Comment on “Bounds on the number of functions satisfying the Strict Avalanche Criterion”

A.M. Youssef, S.E. Tavares *

Department Of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario, Canada K7L 3N6

Received 1 May 1996
Communicated by S.G. Akl

Abstract

The Strict Avalanche Criterion (SAC) was introduced by Webster and Tavares (1995) in a study of design criteria for certain cryptographic functions. O’Connor (1994) gave an upper bound for the number of functions satisfying the SAC. Cusick (1996) gave a lower bound for the number of functions satisfying the SAC. He also gave a conjecture that provided an improvement of the lower bound. We give a constructive proof for this conjecture. Moreover, we provide an improved lower bound.

Keywords: Cryptography; Strict Avalanche Criterion; Boolean functions; Enumeration; Combinatorial problems

Notation. Throughout this paper, let

\[f_n : \mathbb{Z}_2^n \to \mathbb{Z}_2 \] describe a boolean function with \(n \) input variables.

\(V = \{ v_i | 0 \leq i \leq 2^n - 1 \} \) denotes the set of vectors in \(\mathbb{Z}_2^n \) in lexicographical order. A boolean function \(f_n(x) \) is specified by \(f_n(x) = [b_0, b_1, \ldots, b_{2^n - 1}] \), where \(b_i = f_n(v_i) \).

\(e \) denotes any element of \(\mathbb{Z}_2^n \) with Hamming weight 1. Let \(\hat{e}, \hat{v}_i \in \mathbb{Z}_2^{n-1} \) denote the \(n-1 \) least significant bits of \(e \) and \(v_i \) respectively.

\(a \) denotes any element of \(\mathbb{Z}_2^{n-1} \) with odd Hamming weight.

\[g_{n-1} : \mathbb{Z}_2^{n-1} \to \mathbb{Z}_2 \] denotes the boolean function \(1 \cdot x \oplus b, b \in \mathbb{Z}_2 \) where \(1 \) denotes the all ones vector in \(\mathbb{Z}_2^{n-1} \), \(\cdot \) denotes the dot product operation over \(\mathbb{Z}_2 \) and \(\oplus \) denotes the XOR operation. It is easy to see that \(g_{n-1} \) satisfies

\[g_{n-1}(x) = g_{n-1}(x \oplus a) \oplus 1. \] (1)

\(\text{MSB}(\cdot) \) denotes the most significant bit of the enclosed argument.

\(\mathcal{P}(\mathbb{Z}_2^n) \) denotes the number of functions with \(n \) input bits that satisfy the SAC.

* Corresponding author. Email: tavarcs@ee.queensu.ca.
Definition 1 [8]. A boolean function \(f_n : \mathbb{Z}_2^n \to \mathbb{Z}_2 \) is said to satisfy the SAC if complementing a single input bit results in changing the output bit with probability exactly one half, i.e.,

\[
\sum_{i=0}^{2^n-1} f_n(v_i) \oplus f_n(v_i \oplus e) = 2^{n-1},
\]

for all \(e \).

Definition 2 [4,5]. A linear structure of a boolean function \(f_n : \mathbb{Z}_2^n \to \mathbb{Z}_2 \) is identified as a vector \(c \neq 0 \in \mathbb{Z}_2^n \) such that \(f_n(v_i \oplus c) \oplus f_n(v_i) \) takes the same value (0 or 1) for all \(i, 0 \leq i \leq 2^n - 1 \).

The following conjecture is given in [2] without proof. This conjecture implies that there are at least \(2^{2^n-1} \) boolean functions of \(n \) variables which satisfy the SAC.

Conjecture [2]. Given any choice of the values \(f_n(v_i), 0 \leq i \leq 2^{n-1} - 1 \), there exists a choice of \(f_n(v_i), 2^{n-1} \leq i \leq 2^n - 1 \), such that the resulting function \(f_n(x) \) satisfies the SAC.

We prove this conjecture below. After completing our proof, we learned that Cusick and Stănică [3] independently proved the conjecture. Also, Biss [1] has proved a much stronger result by a much more complicated argument. If we let \(L_n = \log_2 \mathcal{P}(\mathcal{A}^{2^n}) / 2^n \), \(L = \lim_{n \to \infty} L_n \), then Biss proved that \(L = 1 \). The conjecture, of course, only says that \(L_n \geq 1/2 \).

For \(n = 1 \), it is trivial to show that if \(f_1(1) = f_1(0) \oplus 1 \) then the resulting function satisfies the SAC. In the following lemma we prove that, for \(n \geq 2 \), there exist at least two choices for \(f_n(v_i), 2^{n-1} \leq i \leq 2^n - 1 \), such that the resulting function satisfies the SAC.

Lemma 3. Let \(f_n = [h_{n-1}[h_{n-1} \oplus g_{n-1}]] \), where \(h_{n-1} \) is an arbitrary boolean function with \(n-1 \) input variables, \(n \geq 2 \), and \(g_{n-1} \) is constructed as above to satisfy Eq. (1). Then \(f_n \) satisfies the SAC.

Proof. Case 1: MSB(\(e \)) = 0.

\[
\sum_{i=0}^{2^n-1} f_n(v_i) \oplus f_n(v_i \oplus e) = \sum_{i=0}^{2^{n-1}-1} f_n(v_i) \oplus f_n(v_i \oplus e) + \sum_{i=2^{n-1}}^{2^n-1} f_n(v_i) \oplus f_n(v_i \oplus e) = \sum_{i=0}^{2^{n-1}-1} h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i \oplus \hat{e}) + \sum_{i=2^{n-1}}^{2^n-1} h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i \oplus \hat{e}) \oplus g_{n-1}(\hat{v}_i) \oplus g_{n-1}(\hat{v}_i \oplus \hat{e}) = \sum_{i=0}^{2^{n-1}-1} h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i \oplus \hat{e}) + \sum_{i=0}^{2^{n-1}-1} (h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i \oplus \hat{e})) = 2^{n-1}.
\]
Case 2: $\text{MSB}(e) = 1$.

\[
\sum_{i=0}^{2^{n-1}-1} f_n(v_i) \otimes f_n(v_i \oplus e) = 2 \sum_{i=0}^{2^{n-1}-1} f_n(v_i) \otimes f_n(v_i \oplus e)
= 2 \sum_{i=0}^{2^{n-1}-1} h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i) \oplus g_{n-1}(\hat{v}_i)
= 2 \sum_{i=0}^{2^{n-1}-1} g_{n-1}(\hat{v}_i) = 2^{n-1},
\]

which proves the lemma. \(\square\)

From Lemma 1, and by noting that we have two choices for g_n, we conclude that, for $n \geq 2$, the number of function satisfying the SAC is lower bounded by 2^{2^n-1}. Using the following lemma, one can provide some improvement to the above bound.

Lemma 4. Let $f_n = \left[h_{n-1}[l_{n-1} \oplus g_{n-1}]]\right]$, where h_{n-1} is an arbitrary boolean function with $n-1$ input variables, $l_{n-1}(x) = h_{n-1}(x \oplus a)$, $n \geq 2$, and g_{n-1} is constructed as above to satisfy Eq. (1). Then f_n satisfies the SAC.

Proof. Case 1: $\text{MSB}(e) = 0$.

\[
\sum_{i=0}^{2^n-1} f_n(v_i) \otimes f_n(v_i \oplus e)
= \sum_{i=0}^{2^n-1} f_n(v_i) \otimes f_n(v_i \oplus e) + \sum_{i=2^{n-1}}^{2^n-1} f_n(v_i) \otimes f_n(v_i \oplus e)
= \sum_{i=0}^{2^n-1} h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i \oplus \hat{e})
+ \sum_{i=0}^{2^n-1} h_{n-1}(\hat{v}_i \oplus a) \oplus h_{n-1}(\hat{v}_i \oplus a \oplus \hat{e}) \oplus g_{n-1}(\hat{v}_i) \oplus g_{n-1}(\hat{v}_i \oplus \hat{e})
= \sum_{i=0}^{2^n-1} h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i \oplus \hat{e}) + \sum_{i=0}^{2^n-1} (h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i \oplus \hat{e})) = 2^{n-1}.
\]

Case 2: $\text{MSB}(e) = 1$.

\[
\sum_{i=0}^{2^n-1} f_n(v_i) \otimes f_n(v_i \oplus e)
= 2 \sum_{i=0}^{2^n-1} h_{n-1}(\hat{v}_i) \oplus h_{n-1}(\hat{v}_i \oplus a) \oplus g_{n-1}(\hat{v}_i)
\]
Table 1

| Exact number of functions satisfying SAC versus the derived lower bounds |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(n \) | 2 | 3 | 4 | 5 |
| \(\mathcal{L}^{2^{n-1}} \) | 4 | 8 | 128 | 4992|
| Old bound [2] | 2 | 4 | 16 | 256 |
| New bound (exp. (3)) | 8 | 64 | 1536| 1099776|
| New bound (exp. (4)) | 8 | 64 | 1920| 1157568|
| Exact number | 8 | 64 | 4128| 27522560|

\[
2^{n-1} - 1 - \sum_{i=0}^{2^{n-1}-1} h_{n-1}(\hat{v}_i) + \sum_{i=0}^{2^{n-1}-1} h_{n-1}^{\neg}(\hat{v}_i) = 2^{n-1},
\]

which proves the lemma. \(\square \)

Note that if the function \(f_{n-1} \) does not have any linear structures, then all the functions generated by \(l_{n-1} \oplus \overline{g}_{n-1} \) will be unique for all the \(2^{n-2} \) choices of \(a \). From Lemmas 3 and 4 we have \(2^{n-1} + 2 \) distinct choices for \(f_{n-1}(v_i) \), \(2^{n-1} \leq i \leq 2^n - 1 \). Thus we have the following corollary:

Corollary 5. The number of functions satisfying the SAC is lower bounded by

\[
(2^{2^{n-1}} - \mathcal{L}^{2^{n-1}})(2^{n-1} + 2) + 2\mathcal{L}^{2^{n-1}}
\]

where \(\mathcal{L}^{2^{n-1}} \) is the number of functions with \(n-1 \) input bits having any linear structure. A complicated formula for \(\mathcal{L}^{2^n} \) is given in [7]. It can also be shown [7] that \(\mathcal{L}^{2^n} \) is asymptotic to \((2^n - 1)2^{2^{n-1}-1} \).

One should note that while this bound provides some improvement over the proved bound in [2], exhaustive search (see Table 1) shows that the quality of this bound degrades as \(n \) increases. One can improve this bound slightly by identifying special classes of functions \(f_n(v_i) \), \(0 \leq i \leq 2^{n-1} - 1 \) for which there is a large number of choices for \(f_n(v_i) \), \(2^{n-1} \leq i \leq 2^n - 1 \) such that the resulting function, \(f_n \), satisfies the SAC. For example, if the function \(h_{n-1} \) satisfies the SAC, then the function \(f_n = [h_{n-1}[h_{n-1} \oplus c \cdot x \oplus b]], b \in \mathbb{Z}_2 \) also satisfies the SAC. Thus our bound is slightly improved to

\[
(2^{2^{n-1}} - \mathcal{L}^{2^{n-1}} - \mathcal{P}^{2^{n-1}})(2^{n-1} + 2) + 2\mathcal{P}^{2^{n-1}} - 1 + 2\mathcal{L}^{2^{n-1}}.
\]

We now give a lower bound on the number of balanced functions that satisfy the SAC.

Lemma 6. Let \(f_n = [h_{n-1}[l_{n-1} \oplus g_{n-1}]] \), where \(h_{n-1} \) is an arbitrary boolean function with \(n-1 \) input variables that satisfies \(\sum_{w(x) \text{odd}} h_{n-1}(v_i) = 2^{n-3} \), \(l_{n-1}(x) = h(x \oplus a) \), \(n \geq 2 \), and \(g_{n-1} \) is constructed as above to satisfy Eq. (1). Then \(f_n \) is a balanced function that satisfies the SAC.

Proof. From Lemma 6, it follows that \(f_n \) satisfies the SAC. Here we will prove that \(f_n \) is a balanced function.

\[
\sum_{i=1}^{2^{n-1}} f_n(v_i) = \sum_{i=0}^{2^{n-1}-1} h_{n-1}(\hat{v}_i) + \sum_{i=0}^{2^{n-1}-1} h_{n-1}^{\neg}(\hat{v}_i) + \sum_{i=0}^{2^{n-1}-1} h_{n-1}(\hat{v}_i) \oplus g_{n-1}(\hat{v}_i).
\]
\[\sum_{i=0}^{2^{n-1}-1} h_{n-1}(\tilde{v}_i) + \sum_{i=0}^{2^{n-1}-1} h_{n-1}(\tilde{v}_i) \oplus 1 \cdot \tilde{v}_i \]
\[= \sum_{\text{wt}(\tilde{v}) \text{ even}} (h_{n-1}(\tilde{v}_i) + h_{n-1}(\tilde{v}_i)) + 2 \sum_{\text{wt}(\tilde{v}) \text{ odd}} h_{n-1}(\tilde{v}_i) = 2^{n-2} + 2 \cdot 2^{n-3} = 2^{n-1}, \]

which proves the lemma. \(\square \)

Similarly, one can also show that the function \(f_n = [h_{n-1}[h_{n-1} \oplus g_{n-1}]] \) where \(h_{n-1} \) is an arbitrary boolean function that satisfies \(\sum_{\text{wt}(\tilde{v}) \text{ even}} h_{n-1}(\tilde{v}_i) = 2^{n-3} \) is a balanced function that satisfies the SAC. From the lemma above, it follows that the number of balanced SAC functions is lower bounded by

\[\left(\frac{2^{n-2}}{2^{n-3}} \right)^{2^{n-2}+1}. \quad (5) \]

References