t_1,\dots,\mathbf t_N \in \mathbb R^n$, the batched randomized slicer solves CVP for all targets $\mathbf t_i$ in total time $T_{\rm slice}$ and space $S_{\rm slice}$, with:

$$T_{\text{slice}} = N \cdot (18/13)^{n/2 + o(n)}, \qquad S_{\text{slice}} = (4/3)^{n/2 + o(n)}.$$

Outline

- Introduction
- 2 Enumeration
- The slicer algorithms
- 4 Hybrid algorithms

• Let \mathcal{L} be a lattice with basis $\mathbf{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \} \subset \mathbb{R}^n$. Question: Find \boldsymbol{s} in \mathcal{L} with $\|\boldsymbol{s}\| = \lambda_1(\mathcal{L})$.

- Let \mathcal{L} be a lattice with basis $\mathbf{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \} \subset \mathbb{R}^n$. Question: Find \boldsymbol{s} in \mathcal{L} with $\|\boldsymbol{s}\| = \lambda_1(\mathcal{L})$.
- Choose $0 \le k \le n$ and split \mathbf{B} as $\mathbf{B} = \mathbf{B}_{\mathrm{bot}} \cup \mathbf{B}_{\mathrm{top}}$ where $\mathbf{B}_{\mathrm{bot}} := \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_{n-k} \}$ and $\mathbf{B}_{\mathrm{top}} := \{ \boldsymbol{b}_{n-k+1}, \dots, \boldsymbol{b}_n \}$.

- Let \mathcal{L} be a lattice with basis $\mathbf{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \} \subset \mathbb{R}^n$. Question: Find \boldsymbol{s} in \mathcal{L} with $\|\boldsymbol{s}\| = \lambda_1(\mathcal{L})$.
- Choose $0 \le k \le n$ and split \mathbf{B} as $\mathbf{B} = \mathbf{B}_{\mathrm{bot}} \cup \mathbf{B}_{\mathrm{top}}$ where $\mathbf{B}_{\mathrm{bot}} := \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_{n-k} \}$ and $\mathbf{B}_{\mathrm{top}} := \{ \boldsymbol{b}_{n-k+1}, \dots, \boldsymbol{b}_n \}$.
- This partitions the lattice as $\mathcal{L} = \mathcal{L}_{\mathrm{bot}} \oplus \mathcal{L}_{\mathrm{top}}$ where $\mathcal{L}_{\mathrm{bot}} := \mathcal{L}(\mathbf{B}_{\mathrm{bot}})$ and $\mathcal{L}_{\mathrm{top}} := \mathcal{L}(\mathbf{B}_{\mathrm{top}})$.

- Let \mathcal{L} be a lattice with basis $\mathbf{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \} \subset \mathbb{R}^n$. Question: Find \boldsymbol{s} in \mathcal{L} with $\|\boldsymbol{s}\| = \lambda_1(\mathcal{L})$.
- Choose $0 \le k \le n$ and split \mathbf{B} as $\mathbf{B} = \mathbf{B}_{\mathrm{bot}} \cup \mathbf{B}_{\mathrm{top}}$ where $\mathbf{B}_{\mathrm{bot}} := \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_{n-k} \}$ and $\mathbf{B}_{\mathrm{top}} := \{ \boldsymbol{b}_{n-k+1}, \dots, \boldsymbol{b}_n \}$.
- This partitions the lattice as $\mathcal{L} = \mathcal{L}_{\mathrm{bot}} \oplus \mathcal{L}_{\mathrm{top}}$ where $\mathcal{L}_{\mathrm{bot}} := \mathcal{L}(\mathbf{B}_{\mathrm{bot}})$ and $\mathcal{L}_{\mathrm{top}} := \mathcal{L}(\mathbf{B}_{\mathrm{top}})$.
- As $\mathbf{s} \in \mathcal{L}$ then $\exists x_1, \dots, x_n \in \mathbb{Z}$ such that $\mathbf{s} = x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n$.

- Let \mathcal{L} be a lattice with basis $\mathbf{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_n \} \subset \mathbb{R}^n$. Question: Find \boldsymbol{s} in \mathcal{L} with $\|\boldsymbol{s}\| = \lambda_1(\mathcal{L})$.
- Choose $0 \le k \le n$ and split \mathbf{B} as $\mathbf{B} = \mathbf{B}_{\mathrm{bot}} \cup \mathbf{B}_{\mathrm{top}}$ where $\mathbf{B}_{\mathrm{bot}} := \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_{n-k} \}$ and $\mathbf{B}_{\mathrm{top}} := \{ \boldsymbol{b}_{n-k+1}, \dots, \boldsymbol{b}_n \}$.
- This partitions the lattice as $\mathcal{L} = \mathcal{L}_{\mathrm{bot}} \oplus \mathcal{L}_{\mathrm{top}}$ where $\mathcal{L}_{\mathrm{bot}} := \mathcal{L}(\mathbf{B}_{\mathrm{bot}})$ and $\mathcal{L}_{\mathrm{top}} := \mathcal{L}(\mathbf{B}_{\mathrm{top}})$.
- As $\mathbf{s} \in \mathcal{L}$ then $\exists x_1, \dots, x_n \in \mathbb{Z}$ such that $\mathbf{s} = x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n$.
- We can also split s as $s = s_{\text{bot}} + s_{\text{top}}$ where $s_{\text{bot}} = x_1 \boldsymbol{b}_1 + \dots + x_{n-k} \boldsymbol{b}_{n-k} \in \mathcal{L}_{\text{bot}}$ and $s_{\text{top}} = x_{n-k+1} \boldsymbol{b}_{n-k+1} + \dots + x_n \boldsymbol{b}_n \in \mathcal{L}_{\text{top}}$.

• We split \boldsymbol{s} as $\boldsymbol{s} = \boldsymbol{s}_{\mathrm{bot}} + \boldsymbol{s}_{\mathrm{top}}$ where $\boldsymbol{s}_{\mathrm{bot}} = x_1 \boldsymbol{b}_1 + \dots + x_{n-k} \boldsymbol{b}_{n-k} \in \mathcal{L}_{\mathrm{bot}}$ and $\boldsymbol{s}_{\mathrm{top}} = x_{n-k+1} \boldsymbol{b}_{n-k+1} + \dots + x_n \boldsymbol{b}_n \in \mathcal{L}_{\mathrm{top}}.$

- We split \boldsymbol{s} as $\boldsymbol{s} = \boldsymbol{s}_{\mathrm{bot}} + \boldsymbol{s}_{\mathrm{top}}$ where $\boldsymbol{s}_{\mathrm{bot}} = x_1 \boldsymbol{b}_1 + \dots + x_{n-k} \boldsymbol{b}_{n-k} \in \mathcal{L}_{\mathrm{bot}}$ and $\boldsymbol{s}_{\mathrm{top}} = x_{n-k+1} \boldsymbol{b}_{n-k+1} + \dots + x_n \boldsymbol{b}_n \in \mathcal{L}_{\mathrm{top}}.$
- Two cases:
 - If $s_{\text{top}} = 0$ then $s = \text{SVP}(\mathcal{L}_{\text{bot}})$.
 - ▶ If $s_{\text{top}} \neq 0$ then $s = s_{\text{top}} \text{CVP}(\mathcal{L}_{\text{bot}}, s_{\text{top}})$.

- We split s as $s = s_{\text{bot}} + s_{\text{top}}$ where $s_{\text{bot}} = x_1 \boldsymbol{b}_1 + \dots + x_{n-k} \boldsymbol{b}_{n-k} \in \mathcal{L}_{\text{bot}}$ and $s_{\text{top}} = x_{n-k+1} \boldsymbol{b}_{n-k+1} + \dots + x_n \boldsymbol{b}_n \in \mathcal{L}_{\text{top}}.$
- Two cases:
 - If $s_{\text{top}} = 0$ then $s = \text{SVP}(\mathcal{L}_{\text{bot}})$.
 - ▶ If $s_{\text{top}} \neq 0$ then $s = s_{\text{top}} \text{CVP}(\mathcal{L}_{\text{bot}}, s_{\text{top}})$.
- The vector \mathbf{s}_{top} will be one of the vectors \mathbf{t}_i in the enumeration tree. We do not know in advance which one.

- We split s as $s = s_{\text{bot}} + s_{\text{top}}$ where $s_{\text{bot}} = x_1 \boldsymbol{b}_1 + \dots + x_{n-k} \boldsymbol{b}_{n-k} \in \mathcal{L}_{\text{bot}}$ and $s_{\text{top}} = x_{n-k+1} \boldsymbol{b}_{n-k+1} + \dots + x_n \boldsymbol{b}_n \in \mathcal{L}_{\text{top}}.$
- Two cases:
 - If $s_{\text{top}} = 0$ then $s = \text{SVP}(\mathcal{L}_{\text{bot}})$.
 - ▶ If $s_{\text{top}} \neq 0$ then $s = s_{\text{top}} \text{CVP}(\mathcal{L}_{\text{bot}}, s_{\text{top}})$.
- The vector \mathbf{s}_{top} will be one of the vectors \mathbf{t}_i in the enumeration tree. We do not know in advance which one.
- Solve $CVP(\mathcal{L}_{bot}, t_i)$ for all $t_i \Rightarrow CVPP$.

- We split s as $s = s_{\text{bot}} + s_{\text{top}}$ where $s_{\text{bot}} = x_1 \boldsymbol{b}_1 + \dots + x_{n-k} \boldsymbol{b}_{n-k} \in \mathcal{L}_{\text{bot}}$ and $s_{\text{top}} = x_{n-k+1} \boldsymbol{b}_{n-k+1} + \dots + x_n \boldsymbol{b}_n \in \mathcal{L}_{\text{top}}.$
- Two cases:
 - If $s_{\text{top}} = 0$ then $s = \text{SVP}(\mathcal{L}_{\text{bot}})$.
 - ▶ If $s_{\text{top}} \neq 0$ then $s = s_{\text{top}} \text{CVP}(\mathcal{L}_{\text{bot}}, s_{\text{top}})$.
- The vector \mathbf{s}_{top} will be one of the vectors \mathbf{t}_i in the enumeration tree. We do not know in advance which one.
- Solve $CVP(\mathcal{L}_{bot}, t_i)$ for all $t_i \Rightarrow CVPP$.
- Keep the shortest $m{t}_i \mathrm{CVP}(\mathcal{L}_{\mathrm{bot}}, m{t}_i)$ as $m{s}$.

where
$$\mathbf{w}_i = \text{CVP}(\mathcal{L}_{\text{bot}}, \mathbf{t}_i)$$

Hybrid 1 (sieve, enumerate-and-slice)

- Step 1: Generate a list $L \subset \mathcal{L}_{\mathrm{bot}}$ (running a lattice sieve on $\mathcal{L}_{\mathrm{bot}}$).
- Step 2: Run enumeration in \mathcal{L}_{top} , where for each leaf $t_i \in \mathcal{L}_{\text{top}}$ run the randomized slicer to find the closest vector $\mathsf{CVP}(t_i) \in \mathcal{L}_{\text{bot}}$.
- Output the shortest vector $\mathbf{t}_i \mathsf{CVP}(\mathbf{t}_i)$ found.

Hybrid 1 (sieve, enumerate-and-slice)

- Step 1: Generate a list $L \subset \mathcal{L}_{\mathrm{bot}}$ (running a lattice sieve on $\mathcal{L}_{\mathrm{bot}}$).
- Step 2: Run enumeration in \mathcal{L}_{top} , where for each leaf $t_i \in \mathcal{L}_{\text{top}}$ run the randomized slicer to find the closest vector $\mathsf{CVP}(t_i) \in \mathcal{L}_{\text{bot}}$.
- Output the shortest vector $t_i \text{CVP}(t_i)$ found.

Balancing and minimizing the costs between the two steps leads to a choice of $k = \alpha n / \log_2 d$ where $\alpha < 0.0570$.

Hybrid 1 (sieve, enumerate-and-slice)

- Step 1: Generate a list $L \subset \mathcal{L}_{\mathrm{bot}}$ (running a lattice sieve on $\mathcal{L}_{\mathrm{bot}}$).
- Step 2: Run enumeration in \mathcal{L}_{top} , where for each leaf $t_i \in \mathcal{L}_{\text{top}}$ run the randomized slicer to find the closest vector $\mathsf{CVP}(t_i) \in \mathcal{L}_{\text{bot}}$.
- Output the shortest vector $t_i \text{CVP}(t_i)$ found.

Balancing and minimizing the costs between the two steps leads to a choice of $k = \alpha n / \log_2 d$ where $\alpha < 0.0570$.

Proposition (Heuristic result 1)

Let be k as above and let $T_1^{(n)}$ and $S_1^{(n)}$ denote the overall time and space complexities of the sieve, enumerate—and—slice hybrid algorithm in dimension n. Then:

$$T_1^{(n)} = T_{\text{sieve}}^{(n-k)} \cdot (1 + o(1)), \qquad S_1^{(n)} = S_{\text{sieve}}^{(n-k)} \cdot (1 + o(1)).$$

Hybrid 2 (sieve, enumerate, slice)

- Step 1: Generate a list $L \subset \mathcal{L}_{\mathrm{bot}}$ (running a lattice sieve on $\mathcal{L}_{\mathrm{bot}}$).
- Step 2: Enumerate all nodes $t_i \in \mathcal{L}_{top}$ at depth k and store them in a list of targets $T \subset \mathcal{L}_{top}$.
- Step 3: Run the batched randomized slicer to solve CVP on $\mathcal{L}_{\mathrm{bot}}$ for all targets $t_i \in \mathcal{T}$.
- Output the shortest vector $t_i \text{CVP}(t_i)$ found.

Hybrid 2 (sieve, enumerate, slice)

- Step 1: Generate a list $L \subset \mathcal{L}_{\mathrm{bot}}$ (running a lattice sieve on $\mathcal{L}_{\mathrm{bot}}$).
- Step 2: Enumerate all nodes $t_i \in \mathcal{L}_{top}$ at depth k and store them in a list of targets $T \subset \mathcal{L}_{top}$.
- Step 3: Run the batched randomized slicer to solve CVP on $\mathcal{L}_{\mathrm{bot}}$ for all targets $t_i \in \mathcal{T}$.
- Output the shortest vector $\mathbf{t}_i \mathsf{CVP}(\mathbf{t}_i)$ found.

Proposition (Heuristic result 2)

Let $k = \alpha n / \log_2 n$ with $\alpha < \log_2(\frac{13}{12}) = 0.1154...$

Let $T_2^{(n)}$ and $S_2^{(n)}$ denote the overall time and space complexities of the batched sieve, enumerate, slice hybrid algorithm in dimension n. Then:

$$T_2^{(n)} = T_{\text{sieve}}^{(n-k)} \cdot (1 + o(1)), \qquad S_2^{(n)} = S_{\text{sieve}}^{(n-k)} \cdot (1 + o(1)).$$

A basis \mathbf{B} could be partitioned as $\mathbf{B} = \mathbf{B}_{bot} \cup \mathbf{B}_{mid} \cup \mathbf{B}_{top}$. The three bases \mathbf{B}_{bot} , \mathbf{B}_{mid} , and \mathbf{B}_{top} generate lattices \mathcal{L}_{bot} , \mathcal{L}_{mid} , \mathcal{L}_{top} such that $\mathcal{L} = \mathcal{L}_{bot} \oplus \mathcal{L}_{mid} \oplus \mathcal{L}_{top}$.

A basis \mathbf{B} could be partitioned as $\mathbf{B} = \mathbf{B}_{\mathrm{bot}} \cup \mathbf{B}_{\mathrm{mid}} \cup \mathbf{B}_{\mathrm{top}}$. The three bases $\mathbf{B}_{\mathrm{bot}}$, $\mathbf{B}_{\mathrm{mid}}$, and $\mathbf{B}_{\mathrm{top}}$ generate lattices $\mathcal{L}_{\mathrm{bot}}$, $\mathcal{L}_{\mathrm{mid}}$, $\mathcal{L}_{\mathrm{top}}$ such that $\mathcal{L} = \mathcal{L}_{\mathrm{bot}} \oplus \mathcal{L}_{\mathrm{mid}} \oplus \mathcal{L}_{\mathrm{top}}$.

• Step 1: Generate a list $L \subset \mathcal{L}_{\mathrm{mid}}$ (running a lattice sieve on $\mathcal{L}_{\mathrm{mid}}$).

A basis ${\bf B}$ could be partitioned as ${\bf B}={\bf B}_{\rm bot}\cup{\bf B}_{\rm mid}\cup{\bf B}_{\rm top}$. The three bases ${\bf B}_{\rm bot}$, ${\bf B}_{\rm mid}$, and ${\bf B}_{\rm top}$ generate lattices ${\cal L}_{\rm bot}, {\cal L}_{\rm mid}, {\cal L}_{\rm top}$ such that ${\cal L}={\cal L}_{\rm bot}\oplus{\cal L}_{\rm mid}\oplus{\cal L}_{\rm top}$.

- ullet Step 1: Generate a list $L\subset \mathcal{L}_{\mathrm{mid}}$ (running a lattice sieve on $\mathcal{L}_{\mathrm{mid}}$).
- Step 2:
 - ▶ Enumerate all nodes $t \in \mathcal{L}_{top}$.
 - ▶ For each t run the slicer with the list L to find close vectors $v \in \mathcal{L}_{mid}$.
 - ▶ For each pair t, v add the vector t v to an output list S.

A basis \mathbf{B} could be partitioned as $\mathbf{B} = \mathbf{B}_{\mathrm{bot}} \cup \mathbf{B}_{\mathrm{mid}} \cup \mathbf{B}_{\mathrm{top}}$. The three bases $\mathbf{B}_{\mathrm{bot}}$, $\mathbf{B}_{\mathrm{mid}}$, and $\mathbf{B}_{\mathrm{top}}$ generate lattices $\mathcal{L}_{\mathrm{bot}}$, $\mathcal{L}_{\mathrm{mid}}$, $\mathcal{L}_{\mathrm{top}}$ such that $\mathcal{L} = \mathcal{L}_{\mathrm{bot}} \oplus \mathcal{L}_{\mathrm{mid}} \oplus \mathcal{L}_{\mathrm{top}}$.

- ullet Step 1: Generate a list $L\subset \mathcal{L}_{\mathrm{mid}}$ (running a lattice sieve on $\mathcal{L}_{\mathrm{mid}}$).
- Step 2:
 - ▶ Enumerate all nodes $t \in \mathcal{L}_{top}$.
 - ▶ For each t run the slicer with the list L to find close vectors $v \in \mathcal{L}_{mid}$.
 - ▶ For each pair t, v add the vector t v to an output list S.
- Step 3: Extend each vector $s' \in S$ to a candidate solution $s \in \mathcal{L}$ by running Babai's nearest plane algorithm.
- Output the shortest lifted vector.

This hybrid depends on

Assumption (Hybrid assumption)

The list S, output by the slicer, contains the $2^{(\alpha + \log_2(16/13)) \cdot n/2 + o(n)}$ shortest lattice vectors of $\mathcal{L}_{mid} \oplus \mathcal{L}_{top}$.

This hybrid depends on

Assumption (Hybrid assumption)

The list S, output by the slicer, contains the $2^{(\alpha + \log_2(16/13)) \cdot n/2 + o(n)}$ shortest lattice vectors of $\mathcal{L}_{\mathrm{mid}} \oplus \mathcal{L}_{\mathrm{top}}$.

Léo Ducas and Wessel van Woerden later informed us that counterexamples can be found where S might only contain at most an exponentially small fraction of the shortest vectors of $\mathcal{L}_{\mathrm{mid}} \oplus \mathcal{L}_{\mathrm{top}}$.

• Split \mathcal{L} as $\mathcal{L} = \mathcal{L}_1 \oplus \mathcal{L}_2$.

- Split \mathcal{L} as $\mathcal{L} = \mathcal{L}_1 \oplus \mathcal{L}_2$.
- ullet Enumerate targets in $\mathcal{L}2$.

- Split \mathcal{L} as $\mathcal{L} = \mathcal{L}_1 \oplus \mathcal{L}_2$.
- Enumerate targets t_i in $\mathcal{L}2$.
- Randomise the t_i using vectors in \mathcal{L}_1 .

ullet Reduce all the randomised vectors by short vectors in \mathcal{L}_1 .

ullet Reduce all the randomised vectors by short vectors in \mathcal{L}_1 .

- ullet Reduce all the randomised vectors by short vectors in \mathcal{L}_1 .
- Keep the resulting vectors as the set *S*.

Experimental results

Parameters		BKZ	- Sieve $-$		— Enum —		— Slice —			Total
d	k	$T_{BKZ}^{(d-10)}$	L	$T_{\text{sieve}}^{(d-k)}$	T	$\mathbf{T}_{\mathrm{enum}}^{(k)}$	$\mathcal{T}_{\mathrm{iter}}^{(d-k)}$	p_{iter}^{-1}	${\rm T}_{\rm slice}^{(d-k)}$	$T_{hyb}^{(d)}$
60	0	$_{4s}$	18k	19s	-					23
	1	4s	16k	16s	5	0s	3.2 ms	830	13s	33
	2	4s	13k	12s	30	0s	2.7 ms	530	43s	59
	3	4s	12k	9s	155	0s	$2.4 \mathrm{ms}$	760	280s	293
	1+1	4s	13k	12s	4	0s	$3.0 \mathrm{ms}$	500	6s	51
	1+1	45	(16k)	(0s)	5	0s	$3.2 \mathrm{ms}$	1820	29s	31
65	0	8s	37k	78s	-	-	-	-	-	1n
	1	8s	32k	57s	5	0s	6.8 ms	12.5k	7m	8r
	2	8s	28k	44s	37	0s	$6.6 \mathrm{ms}$	2.9k	12m	13r
	3	8s	24k	36s	215	0s	$5.6 \mathrm{ms}$	2.9k	58m	59r
	1+1	8s	28k	44s	4	0s	$6.6 \mathrm{ms}$	1.1k	0.5m	6r
	1+1	os	(32k)	(0s)	5	0s	$6.8 \mathrm{ms}$	6.7k	4m	01
70	0	1m	76k	5m	-	-	-	-	-	6ı
	1	$1 \mathrm{m}$	65k	4m	6	0m	$20 \mathrm{ms}$	17k	35m	40r
	2	$1 \mathrm{m}$	57k	3m	46	0m	16 ms	1k	12m	16ı
	3	$1 \mathrm{m}$	49k	2m	293	0 m	13ms	6k	381m	384r
	1+1	1m	57k	3m	5	0 m	$15 \mathrm{ms}$	2k	2m	43ı
	171	1111	(65k)	(0m)	5	0 m	18ms	25k	37m	401
75	0	2m	155k	22m	-	-	-	-	-	0.4
	1	2m	134k	16m	6	0m	$40 \mathrm{ms}$	25k	2h	2
	2	2m	116k	11m	50	0m	48 ms	20k	13h	14
	3	2m	101k	8m	366	$0 \mathbf{m}$	$30 \mathrm{ms}$	12k	37h	37
	1+1	$_{2\mathrm{m}}$	116k	11m	5	$0\mathbf{m}$	$35 \mathrm{ms}$	4k	0.2h	>8
	1+1	2111	(134k)	(0m)	6	$0 \mathbf{m}$	$41 \mathrm{ms}$	>100k	>7h	
80	0	14m	320k	74m	-	-	-	-	-	1.5
	1	14m	275k	58m	7	0m	95 ms	> 100 k	> 18h	>20
	2	14m	240k	45m	64	0m	$74 \mathrm{ms}$	> 50 k	>66h	>67
	3	14m	205k	36m	506	0m	$66 \mathrm{ms}$	> 50 k	> 19d	>19

Thank you!