
Exploring Innovation in Education and Research ©iCEER-2005
Tainan, Taiwan, 1-5 March 2005

A General Framework for Web Services and
Grid-Based Technologies for Online Laboratories

H. Saliah-Hassane1, D. Benslimane2, I. De La Teja3,

B. Fattouh4, L.K. Do5, G. Paquette6, M. Saad7, L. Villardier 8, Y. Yan9

saliah@teluq.uquebec.ca; djamal.benslimane@iuta.univ-lyon1.fr,

idelatej@licef.teluq.uquebec.ca, lkimdo@teluq.uquebec.ca;��
bfattouh@licef.teluq.uquebec.ca; Maarouf.Saad@etsmtl.ca;
 Louis_Villardier@teluq.uquebec.ca, Yuhong.yan@nrc.gc.ca

Télé-université1,3,5,8, Montreal, Canada
 LICEF/CIRTA 1,4, Montreal, Canada,

 École de Technologie de l'Information4, Montreal, Canada,
École de Technologie de Supérieure7, Montreal, Canada,

Université Claude Bernard Lyon2, Lyon, France,
NRC-IIT 9, Fredericton, Canada

ABSTRACT : The combination of Web Services and grid-computing technologies is currently of a major
scientific revolution. It combines the middleware solution from Web Services and resource-sharing solutions
of grid computing. We present a general framework based on Web Services and grid-based technologies for
online laboratories. It is a distributed system model where computational resources and experimental devices
throughout the networks are organized into federations. The benefits of this model are information processing
capacity increase and resource sharing. We discuss a number of technical considerations using this framework.
These include: the descriptions of tele-experimentation resources; the wrapping of instruments into a web
service; the composition of Web Services, which is modeled as a planning problem, and; the design of an
online laboratory brokerage system, which we dealt with in a former article. We also discuss some issues
related to business logic and policy in a particular sector, such as tele-learning and network-supported research
via information technologies.

INTRODUCTION

Online Laboratory is a typical distributed application. The next
generation of the online laboratory system will go beyond the
current client/server architecture to grid-based architecture. The
components for an online laboratory (instruments, testing
devices, or one entire experiment) can be scattered over the
Internet as individual web services. The online laboratory
system is able to discover these web services and use them in
one experiment. This is seamless to the users in that they would
not notice that the instruments and devices are from different
physical locations. The Internet is a bus connecting all these
services. Service providers can charge for services provided
based on individual user requests.

The enabling technologies for building such a distributed
environment come from two domains: the Grid Technology and
the Web Services [1][2]. Grid Technology focuses on using
distributed heterogenous resources to solve massive
computational problems. Grid Technology sees the world from
the resources point of view. It has specifications for resource
management, such as descriptions of resource properties and
performance. Scheduling and clustering are studied to ensure
the computational performance of the grid. Web services see

the world from a service point of view. The services are
provided by software components over the internet. The
services are invoked by sending XML-based SOAP message to
the remote components. Web services rely on internet
protocols, such as HTTP, BEEP and XML technology to
ensure the interoperability of the components on different
platforms and are implemented in different programming
languages. W3C accepts the following standards: Simple
Object Access Protocol (SOAP), a message-based
communication for component interaction [3]; Web Service
Description Language (WSDL), component interface definition
[4], and; Universal Description, Discovery Integration (UDDI),
service discovery and integration [5]. Grid Services are the
combination of Web Services and grid technology [6][7]. Grid
Services still work on the computational problems using widely
accepted Web Services protocols as the transport layer. The
resources in Grid Services have a Web Services interface in
WSDL. The coming Web Service Resource Framework
(WSRF) will unify the Grid Services and Web Services. WSRF
fills out the Web services stack to be consistent with the Open
Grid Services Infrastructure (see next section). We expect that,
in the future, the individual Web Services will have the
properties of the current Grid Services.

For online experiments, we have computational tasks and data
sharing tasks, as well as the tasks to use the services of
instruments or devices. Thus we deal with high performance
issues as well as service composition issues. In this paper, we
will present a general framework of an online laboratory system
based on the current specifications of web services and grid
services. We analyse the special requirements of individual web
services for this application and present our solutions to meet
these requirements. We also present a solution for Web
Services composition based on Artificial Intelligence (AI)
planning technology.

This paper is organized as following: Section 2 discusses what
the Grid Services and Web Services can provide to online
experiment environment; Section 3 presents the general
framework; Section 4 designs the web services for instrument
services; Section 5 presents the web services composition
solution; Section 6 describes a demo system, and; Section 7
concludes the paper.

WHY USE GRID SERVICES AND WEB SERVICES FOR
ONLINE EXPERIMENT SYSTEMS

The enabling technologies for building an online experiment
system come from two domains: the Grid Technology and the
Web Services. Grid Technology focuses on using distributed
heterogenous resources to solve massive computational
problems. Grid Technology sees the world from the resources
point of view. It has specifications for resource management,
such as descriptions of resource properties and performance
[8]. It uses scheduling and clustering functions to ensure the
computational performance of the grid.

Web Services see the world from a service point of view. The
services are provided by the software components over the
internet. It uses internet protocols, such as HTTP, BEEP and
XML technology to ensure the interoperability of the
components on different platforms and is implemented in
different programming languages. The components use SOAP
message-based communication to talk to each other [3]. WSDL
is used to define the interfaces of the components [4]. UDDI is
used for service discovery and integration [5]. All of these
specifications are W3C standards and are widely supported by
industrial companies, such as IBM, Microsoft and BEA and
others. Compared with the preceding middleware technology,
Web Services are more interoperable and accessible. The
development and deployment complexity are greatly reduced.
Therefore, Web Services are becoming a widely accepted
technology.
Grid Services were presented by Ian Foster in 2003 [6][7]. It
proposes to use the Grid technology to manage resources and
computational issues, and to use Web Services for the solution
of middleware. It aims to take the advantages of both
technologies. The resources are wrapped as Web Services.
Open Grid Service Architecture (OGSA) [6] proposes to use
GWSDL (Grid WSDL) to describe the interface of the remote
operations. GWSDL extends WSDL by defining some
portTypes (a WSDL tag for remote port) designed for Grid
Services, e.g. GridServices and NotificationSource and more.
GWSDL also defines Service Data Elements, such as
SystemInfo (#CPU, system load, CPUBrand), and LastResults

(Internal values). OGSA proposes functions such as
Notification Service, Transient Service, Logging, Lifecycle
Management, and Security. These services are not in the Web
Service specifications. Grid Services use Index Server for
service discovery. Its function is similar to UDDI server, but it
uses different properties to describe a service.

Grid Services and Web Services will converge when the Web
Services Resource Framework (WSRF) is released at the
beginning of 2005 [9]. WSRF defines a family of specifications
for accessing stateful (i.e. maintain state information between
message calls) resources using Web Services. It includes the WS-
ResourceProperties, WS-ResourceLifetime, WS-BaseFaults, and
WS-ServiceGroup specifications. The motivation for these new
specifications is that, while Web Service implementations
typically do not maintain state information during their
interactions, their interfaces must frequently allow for the
manipulation of state, that is, data values that persist across and
evolve as a result of Web Service interactions. WSRF fills out the
Web Services stack to be consistent with the Open Grid Services
Infrastructure.

For online experiments, we have computational tasks and data
sharing tasks, as well as tasks to use the services of instruments
or devices. Thus we deal with high performance issues as well
as service composition issues. The Grid Services have solutions
to computational resources management and data transferring.
The Web Services have the solutions to services integration and
composition. In our proposed framework, we will use both.

We notice that this is a rapidly changing domain. The trend is
to merge the Grid Services and Web Services. A web service is
going to have the properties of the computational resources
when it wraps a computational resource. When WSRF is in use
in 2005, we will see this more clearly. Currently, our
framework considers the specifications from both the Grid
Services and Web Services. We expect in the near future that
the gap between the two domains will disappear.

THE GENERAL FRAMEWORK FOR ONLINE
EXPERIMENT SYSTEM USING GRID SERVICES AND
WEB SERVICES

An online laboratory system uses the scattered computational
resources and instrument services on the networks for
experiments. The online laboratory system we present here is a
web enabled distributed system. It has two meanings: the user
accesses the online laboratory system via web interface; the
heterogenous resources and devices interoperate with each
other via Web services standards. The goals of this framework
are: 1) sharing the experimental resources among different labs
via the Internet; 2) increasing the ability of computation and
sharing data among different labs, and; 3) enabling users to
access online labs any time and from anywhere.

Figure1 is the distributed system architecture. Its front end is
web-based, i.e. a web server is used to render the GUI interface
(see the next section). Its backend has the functions to manage
the students and manage the experiments. Most importantly, the
backend can use scattered resources on the Internet for one
experiment. For example, it can use instruments and devices
from different online laboratories for one experiment, and it can

use heterogenous computational resources to process the data
generated from the experiment.

Web services serve as the transport layer of the system. The
computational resources and the instrument services are
wrapped by WSDL. So we just use “web services” for all kinds
of resources and services. SOAP messages are sent to invoke a
service. These protocols are widely accepted by different
operation system and implemented by different programming
languages. Therefore, the interoperability is ensured. To make
the system work, a service provider first registers its service in
a registry server (step 1 in figure 1). Web services use UDDI
server, while Grid Services use Index Server. We expect the
two standards will be merged. Otherwise, our system will
accept both standards. A service requestor searches the registry
server and gets all the potential resources. It selects the proper
services based on its own criteria (step 2). The service
requestor sends SOAP messages directly to the service provider
to invoke the remote service (step 3).

The architecture for the online experiment system is shown in
Figure 2. The block below the “hosting environment” is the
online laboratory system. It uses a web server for the front end
representation. The back end has three layers. The top layer is
the logic layer, where the learning scenarios are defined and the
processes are managed. The learning scenarios are defined in
four aspects [10]: learning objects, a pedagogical model, a
media model and distribution. Among those, the pedagogical
model defines the process of a course. The process is translated
directly into Business Process Execution Language (BPEL)
[11]. The BEPL engine is a tool to monitor and control the
process automatically. The BEPL engine is able to
automatically invoke remote web services. The activities in a
learning scenario may need remote web services. The Service
Broker determines if the services come from local services (e.g.
the blocks under the “LAN”), or remote external services (e.g.
the blocks of “jini services”, “ web services”). Service Broker
knows the different protocols the remote services use. For Grid
services, it sends the requests to the GSH/GSR (Grid Service
Handler/Grid Service References) in the Grid Container.
GSH/GSR is a mechanism in Grid Service to get the reference
of the remote objects and forward the requests to the remote

objects. GSH/GSR is able to invoke the services either in
middleware, (e.g. jini), or in web services. Service Broker can
also invoke web services without the GSH/GSR interface by
sending the request to the service objects in the application
server (the bottom layer). Service Broker regularly calls the
Service Lookup (“srv lookup” in Figure 2) and updates the
local LDAP with the results. Registration Manager
(“Registration Mrg” in Figure 2) helps to convert information
from a service registry into LDAP. The bottom layer is the
Application Server layer. The Application Server provides
flexible mechanisms to manage the Service Objects and
interface to the Web Service Engine. Service Objects are some
software components that process the data from remote web
services. See the next section for one example of service
implementation. The Web Service Engine sends the SOAP
message to invoke the remote web services. This framework
works with the computing resources using Grid protocols,
software components using middleware, and web services
components. Thus we think it covers all the resources needed
for online experiments. As Grid Services will merge with Web
Services in the future, we believe that the two lower layers in
Figure 2 will, at some point, be united into one layer.

DESIGN AN INSTRUMENT WEB SERVICE

An instrument service is a basic service in our application. In
this section, we discuss how to wrap an instrument into a web
service. Here we only consider an instrument service as a
remote operation to invoke. We may need to use Grid to
process the data generated by the instrument; however, that is
beyond the scope of this paper. To design an instrument web
service, we are concerned with the three following issues:

Design the GUI: an instrument has its individualized panel. In
the Lornet project, we studied how to display the panel as a
java distributed application [12]. DMM is the xml schema to
define the syntax of an instrument panel. An xml file compliant
to the DMM is a description of the panel. In [12], the xml file is
parsed by JAXB, and its components are mapped to java AWT
components. The DMM schema is defined in such a way that it
is a straightforward 1-1 mapping between the panel objects and
java AWT objects. In [12], the system is implemented using
Jini technology. The xml is downloaded from the Jini

Registry ServerRegistry Server

Online Lab
System

Web
Server

Service with WSDL ports

12

3

SOAP
Messages

Fig 1. The distributed system framework
for online experiments

The user uses a web browser to connect to the online lab
system. The online lab system uses remote services based
on web services technology. The online lab and the remote
services use WSDL to describe the operational interfaces.

Grid Container

Service broker

Web service
engine

GSH/GSR

I
N
T
E
R
N
E
T

Sun Solaris
Clusters

HPC

Instruments
Interconnects

PXI, VXI, RS232,

TCP/IP

RTLab
Qnx real time

System

Clients

HTTPS

Hosting environnement

LAN

Planer/
Scheduler

W
E
B

S
E
R
V
E
R

Business Layer

App Server
Web Service

WSDL

Middleware

Jini service

Computing resources
Network connections

Data
Devices

Devices

Devices

I
N
T
E
R
N
E
T

BPEL EngineLearning Scenarios

Srvs lookup

Service
Objects

LDAP

Registration mgr

Fig2. Architecture of the online experiment system

registration server and displayed on client side as a Java
application. The user can operate the remote object from the
GUI interface.

In this paper, our online experiment system is web-based. We
want zero installation at the client side. The user needs only a
browser to access the online laboratory any time and anywhere.
We inherited part of the existing work. Instead of using AWT
classes, we map the panel objects to JSP objects. The JAXB
binding is inherited. The GUI generation principle is displayed
in Figure 3 using the Agilent 33401A as an example.

Design the WSDL for the instrument services:

The invocation of an instrument service is similar to any other
web services. WSDL is a description of the remote operations
(remote functions) and the arguments of the operations (type of
the arguments and the sequential input order).

We use the multimeter Agilent 33401A as the example. In
Table 1, we show how the remote operation getfunctionsresult
for Agilent 33401A is defined. It is an in-out type service,
which means it receives the input arguments embedded in a
request SOAP message and returns the results in a response
SOAP message. The bottom part of Table 1 defines the

operation. The two messages of getfunctionsresultRequest and
getfunctionsresultResponse are defined at the beginning of the
WSDL. getfunctionsRequest requires two float typed

arguments, and getfunctionsResponse requires one float typed
argument. We defined other operations, such as setVoltValue,
setOhmValue, getVoltRange, getOhmRange for this
instrument. These operation names are actually the method
names of the remote service objects.

The advanced requirements for instrument services:

While the main purpose for most existing web services is to
provide information, the instrument web services involve
operating the physical devices in real time. Improper design of
the web services can cause damage to the instrument and create
false measurement and control, causing the online experiment
to fail. Therefore, we present the special requirements for the
instrument web services and partially present the solutions.

1. Stateful service: the service tracks the user information. It
records the operations from one user and controls how the user
can use the service. The states of service for a user are
controlled. We use an application server to achieve a stateful
service. The application server provides functions such as
persistence and transaction.
2. Performance issues. Generally speaking, web service is
slower than middleware for two main reasons. It has more
transport layers than middleware; the overhead of using SOAP,
e.g. composing SOAP delays transport, and the payload of
SOAP messages are much bigger than necessary. The latency
of networking can cause the user to lose control of the device
and even cause damage. We are working on benchmarking web
services for online experiment applications. We want to answer
two questions: 1) what are the metrics of QoS of the web
services for this kind of application, and; 2) how do we adapt
the instrument service to meet the QoS for different network
conditions? Some technologies are available to optimize the
performance. For example, we can use Abstract Syntax
Notation (ASN) to save the payload, or we can keep the
connection open to save transport time.
3. Server side reliability mechanisms. For an online
experiment system built on web services, the signal generator,
the measurement instrument and the testing devices may not be
in a same physical location. The latency of signal can cause
faulty measurement, and breaking the connections can lead to
physical damage. When the experiment is about controlling a
remote device, the control strategy has to consider the non-real
time effects. We think a service has to have the following
mechanism to improve its reliability:
a. time out mechanism. When the user does not give further
instruction, the service cuts the connection.
b. attach time stamp when transferring signal. The time stamp
marks the time point of the event. The measurement can happen
after the event. The time stamp tells the true time of an event.
c. trend predication for some critical variables. The
predication can be used to shut down the device when the
variables go out of norm values, or it can be used to adjust the
control strategies.
d. proactively response to exceptions. These exceptions can be
both hardware or software exceptions.
We need to look into the specific experiments to design these
mechanisms.

<xml>

<….>

</xml>

<xsd>

<….>

</xsd>

API Java

validates

uses

generates

XSD file (DMM_GUI.xsd)XML file (DMM_AGILENT_34401A_GUI.xml)

JAXB Java architecture for XML Binding

From IVI specifications
(Interchangeable Virtual
Instrument)

Java Servlet

GUIBuilder

analyze

JPanel à <table …>
JButton à <input type=“button” …>

JCheckBox à <input type=“checkbox” …>
JTextPane à <input type=“text” …>

JComboBox à <select …><option>…
Fig3. The principle to display GUI interface

using JSP objects

����������	
��	�����
	�������	���	
�������������	���������������	�
��
�������
���	
 	���������
	����������	
������
����	���	��		
 	���������
	����������	
������
����	���	��		
���������������	
	
����������	
��	��������	�������	���	
�������������	���������������	�
��
����
�	�
���	
 	���������
	���������������	�
��
���������	

������
����	���	��		
 	���������������	
	
����������	
��	�����
���	���	
�����������
���	���������������	�
��
�����	
 	����������
	���������������	�
��
�������
���	
 	�����������
�	
		��������
��
	���������������	�
��
����
�	�
���	
 	���������
��
�	
������������
����	

Table 1: the snippets of WSDL for Agilent 33401A

DESIGN THE PLANNER MODULE FOR SERVICE
COMPOSITION

Composing Web services rather than accessing a single service
is essential and offers more benefits to users. Composition
addresses the situation of a user's request that cannot be
satisfied by available component services, whereas a composite
service obtained by combining the available services might be
used for satisfying the request [13]. For online experiments, we
can select the instruments and devices scattered over the
Internet for one experiment, or we can select the experiments
from different locations for one course.

Web service composition involves service discovery and
service integration. Service discovery normally is a key word
search process on UDDI. We can get detailed descriptions of
the services in the UDDI registry. Service integration is to
select the best composition from the potential partners and
determine the interaction and sequences between them for a
new service.

In the rest of this section, we present our solution of service
composition using artificial intelligence (AI) planning [14].

AI planning is fundamentally based on search techniques in the
problem space. The classic AI planning includes forward chain
search, backward chain search and many other varieties from
the two basic techniques. The result of an AI planner is the
ground formula that describes the sequential/parallel orders of
the activities that satisfy all the constraints. There are many
sound and complete AI planners. The complexity of AI
planning is NP-complete.

The web service composition problem can be modelled as
planning problem.

Definition 1 Let L={p1,…, pn}be a finite set of proposition
symbols. A planning domain on L is a restricted state-
transition system �= {A,S, γ}:

• A = {a1,a2,…an} is the set of available actions
(services for web services composition);

• An action ai is a triple ai=(precond(ai), effects-(ai),
effects+(a-)). The set precond(ai) is the preconditions
of ai and the sets effects-(ai), effects+(a-) are called the
effects of ai;

• S = {si,s2,…,sn} is the set of states (the states in
problem space). An action ai is applicable to sj, if sj
satisfies the precond(ai).

• γ is a transition function which defines the effects of
applying ai to sj: γ(sj,ai)=(s-effects-(ai))∪effect+(ai)),
and γ(sj,ai)∈S.

Definition 2 A planning problem is a triple P=(�, s0, g),
where:

• s0 ∈S is the initial sate

• g⊆L is a set of propositions called goal propositions
that give the requirements that a state must satisfy in
order to be a goal state. The set of goal states is
defined as follows: Sg={s∈S| g⊆s}.

We can describe the instrument selection problem in the
following way:

Definition 3 A plan π is a sequence of actions π = �ai, …, ak�
which is a solution for P if g⊆ γ(s0, π).

The planning problem gives the solution to determine the
sequence order of the services to satisfy the requirements of the
new service. However, web services composition has its own
characteristics which are out of the definition of planning. First,
only the most optimal plan will become the new composed
service. Though a planner can provide complete solutions, it is
just a distraction. Domain-based utility function will be
designed to evaluate the plans and select the best one.
Additionally, the problem space is not finite. For example, it is
not possible to extract all the available time slots for all the
instruments. We can only get the availability information by
sending a SOAP query to the service. Only part of the data is
exposed to us. Second, the problem space is not finite. For
example, the schedule of an instrument may be managed by a
booking system. We do not own the database of the booking
system. We can only use SOAP queries to get the availability
information on a certain time interval. Thus, though it is
possible to explore the whole problem space, practically the
problem space is partially exposed.

We propose an incremental planning process to solve the
above problems. We have an AI planner as the core of the
composition module. An evolution algorithm, such as Genetic
Algorithm (GA), is used to select the best plans and guide the
incremental planning process. The evolution an algorithm
provides the optimization possibility and explores the problem
space incrementally. When the algorithm is used in a scenario
in which multiple partners are involved, the partners can
contribute to the direction of search at each turn of evolution.
This was first presented by [15].

The incremental planning process works in this way: we select
n web services as the inputs of the planner. These are the first
generation chromosomes for the GA. They are some points in
the search space. The planner will generate all possible plans.
A domain-based utility function is designed to evaluate the
plans. We evaluate the plans in two dimensions; the cost of the
service and the preferences of the time slots. The best m plans
will be kept, all others will be abandoned. The m plans
correspond to n’ web services. The n’ web services will pass
the operations of GA, i.e. the crossover and mutation. These
operations help the optimization to jump out of local optimal
points. One possible effect of crossover and mutation is that it
varies the time slot for a web service. Then, we need to query
the web service again to get the availability information. The
new n web services are given to the planner again. The new
loop starts. Normally we can expect that after generations, the
process is converged to some global optimal points. That is the
final plan we want.

A simple version of the web service composition problem is
that the process of an experiment is fixed. That means we do
not need to determine the sequence of activities. Then the
composition problem is simplified as a pure optimization
problem. We can just unplug the planner from the process.

We will present the incremental planning in a separate paper.

Context mediation of Web Services composition
Because Web services originate from different providers, thus
are heterogeneous, achieving the semantic composition of Web
services consists of resolving the semantic heterogeneity
conflicts among Web services. These semantic conflicts arise
when (i) the same concept has different data structures, (ii) the
same concept has different meanings in different Web services,
(iii) different values have the same meaning, or (iv) the
meaning of a value change from one context (application) to
another.

In Web Services composition with semantic data exchange
(Figure 4), these Web Services interfaces are enriched with a
contextual description. Its objective is to associate context with
input and output parameters. Context is any information that is
relevant to the interactions between a user and an environment.
Therefore, the values exchanged between Web services are not
simple values; instead they are semantic values (i.e., no
ambiguities in their meaning).

The context information that is associated with a Web service
supports the composition of a Web service process to
automatically whether data conversion is needed. This
conversion is done by an active component called context
mediator in [16]. The conversion functions are defined outside
the Web services and can be shared by all Web services.

SOME SNAPSHOTS OF THE DEMO SYSTEM

We built a demo system to verify and illustrate the feasibility of
our ideas. The demo system shows how a user can connect to
the online lab using a web browser and operate the instruments
wrapped as web services. The other sophisticated features as
discussed in this paper are not implemented in the demo
system. Web server layer uses Apache Tomcat. It is a servlet
and JSP container. The GUI is implemented by JSP and servlet.
The SOAP engine is an Apache AXIS engine. The local service
object is implemented by servlet. BPWS4J is the IBM BPEL
server. It can manage the experiment process and handle the
remote service invocation.

Figure 5 shows the principle of the demo system. The user
connects to the online lab server through a web browser.
He/she meets the login page. After login, the online lab system
displays a list of available instruments. Since some of the
instruments are remote web services, the online lab system
actually “downloads” an xml file of remote instrument lists
(labinstruments.xml in Figure 5). The online lab system parses
the xml and lists the instruments to the user. The user can select
an instrument from web page (jsp pages). For example, the user
selects a multimeter Agilent 34401A. The online lab system
will go to the web services of this instrument, “download” the
xml for the description of its panel (Agilent34401A_Gui.xml in
Figure 5). The xml is parsed, and the jsp page for displaying
the panel is dynamically generated by the GUI builder. Then
the user can operate the instrument via the GUI. The commands
of the operations are sent to the instrument manager. The
instrument manager encodes the command into SOAP
messages according to the WSDL of the instrument service,
and sends the SOAP to the instrument service. The instrument
manager receives the SOAP response messages and decodes
the returned data. The instrument manager calls the GUI
builder to update the GUI so that the received data can be
displayed on the panel.

CONCLUSIONS

Our system framework can be evaluated using the following
characteristics:
Interoperability : Web Service is language-independent and
platform-independent.
Scalability: may not be an issue for online experiment, since
the service can only accept one user.
Portability : java-based, portable for UNIX, Linux, and
Windows.
Affordability : open source, affordable for e-learning
applications, open source does not mean low quality. Many of
the open source products we used are among the best.
Accessibility: from any web browser

Login (.jsp)
Instrument

Selection (.jsp)

Instrument

GUI (.jsp)

Measurement

Result

Config&Submit

Java Servlet
SelectionBuilder

JAXB

GUIBuilder

JAXB

Remote Telelab
Services

action = login action = select action = measure

SOAP
Messages .wsdl .wsdl .wsdl

labInstruments
(.xml)

Agilent34401A_
GUI (.xml)

…

Instrument
Service

Interface

InstrumentManager

Online Lab Server

Browse

User

Fig5. A demo system to call instrument web services

and display instrument panel

Value V V'

CM

Shared ontology

WS1 WS1

Contextual
description

wsdl

Contextual
description

wsdl

WS: Web Service
CM: Context Mediator

Figure 3. Web Services Composition with
context mediation

Fig4. Web Services Composition with
context mediation

In this paper, we discussed some advanced features for online
experiment web services. That is the direction in which we are
currently working.

REFERENCES

1. Chung, J.Y., K.J. Lin, and R.G. Mathieu. Web Services
computing. Advancing Software Interoperability. IEEE
Computer, 36(10), Octobre 2003.

2. Curbera, F., R. Khalaf, N. Mukhi, S. Tai, and S.
Weerawarana. The next step in Web Services.
Communications of the ACM, 46(10), October 2003.

3. SOAP Specification, http://www.w3.org/TR/soap12-part1/

4. WSDL Specification, http://www.w3.org/TR/wsdl

5. UDDI homepage, http://uddi.org/pubs/uddi_v3.htm

6. Foster, I., C. Kesselman, J. M. Nick, S. Tuecke, The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,
http://www.globus.org/research/papers/ogsa.pdf.

7. Foster, I., C. Kesselman, S. Tuecke, The Anatomy of the
Grid: Enabling Scalable Virtual Organizations,
http://www.globus.org/research/papers/atatomy.pdf

8. Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, 1999.

9. OASIS, OASIS Web Service Resource Framework,
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrf

10. Paquette, G., Meta-knowledge Representation for Learning
Scenarios Engineering, Proceedings of AIEd'99, Le Mans,
France, July 99.

11. Andrews, T., Curbera. F., et al., Specification : Business
Process Execution Language for Web Services Version 1.1,
http://www-128.ibm.com/developerworks/library/ws-bpel/

12. Fattouh, B. and H. H. Saliah, Model for a Distributed
Telelaboratory Interface Generator, Proceedings of Int.
Conf. On Engineering Education and Research, Czech
Republic, June 27-30, 2004.

13. Berardi, D. D. Calvanesse, G. De Giacomo, M. Lenzirini
and M. Marcella. A foundational Vision for e-services. In
Proc. Of the Workshop on Web services, e-Business, and
the semantic web (WES'2003), held in conjunction with
CAISE 2003, Austria, 2003.

14. Ghallab, M., D. Nau, and P. Traversp, “Automated
Planning: theory and practice”, Elsevier, 2004.

15. Yuhong Yan, etc. "A Genetic Algorithm for Conflict
Resolution in Concurrent Production Development", IEEE
Int. Conf. on Man System and Cybernetics, Orlando, USA,
Oct. 1997.

16. Sciore, E., M. Siegel, and A. Rosenthal: Using Semantic
Values to Facilitate Interoperability Among Heterogeneous
Information Systems. ACM Transactions on Database
Systems,19 (2), 1994.

