
Sieve, Enumerate, Slice, and Lift:
Hybrid Lattice Algorithms for SVP via CVPP

Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger

Technische Universiteit Eindhoven

July 2020

AfricaCrypt 2020, Cairo, Egypt

Outline

1 Introduction

2 Enumeration

3 The slicer algorithms

4 Hybrid algorithms

AfricaCrypt 2020 1

Outline

1 Introduction

2 Enumeration

3 The slicer algorithms

4 Hybrid algorithms

AfricaCrypt 2020 1

What is a lattice?

Definition

A lattice L is a discrete additive subgroup of Rn.

AfricaCrypt 2020 2

What is a lattice?

Definition

A lattice L is a discrete additive subgroup of Rn.

AfricaCrypt 2020 2

What is a lattice?

A lattice is an infinite grid of points in the n-dimensional space.

AfricaCrypt 2020 3

b1

b2

O

What is a lattice?

A lattice: The set of all integer linear combinations of some basis B where
B = {b1, . . . , bn} ⊂ Rn.

AfricaCrypt 2020 3

b1

b2

O

b3
b4

What is a lattice?

A lattice: The set of all integer linear combinations of some basis B where
B = {b1, . . . , bn} ⊂ Rn.
A lattice has many bases.

AfricaCrypt 2020 3

O
b1

b2

s

The Shortest Vector Problem (SVP)

Shortest Vector Problem (SVP)

Given an arbitrary basis for L, find a shortest non-zero vector s in L i.e.
‖s‖ = minv∈L\{0}‖v‖. We denote λ1(L) = minv∈L\{0}‖v‖.

AfricaCrypt 2020 4

b1

b2

t

The Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

Given an arbitrary basis for L and a target vector t, find the closest lattice
vector v in L such that ‖t − v‖ = d(t,L).

AfricaCrypt 2020 5

b1

b2

t

v

The Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

Given an arbitrary basis for L and a target vector t, find the closest lattice
vector v in L such that ‖t − v‖ = d(t,L).

AfricaCrypt 2020 5

b1

b2

t

The Approximate Closest Vector Problem (CVPκ)

Approximate Closest Vector Problem (CVPκ)

Given an arbitrary basis for L, a target vector t and an approximation
factor κ ≥ 1, find a lattice vector v in L such that ‖t − v‖ ≤ κd(t,L).

AfricaCrypt 2020 6

b1

b2

t

v

The Closest Vector Problem with Pre-processing (CVPP)

The CVPP variant

Given an arbitrary basis for L, compute some pre-processing data such that
when later given a target vector t, it will be ”easy” to solve the CVP for t.

AfricaCrypt 2020 7

Outline

1 Introduction

2 Enumeration

3 The slicer algorithms

4 Hybrid algorithms

AfricaCrypt 2020 8

Solving SVP

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We know that λ1(L) ≤ ‖b1‖.

Enumeration explores all the choices of the xi such that
‖x1b1 + · · ·+ xnbn‖ ≤ ‖b1‖.

AfricaCrypt 2020 9

Solving SVP

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We know that λ1(L) ≤ ‖b1‖.

Enumeration explores all the choices of the xi such that
‖x1b1 + · · ·+ xnbn‖ ≤ ‖b1‖.

AfricaCrypt 2020 9

Solving SVP

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We know that λ1(L) ≤ ‖b1‖.

Enumeration explores all the choices of the xi such that
‖x1b1 + · · ·+ xnbn‖ ≤ ‖b1‖.

AfricaCrypt 2020 9

Enumeration tree (example)
0

−1

(−1,−1)(0,−1)

0

(−1, 0) (0, 0) (1, 0)

(−1, 1, 0)(0, 1, 0)

...

(1, 1, 0)

1

(0, 1) (1, 1)

root

bn

bn−1

...

b1

AfricaCrypt 2020 10

Enumeration costs in small depth

Lemma (Costs of enumeration HS07)

Let B be a strongly reduced basis of a lattice. Then the number of nodes
Ek at depth k = o(n), k = n1−o(1), satisfies:

Ek = nk/2+o(k).

Enumerating all these nodes can be done in time Tenum and space Senum,
with:

Tenum = Ek · nO(1), Senum = nO(1).

AfricaCrypt 2020 11

Outline

1 Introduction

2 Enumeration

3 The slicer algorithms

4 Hybrid algorithms

AfricaCrypt 2020 12

b1

b2

t

s

t′

O

Solving CVP(P)

We have t ∈ t + L and t ′ = t − s so t ′ ∈ t + L as well...
It suffices to find t ′.

AfricaCrypt 2020 13

t

s

t′

O

r1

r2
r3

r4

r5

r6

The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.

AfricaCrypt 2020 14

t
O

r1

r2
r3

−4r1

The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.

AfricaCrypt 2020 15

t
O

r1

r2
r3

+3r2

The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.

AfricaCrypt 2020 15

t
O

r1

r2
r3

−2r1

The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.

AfricaCrypt 2020 15

t O

r1

r2
r3

+r3 t′

The iterative slicer (ideal case)

Create a list L ⊆ L. Keep reducing t by the vectors r in the list L until the
result cannot be reduced any more. Then we have found t ′.

AfricaCrypt 2020 15

t

r1 r2

r3r4

The iterative slicer (in practice)

Computing t ′ correctly depends on the list L. Computing “the proper” list L

is too costly. We can use approximations instead.

Disadvantage: We might get a wrong t ′.

AfricaCrypt 2020 16

t

r1 r2

r3r4

The iterative slicer (in practice)

Computing t ′ correctly depends on the list L. Computing “the proper” list L

is too costly. We can use approximations instead.

Disadvantage: We might get a wrong t ′.

AfricaCrypt 2020 16

t

r1 r2

r3r4

The randomized slicer

Create a list L of lattice vectors (e.g. by running a sieving algorithm).

AfricaCrypt 2020 17

t1

t2

t3

t4

t5

r1 r2

r3r4

The randomized slicer

Create a list L of lattice vectors (e.g. by running a sieving algorithm).

Randomize t sufficiently many times (as ti) and reduce it.

AfricaCrypt 2020 17

t1

t2

t3

t4

t5

The randomized slicer

Create a list L of lattice vectors (e.g. by running a sieving algorithm).

Randomize t sufficiently many times (as ti) and reduce it.

Keep the shortest t ′i found as t ′.

AfricaCrypt 2020 17

The randomized slicer algorithm

AfricaCrypt 2020 18

Costs of preprocessing

Lemma (Costs of lattice sieving BDGL16)

Given a basis B of a lattice L, the LDSieve heuristically returns a list
L ⊂ L containing the (4/3)n/2+o(n) shortest lattice vectors, in time Tsieve

and space Ssieve with:

Tsieve = (3/2)n/2+o(n), Ssieve = (4/3)n/2+o(n).

With the LDSieve we can therefore solve SVP with the above complexities.

AfricaCrypt 2020 19

Costs of the randomized slicer

Lemma (single target DLW20)

Given a list of the (4/3)n/2+o(n) shortest vectors of a lattice L and a
target t ∈ Rn, the randomized slicer solves CVP for t in time Tslice and
space Sslice, with:

Tslice = 2ζn+o(n), Sslice = (4/3)n/2+o(n).

In our case ζ = 0.2639 . . .

AfricaCrypt 2020 20

Costs of the randomized slicer

Lemma (many targets DLW20)

Given a list of the (4/3)n/2+o(n) shortest vectors of a lattice L and a batch
of N ≥ (13/12)n/2+o(n) target vectors t1, . . . , tN ∈ Rn, the batched
randomized slicer solves CVP for all targets ti in total time Tslice and
space Sslice, with:

Tslice = N · (18/13)n/2+o(n), Sslice = (4/3)n/2+o(n).

AfricaCrypt 2020 21

Outline

1 Introduction

2 Enumeration

3 The slicer algorithms

4 Hybrid algorithms

AfricaCrypt 2020 22

Solving SVP via CVPP (Part 1)

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

Choose 0 ≤ k ≤ n and split B as B = Bbot ∪Btop where
Bbot := {b1, . . . ,bn−k} and Btop := {bn−k+1, . . . ,bn}.

This partitions the lattice as L = Lbot ⊕ Ltop where
Lbot := L(Bbot) and Ltop := L(Btop).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We can also split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

AfricaCrypt 2020 23

Solving SVP via CVPP (Part 1)

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

Choose 0 ≤ k ≤ n and split B as B = Bbot ∪Btop where
Bbot := {b1, . . . ,bn−k} and Btop := {bn−k+1, . . . ,bn}.

This partitions the lattice as L = Lbot ⊕ Ltop where
Lbot := L(Bbot) and Ltop := L(Btop).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We can also split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

AfricaCrypt 2020 23

Solving SVP via CVPP (Part 1)

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

Choose 0 ≤ k ≤ n and split B as B = Bbot ∪Btop where
Bbot := {b1, . . . ,bn−k} and Btop := {bn−k+1, . . . ,bn}.

This partitions the lattice as L = Lbot ⊕ Ltop where
Lbot := L(Bbot) and Ltop := L(Btop).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We can also split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

AfricaCrypt 2020 23

Solving SVP via CVPP (Part 1)

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

Choose 0 ≤ k ≤ n and split B as B = Bbot ∪Btop where
Bbot := {b1, . . . ,bn−k} and Btop := {bn−k+1, . . . ,bn}.

This partitions the lattice as L = Lbot ⊕ Ltop where
Lbot := L(Bbot) and Ltop := L(Btop).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We can also split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

AfricaCrypt 2020 23

Solving SVP via CVPP (Part 1)

Let L be a lattice with basis B = {b1, . . . ,bn} ⊂ Rn.
Question: Find s in L with ‖s‖ = λ1(L).

Choose 0 ≤ k ≤ n and split B as B = Bbot ∪Btop where
Bbot := {b1, . . . ,bn−k} and Btop := {bn−k+1, . . . ,bn}.

This partitions the lattice as L = Lbot ⊕ Ltop where
Lbot := L(Bbot) and Ltop := L(Btop).

As s ∈ L then ∃x1, . . . , xn ∈ Z such that s = x1b1 + · · ·+ xnbn.

We can also split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

AfricaCrypt 2020 23

Solving SVP via CVPP (Part 1)

0

−λbn

...

t1 t2

...
...

· · ·

...

0

...
...

...

ti

· · ·

s

· · ·

λbn

...
...

· · ·

...
...

· · · tN

· · · · · ·

root

n

...

...

1

n − k

AfricaCrypt 2020 24

Solving SVP via CVPP (Part 1)

0

−λbn

...

t1 t2

...
...

· · ·

...

0

...
...

...

ti

· · ·

s

· · ·

λbn

...
...

· · ·

...
...

· · · tN

· · · · · ·

root

n

...

...

1

n − k

AfricaCrypt 2020 24

Solving SVP via CVPP (Part 2)

We split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

Two cases:

I If stop = 0 then s = SVP(Lbot).
I If stop 6= 0 then s = stop − CVP(Lbot, stop).

The vector stop will be one of the vectors ti in the enumeration tree.
We do not know in advance which one.

Solve CVP(Lbot, ti) for all ti ⇒ CVPP.

Keep the shortest ti − CVP(Lbot, ti) as s.

AfricaCrypt 2020 25

Solving SVP via CVPP (Part 2)

We split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

Two cases:

I If stop = 0 then s = SVP(Lbot).
I If stop 6= 0 then s = stop − CVP(Lbot, stop).

The vector stop will be one of the vectors ti in the enumeration tree.
We do not know in advance which one.

Solve CVP(Lbot, ti) for all ti ⇒ CVPP.

Keep the shortest ti − CVP(Lbot, ti) as s.

AfricaCrypt 2020 25

Solving SVP via CVPP (Part 2)

We split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

Two cases:

I If stop = 0 then s = SVP(Lbot).
I If stop 6= 0 then s = stop − CVP(Lbot, stop).

The vector stop will be one of the vectors ti in the enumeration tree.
We do not know in advance which one.

Solve CVP(Lbot, ti) for all ti ⇒ CVPP.

Keep the shortest ti − CVP(Lbot, ti) as s.

AfricaCrypt 2020 25

Solving SVP via CVPP (Part 2)

We split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

Two cases:

I If stop = 0 then s = SVP(Lbot).
I If stop 6= 0 then s = stop − CVP(Lbot, stop).

The vector stop will be one of the vectors ti in the enumeration tree.
We do not know in advance which one.

Solve CVP(Lbot, ti) for all ti ⇒ CVPP.

Keep the shortest ti − CVP(Lbot, ti) as s.

AfricaCrypt 2020 25

Solving SVP via CVPP (Part 2)

We split s as s = sbot + stop where
sbot = x1b1 + · · ·+ xn−kbn−k ∈ Lbot and
stop = xn−k+1bn−k+1 + · · ·+ xnbn ∈ Ltop.

Two cases:

I If stop = 0 then s = SVP(Lbot).
I If stop 6= 0 then s = stop − CVP(Lbot, stop).

The vector stop will be one of the vectors ti in the enumeration tree.
We do not know in advance which one.

Solve CVP(Lbot, ti) for all ti ⇒ CVPP.

Keep the shortest ti − CVP(Lbot, ti) as s.

AfricaCrypt 2020 25

Solving SVP via CVPP (Part 2)

0

−λbn

...

t1 t2 · · ·

...

0

...
...

...

ti ti+1

λbn

...
...

· · · · · · tN

· · · · · ·

root

n

...

n − k · · · · · ·

t1 −w1 t2 −w2 ti −wi ti+1 −wi+1 tN −wN

where wi = CVP(Lbot, ti)

AfricaCrypt 2020 26

Hybrid 1 (sieve, enumerate–and–slice)

Step 1: Generate a list L ⊂ Lbot (running a lattice sieve on Lbot).

Step 2: Run enumeration in Ltop, where for each leaf ti ∈ Ltop run
the randomized slicer to find the closest vector CVP(ti) ∈ Lbot.
Output the shortest vector ti − CVP(ti) found.

Balancing and minimizing the costs between the two steps leads to a
choice of k = αn/ log2 d where α < 0.0570.

Proposition (Heuristic result 1)

Let be k as above and let T
(n)
1 and S

(n)
1 denote the overall time and space

complexities of the sieve, enumerate–and–slice hybrid algorithm in
dimension n. Then:

T
(n)
1 = T

(n−k)
sieve · (1 + o(1)), S

(n)
1 = S

(n−k)
sieve · (1 + o(1)).

AfricaCrypt 2020 27

Hybrid 1 (sieve, enumerate–and–slice)

Step 1: Generate a list L ⊂ Lbot (running a lattice sieve on Lbot).

Step 2: Run enumeration in Ltop, where for each leaf ti ∈ Ltop run
the randomized slicer to find the closest vector CVP(ti) ∈ Lbot.
Output the shortest vector ti − CVP(ti) found.

Balancing and minimizing the costs between the two steps leads to a
choice of k = αn/ log2 d where α < 0.0570.

Proposition (Heuristic result 1)

Let be k as above and let T
(n)
1 and S

(n)
1 denote the overall time and space

complexities of the sieve, enumerate–and–slice hybrid algorithm in
dimension n. Then:

T
(n)
1 = T

(n−k)
sieve · (1 + o(1)), S

(n)
1 = S

(n−k)
sieve · (1 + o(1)).

AfricaCrypt 2020 27

Hybrid 1 (sieve, enumerate–and–slice)

Step 1: Generate a list L ⊂ Lbot (running a lattice sieve on Lbot).

Step 2: Run enumeration in Ltop, where for each leaf ti ∈ Ltop run
the randomized slicer to find the closest vector CVP(ti) ∈ Lbot.
Output the shortest vector ti − CVP(ti) found.

Balancing and minimizing the costs between the two steps leads to a
choice of k = αn/ log2 d where α < 0.0570.

Proposition (Heuristic result 1)

Let be k as above and let T
(n)
1 and S

(n)
1 denote the overall time and space

complexities of the sieve, enumerate–and–slice hybrid algorithm in
dimension n. Then:

T
(n)
1 = T

(n−k)
sieve · (1 + o(1)), S

(n)
1 = S

(n−k)
sieve · (1 + o(1)).

AfricaCrypt 2020 27

Hybrid 2 (sieve, enumerate, slice)

Step 1: Generate a list L ⊂ Lbot (running a lattice sieve on Lbot).

Step 2: Enumerate all nodes ti ∈ Ltop at depth k and store them in a
list of targets T ⊂ Ltop.

Step 3: Run the batched randomized slicer to solve CVP on Lbot for
all targets ti ∈ T .

Output the shortest vector ti − CVP(ti) found.

Proposition (Heuristic result 2)

Let k = αn/ log2 n with α < log2(1312) = 0.1154

Let T
(n)
2 and S

(n)
2 denote the overall time and space complexities of the

batched sieve, enumerate, slice hybrid algorithm in dimension n. Then:

T
(n)
2 = T

(n−k)
sieve · (1 + o(1)), S

(n)
2 = S

(n−k)
sieve · (1 + o(1)).

AfricaCrypt 2020 28

Hybrid 2 (sieve, enumerate, slice)

Step 1: Generate a list L ⊂ Lbot (running a lattice sieve on Lbot).

Step 2: Enumerate all nodes ti ∈ Ltop at depth k and store them in a
list of targets T ⊂ Ltop.

Step 3: Run the batched randomized slicer to solve CVP on Lbot for
all targets ti ∈ T .

Output the shortest vector ti − CVP(ti) found.

Proposition (Heuristic result 2)

Let k = αn/ log2 n with α < log2(1312) = 0.1154

Let T
(n)
2 and S

(n)
2 denote the overall time and space complexities of the

batched sieve, enumerate, slice hybrid algorithm in dimension n. Then:

T
(n)
2 = T

(n−k)
sieve · (1 + o(1)), S

(n)
2 = S

(n−k)
sieve · (1 + o(1)).

AfricaCrypt 2020 28

Further Hybrids

A basis B could be partitioned as B = Bbot ∪Bmid ∪Btop. The three
bases Bbot, Bmid, and Btop generate lattices Lbot,Lmid,Ltop such that
L = Lbot ⊕ Lmid ⊕ Ltop.

Step 1: Generate a list L ⊂ Lmid (running a lattice sieve on Lmid).

Step 2:
I Enumerate all nodes t ∈ Ltop.
I For each t run the slicer with the list L to find close vectors v ∈ Lmid.
I For each pair t, v add the vector t − v to an output list S .

Step 3: Extend each vector s ′ ∈ S to a candidate solution s ∈ L by
running Babai’s nearest plane algorithm.

Output the shortest lifted vector.

AfricaCrypt 2020 29

Further Hybrids

A basis B could be partitioned as B = Bbot ∪Bmid ∪Btop. The three
bases Bbot, Bmid, and Btop generate lattices Lbot,Lmid,Ltop such that
L = Lbot ⊕ Lmid ⊕ Ltop.

Step 1: Generate a list L ⊂ Lmid (running a lattice sieve on Lmid).

Step 2:
I Enumerate all nodes t ∈ Ltop.
I For each t run the slicer with the list L to find close vectors v ∈ Lmid.
I For each pair t, v add the vector t − v to an output list S .

Step 3: Extend each vector s ′ ∈ S to a candidate solution s ∈ L by
running Babai’s nearest plane algorithm.

Output the shortest lifted vector.

AfricaCrypt 2020 29

Further Hybrids

A basis B could be partitioned as B = Bbot ∪Bmid ∪Btop. The three
bases Bbot, Bmid, and Btop generate lattices Lbot,Lmid,Ltop such that
L = Lbot ⊕ Lmid ⊕ Ltop.

Step 1: Generate a list L ⊂ Lmid (running a lattice sieve on Lmid).

Step 2:
I Enumerate all nodes t ∈ Ltop.
I For each t run the slicer with the list L to find close vectors v ∈ Lmid.
I For each pair t, v add the vector t − v to an output list S .

Step 3: Extend each vector s ′ ∈ S to a candidate solution s ∈ L by
running Babai’s nearest plane algorithm.

Output the shortest lifted vector.

AfricaCrypt 2020 29

Further Hybrids

A basis B could be partitioned as B = Bbot ∪Bmid ∪Btop. The three
bases Bbot, Bmid, and Btop generate lattices Lbot,Lmid,Ltop such that
L = Lbot ⊕ Lmid ⊕ Ltop.

Step 1: Generate a list L ⊂ Lmid (running a lattice sieve on Lmid).

Step 2:
I Enumerate all nodes t ∈ Ltop.
I For each t run the slicer with the list L to find close vectors v ∈ Lmid.
I For each pair t, v add the vector t − v to an output list S .

Step 3: Extend each vector s ′ ∈ S to a candidate solution s ∈ L by
running Babai’s nearest plane algorithm.

Output the shortest lifted vector.

AfricaCrypt 2020 29

Further Hybrids

This hybrid depends on

Assumption (Hybrid assumption)

The list S, output by the slicer, contains the 2(α+log2(16/13))·n/2+o(n)

shortest lattice vectors of Lmid ⊕ Ltop.

Léo Ducas and Wessel van Woerden later informed us that
counterexamples can be found where S might only contain at most an
exponentially small fraction of the shortest vectors of Lmid ⊕ Ltop.

AfricaCrypt 2020 30

Further Hybrids

This hybrid depends on

Assumption (Hybrid assumption)

The list S, output by the slicer, contains the 2(α+log2(16/13))·n/2+o(n)

shortest lattice vectors of Lmid ⊕ Ltop.

Léo Ducas and Wessel van Woerden later informed us that
counterexamples can be found where S might only contain at most an
exponentially small fraction of the shortest vectors of Lmid ⊕ Ltop.

AfricaCrypt 2020 30

O

Visualisation of the assumption

AfricaCrypt 2020 31

L1

L2

O

Visualisation of the assumption

Split L as L = L1 ⊕ L2.

AfricaCrypt 2020 31

L1

L2

O

t1

t2

Visualisation of the assumption

Split L as L = L1 ⊕ L2.

Enumerate targets in L2.

AfricaCrypt 2020 31

L1

L2

O

t1

t2

Visualisation of the assumption

Split L as L = L1 ⊕ L2.

Enumerate targets ti in L2.

Randomise the ti using vectors in L1.

AfricaCrypt 2020 31

L1

L2

O

t1

t2

Visualisation of the assumption

Reduce all the randomised vectors by short vectors in L1.

AfricaCrypt 2020 31

L1

L2

O

t1

t2

Visualisation of the assumption

Reduce all the randomised vectors by short vectors in L1.

AfricaCrypt 2020 31

O
S

Visualisation of the assumption

Reduce all the randomised vectors by short vectors in L1.

Keep the resulting vectors as the set S .

AfricaCrypt 2020 31

Experimental results

AfricaCrypt 2020 31

Thank you!

	Introduction
	Enumeration
	The slicer algorithms
	Hybrid algorithms

