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Abstract— In this paper we develop an analytical
model for the avalanche characteristics of Substitution
Permutation encryption Networks (SPNs) with
randomly generated substitution boxes (s-boxes) . We
consider three general network models, distinguished by
their linear interconnestion layers. We show that, for
the purpose of modelling the avalanche cliaracteristics,
the number of active s-boxes (i.e., s-boxes with output
changes) at each round can be modelled by an ergodic
Markov chain. Our results show that the transition
matrices for SPNs with a permutation layer have the
slowest convergence, and the transition matrices for
SPNs with a wordwise linear transformation layer
have the fastest convergence. This implies that the
appropriate linear transformation can be used to
facilitate the construction of efficient ciphers with
fewer roends.

1. Introduction

Feistel [2] was the first to suggest that a basic
substitution-permutation network (SPN) consisting of
rounds of nonlinear substitutions (s-boxes) connected by
bit permutations was a simple, effective implementation of
a private-key block cipher. The SPN structure is directly
based on Shannon’s principle of a mixing transformation
using the concepts of “confusion” and “diffusion” [10].
Heys and Tavares [6] noted that the permutation layer of
an SPN can be considered as a specialized class of the
set of linear transformations that may be used to achieve
Shannon’s diffusion effect. They also showed that another
class of invertible linear transformations may be used
between rounds of s-boxes to increase the SPN’s resistance
to differential cryptanalysis [1] and linear cryptanalysis [9].
Letting NV represent the block size of an SPN consisting of
. R rounds of n x n s-boxes, a simple example of an SPN
with N = 16, n =4, and R = 3 is illustrated in Figure 1.
Keying the network is accomplished by XORing the key
bits with the data bits before each round of substitution
and after the last round.

One advantage of the SPN model is that it is a simple, yet
elegant, structure for which it is generally possible to prove
security properties such as completeness [8], and as shown
in [6], resistance to differential cryptanalysis [1] and linear
cryptanalysis [9].

An SPN is considered to display good avalanche
characteristics if a one bit change in the plaintext input is

expected to cause close to half the ciphertext bits to change.
Good avalanche characteristics are important to ensure that
a cipher is not susceptible to statistical attacks such as

clustering attacks {5]. More formally, the avalanche is
defined as follows :

A cipher is said to gatisfy the avalanche criterion
if, for each key, on average half the ciphertext bits
change when one plaintext bit is changed. That is,
E(wt(AC) | wt(AP) = 1) = N/2, where wt(-) denotes
the hamming weight of the enclosed argument, AC and
AP denote the ciphertext and plaintext change vectors,
respectively.
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Figure 1: SPN with N = 16, » = 4, and R = 3.
In [7], Heys and Tavares analyzed the avalanche
characteristics of SPNs based on two general network
models, distinguished by the nature of their permutation
layer. In the first model, they considered a network where
the permutation between two rounds is modelled as a
random variable whose values are equally likely. In the
second model, they considered a network which has a
specified fixed permutation between rounds. In [4], Heys

extended this work and developed a model of the avalanche
characteristics of DES-like ciphers.

In this paper we develop analytical models for the avalanche
characteristics of other classes of SPNs. In particular,
we consider the following three general network models,
distinguished by their linear transformation layers:

Model A — In this model we consider SPNs, with M = n,
in which the interconnection layer is a permutation layer
7 € Q, where Q is defined to be the set of permutations



for which no two outputs of an s-box are connected to one
s-box in the next round.

Model B — In this model we consider SPNs in which
the interconnection layer is given by the invertible bitwise

linear transformation defined by V = =(L£(U)) where -

V = [V, -Vy] is the vector of input bits to a round
of s-boxes, U = [U1Us - --Un] is the vector of bits from
the previous round output, L(U) = [L;(U)--- Ly(U)],
n € £, where Q is the set of permutations defined in model
A, and '

Li(U) =P

1#5

N is assumed to be even so that the linear transformation
is invertible.
Model C— In this model we consider SPNs in which the

interconnection layer is given by the invertible wordwise
linear transformation defined by

where Z; represents the i n-bit output word of the
transformation, W; is the i® input word, and M = %
denotes the number of s-boxes. It is assumed that M is
even so that the lingar transformation is invertible. For
8 x 8 s-boxes this is a byte oriented operation.

The resistance of SPNs, described by the above three
models, against linear and differential cryptanalysis is
studied in [6][12].

2. Convergence in Markov Chains

A Markov chain is ergodic if it is finite, aperiodic and
irreducible. A sufficient condition for a Markov chain with
n states and a state transition matrix, P, to be aperiodic is
that P[¢,4] > 0 for some 4,1 < i < n, and it is irreducible if
for all 4, j there exists r such that P"[Z,j] > 0,1 <i,j < n.
If P is ergodic, then ‘there exists-a unique distribution
I = (my,my, -+, m,) such that

w; = rlin;o Pz, 5]

The distribution II is said to be the limiting distribution
of P. The classical method to determine the rate of
* convergence towards this limiting distribution is to consider
the eigenvalues of P [3].

Suppose that we have a matrix P with distinct and non-
zero eigenvalues Ay, A, --,A,. Let the column vector

) X T
x(&) = (x(l'),m(z’),---,mg)) satisfy
Px = /\;x(i),
and the row vector y*) = (ygi), ygi), ey ySf )) satisfy

y(i)p — /\iy(i),

for: = 1,2,---,n. Then

n z(~£)y2i)
r T ] —
P = Z/\; B(i)a B(')[]’k]z x(2) y(')
=1

It follows that a matrix P with distinct eigenvalues has a
limiting distribution if and only if the largest eigenvalue
is 1, and the remaining eigenvalues are less than one in
modulus. We order the eigenvalues with 1 = A; > |Ay] >
PAsl 2 -+ > [,

Powers of a transition matrix can be written as

m m
Pr= Z;'\:B(;) = P"+Y A Bg,

=2

where P* = [I, 10, .-, T]7, 1 is thé limiting distribution
of P. Thus all entries of P™ converge to their limit
exponentially fast as a function of A,.

3. Modelling Avalanche in S-boxes

We will use the same s-box model proposed in [7]. Let the
s-boxes in the network be defined by a bijective mapping
S :X — Y. Assume that any set of one or more input
bit changes to an s-kox results in a number of output
bit changes represented by the random variable D, i.e.,
D = wt(AY) where AY is the output change vector of the
s-box. We assume that the likelihood of a particular nonzero
value for D is given by assuming that all possible values
of AY belonging to the set of 2" — 1 nonzero changes

are equally likely. Hence the probability distribution of D
is given by

1 ,wi(AX) =0,

PD(D=°)={0 L wi(AX) > 1,

and )
o , wi{AX) =0,
(D=4 = { L wax) 2,
for 1 < d < n. Note that the above s-box model
essentially represents an-average over all randomly selected
s-boxes and is not intended to characterize the behavior
of an actual physically realizable s-box. However, as
experimental evidence suggests, modelling the number
of output changes of each s-box as a random variable
is a suitable approximation when considering an SPN
constructed using randomly selected bijective s-boxes.

Let W, represent the random variable corresponding to
the number of bit changes after round r given a one bit
plaintext change, i.e.,

M
Wr = Z ’LUt(AYrs),

s=1



where AY,, denotes the output change vector of the s*”
s-box in round r. Hence, the expected value of W, is
given by

EW,) = Z E(D)iPa,(Ar = 1)
2n-—1

=TTD > Zzp,, (Ar =1),

where P4, (A, = i) denotes the probability of having i
active s-boxes in round 7, i.e., ¢ s-boxes with nonzero input
change vectors.

Thus we have

PA'_(Ar = 1) = ZPA,(AT = 1|A,-_1 ‘—J) PAr_l(.AT 1 —])

1=0

with the initial condition
Pa (A1 =j)=6(j =1),

where 6(a =b)=1ifa=band §(a=b) =0 if a #b.
It is clear that P4, (A, = i|A,_1 = j) does not depend
on r and hence the number of active s-boxes can be
modelled by a Markov chain. Now our problem is reduced
to calculating the state transition, matrix P = [P;;], where
Pji = Pa,(Ar = i|A,—1 = j) is the probability of having
t active s-box in round r given that we have j active s-box
in round r — 1.

4. Modelling the Linear Interconnection Layer

A more complete discussion and proofs of the results below
can be found in [11].

4.1 Model A: Fixed Permutation Layer 7 € Q

Lemma 1 Assume an SPN with a ﬁxed permutation layer
T € Q then we have :

oy o (L

JOE -

l=n-—i

4.2 Model B: Linear Transformation Type 1

Lemma 2 Assume 2n SPN with a linear transformation of

type 1. Let @ = EB Uj, then for AQ = 0, the number of
ji=1

arrangements for the output bit changes such that we have

¢ active s-boxes in round r given that we have j active

s-box in round r — 1 is given by

Ao(zlj) =
M~1

2 e (L)) e e ().

where
[t/21 N i
2 () (-p) 0<p<l,
d(p)={1  p=o,
1, [ 'even 1
0, 1 odd p=1

Lemma 3 Assume Ngm SPN with a linear transformation of

type 1. Let @ = @ Uj, then for AQ = 1, the number of
i=1

arrangements for the output bit changes such that we have

i active s-box in round r given that we have j active s-box

in round r — 1 is given by

Na, (M =), M), j=M,
Ai(3, ) = {(2" —(1-9(i2%)), iAMi=M
0, otherwise,
where
. &= i1\ (M
Wi = 3 0= (1) (4w
and

() = P_ﬂ‘_ 140
@ (- oo 242)), 1o
Combining the results above, we have

p.. — Aoli,d) + A1 (5, 5)
I = g .
@ =1y

4.3 Model C: Linear Transformation Type 2

Lemma 4 Assume Az}n SPN with a linear transformation of

type 2. Let Q = @ W,. then we have
I=1

Pji = (21 + 82)/(2" - 1)

where C
= \IJ(n,j)‘S('i = J) s
\Il(n-lz+J—M)< )(2"—'1)><
(2=+J—M"1 + .2_(—1)j—15(i +j= M)))
and

U(n, k) = (=1)* + 2 (=1 (f)z"(""‘”.

5. Discussion and Conclusion

For N = 64 and M = n = 8 (a practical size of SPN)
the transition matrices for SPNs based on the three models



above were calculated and checked for the ergodic property
[11]. The limiting distribution and the eigenvalues of these
matrices is also given in [11]. Let

e= lim [E(W,) - N/2|,

i.e., ¢ denotes the deviation of the limiting avalanche
characteristics from the ideal characteristics. For such
SPNs, ¢ < 2=% for the three models above. Table 1
shows the value of the second largest eigenvalue for the
three models.

Mode! A Model B Model C
A2 3.185 x 1072 | 4.439 x 10— | 3.922 x 10-3
Table 1 : The Second Largest Eigenvatues .

for SPNs with N = 64, M = u = 8.
From Table 1, it is clear that the transition matrices for SPNs
with a permutation layer have the slowest convergence
{(largest second eigenvalue), and the transition matrices for
SPNs with a wordwise linear transformation layer have the
fastest convergence (smallest second eigenvalue). It is also
clear that the linear transformation is effective in improving
the avalanche characteristics of SPNs. Figure 2 shows how

the experimental results agrees with our theoretical model
for SPNs with N =64, n = M = 8.

-

Figure 2 : Theoretical and Experimental
Avalanche for SPN with N =64, n = M = 8.

While the s-box model used throughout this paper is suitable
for studying the avalanche characteristics of SPN, it can
not be used to determine the resistance of the network
to differential cryptanalysis, where the analysis should be
performed on a specified set of s-boxes. However, from the
transition matrix, we can calculate the minimum number
of s-boxes involved in any 2 rounds of a differential
characteristic. This number will be greater than or equal
to 2,3,4 for model A, B and C, respectively. These
numbers are independent of n, N for even M > 4 and
they can be used to obtain a lower bound on the number of
chosen plaintext-ciphertext pairs required for the differential

cryptanalysis based on the best (R — 1)-round characteristic _

[61,[12].

-In summary, we have presented analytical models for
the avalanche characteristics of three general classes
of substitution-permutation encryption networks. The
results show that using an appropriate diffusive linear
transformation between rounds can improve the avalanche

characteristics of the network. This facilitates the
construction of efficient ciphers with fewer rounds.
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