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Abstract. Decision tree-based probability estimation has received great
attention because accurate probability estimation can possibly improve
classification accuracy and probability-based ranking. In this paper, we
aim to improve probability-based ranking under decision tree paradigms
using AUC as the evaluation metric. We deploy a lazy probability es-
timator at each leaf to avoid uniform probability assignment. More im-
portantly, the lazy probability estimator gives higher weights to the leaf
samples closer to an unlabeled sample so that the probability estimation
of this unlabeled sample is based on its similarities to those leaf samples.
The motivation behind it is that ranking is a relative evaluation measure-
ment among a set of samples, and it is reasonable to yield the probability
for an unlabeled sample with reference to its extent of similarities to its
neighbors. The proposed new decision tree model called LazyTree, out-
performs C4.5, its recent improvement C4.4 and their state-of-the-art
variants in AUC on a large suite of benchmark sample sets.

1 Introduction

A learning model is induced from a set of labeled samples represented by the
vector of an attribute set A = {A1, A2, . . . , An} and a class label C. Classic de-
cision trees are typical decision boundary-based models. When computing class
probabilities, decision trees use the observed frequencies at leaves for estimation.
For instance, if a leaf contains 100 samples, 60 of which belong to the positive
class and the others are in the negative class, then for any unlabeled sample
that falls into the leaf, decision trees will assign the same positive probability of
p̂(+|Ap = ap)=60%, where Ap is the set of attributes from the leaf to the root.
This incurs two problems: high bias (traditional tree inductive algorithm tries
to make leaves homogeneous, therefore, the class probabilities are systematically
shifted toward zero or one) and high variance (if the number of samples at a leaf
is small, the class probabilities are unreliable) [11].
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However, accurate probability estimation is important for many tasks. For
classification problems, an unlabeled sample et is classified into the class c with
the maximum posterior class probability p(c|et) (or simply class probability), as
shown below:

h(et) = arg max
c∈C

p(c|et) = arg max
c∈C

p(c, et)/p(et), (1)

where h(et) in (1) is the classification function h : {et} 7→ {c}. Accurate prob-
ability estimation can possibly improve classification accuracy. For probability-
based ranking problems, the rank of a set of samples {et} in class c is a sorted
list based on the assigned class probabilities {p(c|et)}. Again, precise probability
estimation can improve probability-based ranking. Various methods have been
proposed to improve the probability estimation of decision trees (c.f. the next
section).

The main objective of this paper is to improve the ranking performance
of decision trees. The improvement comes from two aspects. Firstly, decision
trees work better when the sample set is large. After several splits of attributes,
the samples at the subspaces can be too few on which to base the probabil-
ity. Therefore, although employing a traditional tree inductive process, we stop
the splits once the samples are reduced to some extent and deploy probability
estimators at leaves. The probability estimators assign distinct probabilities to
different samples. Thus, the probability generated by such a tree is more accu-
rate than assigning a uniform probability for the samples falling into the same
leaf. Secondly, and more importantly, we observe that probability-based ranking
is indeed a relative evaluation measurement where the correctness of ranking
depends on the relative position of a sample among a set of other samples. In
our paper, a lazy probability estimator that calculates the probability of an un-
labeled sample based on its neighbors is designed for better ranking quality. The
lazy probability estimator finds m closest neighbors (leaf samples) at a leaf for
the unlabeled sample and calculates a weight for each neighbor using a newly
proposed similarity score function. We generate the probability estimates for
this unlabeled sample by normalizing all weights of the neighbors at the leaf
in terms of their class values. The new model is called LazyTree. AUC [4] is
used to evaluate our method. On a large suite of 36 standard sample sets, em-
pirical results indicate that LazyTree performs substantially better than C4.5,
C4.4 and their variants with other methods designed for optimal ranking, such
as m-Branch, Ling&Yan’s algorithm and a voting strategy–bagging, in yielding
accurate ranking.

The rest of the paper is organized as follows. Section 2 introduces some
related works in learning decision trees with precise probability estimation and
ranking. Section 3 presents our new model. We describe in detail the experiment
setup and results in Section 4. We conclude in Section 5.
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2 Related Work

A trained decision tree can be easily adapted to be a probability estimator by
using the absolute class frequencies at each leaf of the tree. For instance, if a
node has absolute frequencies n1, n2, . . . , nc (obtained from the training set) the
estimated probabilities for that node are calculated as pi = ni/

∑
ni. But this

estimation is poor. Several meta methods have been proposed to improve the
probability estimation of decision trees. The resulting trees are called Probability
Estimation Trees (PETs).

Frequency smoothing of the leaf probability estimation deals with
the pure nodes that contain samples from the same class. Instead of assigning a
probability of 1 or 0, smoothing methods try to give a more modest estimation.
Smoothing considers the cardinality of nodes so that nodes with small cardinality
where all the samples are of class i will not have the same probability as nodes
with much more cardinality in which all the samples also belong to class i. Laplace
smoothing [8], where pi = (ni + 1)/(

∑
c∈C ni + |C|), is the most commonly used

method. Ferri et al. [3] introduced another smoothing approach, call m-Branch.
Given a leaf vd and its branch from root v1, pj−1

i is the probability at level j−1
for class i. pj

i is the probability smoothed from the root to level j as described in
(2), where the parameter m is adjusted by the depth and cardinality of a node:

pj
i =

nj
i + m ∗ pj−1

i∑
i∈C nj

i + m
. (2)

Ling and Yan [6] proposed a novel algorithm. For a given unlabeled sample,
instead of using a single leaf that the sample falls into, the class probability
estimates are produced by averaging the probability estimates of all the leaves
of a tree. The contribution of each leaf is decided by the number of unequal
parent attribute values that the leaf has, compared to the unlabeled sample.
Here, parent attributes of a leaf are defined as the attributes on the path from
the root to this leaf. Therefore, Ling and Yan’s algorithm needs to go through
the whole tree in order to calculate different degrees of contributing to the final
probabilities of the unlabeled sample for each leaf.

Unpruning trees are proposed by Provost and Domingos [8] based on the
observation that pruning (or related techniques such as C4.5 collapsing) is not
helpful for increasing probability estimation. By turning off pruning and collaps-
ing in C4.5, decision trees can keep some branches that may not be useful for
classification but are crucial for accurate probability estimation. The final version
is called C4.4. However, there is a contradiction that turning off pruning could
result in a larger tree so that within some leaves containing a small number of
samples the probability estimation will be highly variant. In addition, large trees
usually overfit the training set, therefore, the corresponding probability estima-
tion could be still unreliable even using Laplace correction. Some researchers [1]
[9] suggested using bagging, which takes an ensemble of sub-classifiers into ac-
count and generate probability estimates by averaging across the members of the
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ensemble, to improve decision trees for better ranking. But the results produced
by bagging are not easily interpretable.

Note that the above methods mentioned assign a uniformed probability to
any unlabeled sample that is dispatched into the same leaf, moreover, they ac-
tually use only the path attributes Ap(l), which are the attributes from the root
to a leaf l, for probability estimation:

p(c|et) ≈ p(c|Ap(l)). (3)

Using a probability density estimator at each leaf is another im-
provement to tackle the “uniform probability distribution” problem of decision
trees. Kohavi [5] proposed an Näıve Bayes Tree (NBTree), in which a näıve
Bayes is deployed at each leaf to produce probabilities. The intuition behind it
is to take advantage of leaf attributes Al(l) for probability estimation. There-
fore, p(c|et) ≈ p(c|Ap(l),Al(l)). Zhang and Su [12] presented the encoding of
p(A, C) for NBTree:

p(A, C) = αp(C|Ap(l))p(Al(l)|Ap(l), C), (4)

where α is a normalization factor. The term p(C|Ap(l)) is the joint conditional
distribution of path attributes and the term p(Al(l)|Ap(l), C) is the leaf at-
tributes presented by näıve Bayes. According to the conditional independence
assumption of näıve Bayes, p(Al(l)|Ap(l), C) =

∏n
i=1 p(Ali|Ap(l), C).

Our method is inspired by the probability estimator method and smooth-
ing techniques, but we want to make the estimation explicitly associated with
more samples. We use the Area Under the Curve of Receiver Operating
Characteristics (AUC) to evaluate ranking performances. A simple approach
to calculate the AUC of a boolean model Γ is as follows [4]:

AUC =
S1 − n1(n1 + 1)/2

n1n0
, (5)

where n0 and n1 are the numbers of negative and positive samples respectively,
and S1 =

∑
ri, where ri is the rank of ith positive sample in the ranking list.

For more classes, we can compute AUC separately for each pair of classes and
then average all values [4].

3 Using Lazy Learner to Improve Tree-Based Ranking

3.1 The Lazy Learner

Our work aims to calibrate probability-based ranking of decision trees. Improve-
ment comes from two aspects. Firstly, we want to trade-off between bias and
variance of decision trees by deploying a probability estimator at each leaf.
A decision tree partitions a sample space into regions. Using class frequencies to
estimate conditional probability p(c|et) suffers from high bias that the inductive
algorithm makes leaves pure, therefore the class probabilities are systematically
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shifted toward zero or one, and high variance that the observed frequencies are
not statistically reliable when the number of samples at a leaf is small [11].

Although using a traditional tree heuristic search algorithm, we stop the splits
if the samples are reduced to some extent and deploy probability estimators at
leaves. Probability Estimator is defined as:
Definition 1. Given a set of unlabeled samples E and a set of class labels C =
{ci}, a Probability Estimator is a set of functions pi : E 7→ [0, 1], such that
∀et ∈ E,

∑
pi(et) = 1.

The probability estimators give distinct probabilities to different samples. Thus,
the probability estimation generated by such trees is more accurate than the
uniform probability assignment for the samples falling into the same leaf.

Secondly, and more essentially, we observe that probability-based ranking is
indeed a relative evaluation measurement where the correctness of ranking
depends on the relative position of a sample among a set of other samples. For
instance, for a binary-class problem, if assigned class probabilities of a positive
sample e+ and a negative sample e− satisfy p(+|e+) > p(+|e−), it is a correct
ranking. For multi-classes, the right ranking means pi(e ∈ ci) > pi(e′ /∈ ci).

These inspire us to use a lazy probability estimator which calculates the
probability of a sample based on its neighbors. The lazy probability estimator
finds m closest neighbors at a leaf (here m means all the samples at this leaf)
for an unlabeled sample and calculate a weight for each neighbor using a newly
proposed similarity metric.

Assume that sample e can be represented by an attribute vector as < a1(e),
a2(e), ..., an(e) > , where ai(e) denotes the value of ith attribute. The distance
between two samples e1 and e2 is calculated in (6):

d(e1, e2) =

√√√√
n∑

i=1

δ(ai(e1), ai(e2)), (6)

δ(ai(e1), ai(e2)) outputs zero if ai(e1) is equivalent to ai(e2), otherwise it out-
puts one.

For an unlabeled sample et and a set of labeled samples {ei|i = 1, ..., n}
falling in a leaf, we assign a weight to each of the labeled sample ei based on its
distance to et (as in 7):

wi = 1− di∑n
i=1 di

. (7)

In (7), di = d(et, ei) is the distance of an unlabeled sample ei to et. Notice that
for any two labeled samples ei and ej, the shorter the distance to et (assuming
that di ≤ dj), the larger weight the sample (wi ≥ wj). That implies a labeled
sample nearest to et contributes most when calculating the probability for et.

We generate the probability estimates of the unlabeled sample by normalizing
all weights of the labeled samples at a leaf in terms of their class values, as in
(8):

p(cj |et) =

∑m
k=1 wj

k + 1
|C|∑n

k=1 wk + 1
, (8)
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where n represents the number of samples at the leaf and m is the number of
samples that belong to cj .

3.2 LazyTree Induction Algorithm

We deploy a lazy probability estimator at each leaf of a decision tree and call
this model LazyTree. To induce the model, we adopt a heuristic search process,
in which we exhaustively build all possible trees in each step and keep only
the best one for the next level expansion. Suppose that finite k attributes are
available. When expanding the tree at level q, there are k-q+1 attributes to
be chosen. On each iteration, each candidate attribute is chosen as the root
of the (sub) tree, the generated tree is evaluated, and we select the attribute
that achieves the highest gain ratio as the next level node to grow the tree.
We consider two criteria for halting the search process. We could stop splitting
when none of the alternative attributes can statistically significantly upgrade
the classification accuracy. Or, to avoid the “fragmentation” problem, there are
at least 30 samples at the current node. Besides, we still permit splitting if the
relative increment in accuracy is not a negative value, which is greedier than
C4.5. The tree model is represented as T . An unlabeled sample et is assigned a
set of class probabilities as in algorithm 1.

Algorithm 1 LazyTrees(T, et) return {p(cj |et)}
T : a model with a set of leaves L
Sl: a set of labeled samples at a leaf l
et: an unlabeled sample
{p(cj |et)|cj ∈ C}: a set of probability estimates of et

Dispatch et into one leaf l according to its attributes
for each labeled sample etrain ∈ Sl do

Calculate the distance dtrain between etrain and et, by utilizing Equation 6
Calculate the sample weight wtrain, in terms of its similarity to et, by
utilizing Equation 7

for each class value cj ∈ C do
Use Equation 8 to compute p(cj |et)

Return a set of probability estimates {p(cj |et)} for the unlabeled sample et

4 Empirical Study

We used 36 well-recognized sample sets from the UCI repository [2] and con-
ducted three groups of experiments in terms of ranking, within the Weka [10]
Platform. These sample sets come from real-world problems and vary in charac-
teristics. Table 1 lists the properties of the sample sets. The preprocessing stages
of sample sets include the following four steps:
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Table 1. Brief description of sample sets used in our experiments.

Data Set Size Classes Missing Numeric Sample Set Size Classes Missing Numeric
anneal 898 6 Y Y ionosphere 351 2 N Y
anneal.ORIG 898 6 Y Y iris 150 3 N Y
audiology 226 24 Y N kr-vs-kp 3196 2 N N
autos 205 7 Y Y labor 57 2 Y Y
balance 625 3 N Y letter-2000 2000 26 N Y
breast 286 2 Y N lymph 148 4 N Y
breast-w 699 2 Y N mushroom 8124 2 Y N
colic 368 2 Y Y p.-tumor 339 21 Y N
colic.ORIG 368 2 Y Y segment 2310 7 N Y
credit-a 690 2 Y Y sick 3772 2 Y Y
credit-g 1000 2 N Y sonar 208 2 N Y
diabetes 768 2 N Y soybean 683 19 Y N
glass 214 7 N Y splice 3190 3 N N
heart-c 303 5 Y Y vehicle 846 4 N Y
heart-h 294 5 Y Y vote 435 2 Y N
heart-s 270 2 N Y vowel 990 11 N Y
hepatitis 155 2 Y Y waveform-5000 5000 3 N Y
hypoth. 3772 4 Y Y zoo 101 7 N Y

1. Applying the filter of ReplaceMissingValues in Weka to replace the missing
values of attributes.

2. Applying the filter of Discretize in Weka to make numeric attributes discrete.
Therefore, all the attributes are treated as nominal.

3. It is well known that, if the number of values of an attribute is almost equal
to the number of samples in a sample set, this attribute does not contribute
any information to classification. So we use the filter of Remove in Weka to
delete these attributes. Three occurred within the 36 sample sets, namely
Hospital Number in sample set Horse-colic.ORIG, Instance Name in sample
set Splice and Animal in sample set Zoo.

4. Due to the relatively high time complexity of LazyTree, we apply the filter of
unsupervised Resample in Weka to reselect sample set Letter and generate
a new sample set named Letter-2000. The selection rate is 10%.

To avoid the zero-frequency problem, we used the Laplace estimation. More
precisely, assume that there are nc samples that have the class label as c, t total
samples, and k class values in a sample set. The Laplace estimation calculates
the estimated probability p(c) as p(c) = nc+1

t+k . Similarly, p(ai|c) is calculated by
p(ai|c) = nic+1

nc+vi
, where vi is the number of values of attribute Ai and nic is the

number of samples in class c with Ai = ai.
In the first group of our experiments, LazyTree was compared to C4.5 and its

PET variants including C4.5-L (C4.5 with Laplace estimation), C4.5-M (C4.5
with m-Branch) and C4.5-LY (C4.5 with Ling&Yan’s algorithm). In the second
group, we compared LazyTree with C4.4 and its PET variants, which contain
C4.4-nLa (C4.4 without Laplace estimation), C4.4-M (C4.4 with m-Branch) and
C4.4-LY (C4.4 with Ling&Yan’s algorithm). In the last group, we made a com-
parison between LazyTree-B (LazyTree with bagging) and C4.5-B (C4.5 with
bagging) and C4.4-B (C4.4 with bagging). We implemented LazyTree, AUC met-
ric, m-Branch method, Ling&Yan’s algorithm, C4.5-M, C4.5-LY, C4.4-M and
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C4.4-LY within the Weka [10], and used the current implementations of other
learning models and bagging method in Weka. Note that some sample sets have
more than two class values and we deal with this multi-class AUC situation by
M -measure[4]. The AUC value on each sample set was measured via a ten-fold
cross validation ten times. Runs with various models were carried out on the
same training sets and evaluated on the same testing sets. In particular, the
cross-validation folds were the same for all the experiments on each sample set.
Finally, we performed two-tailed t-tests with a significantly different probability
of 0.95 to compare our model with others. That is, we speak of two results for a
sample set as being “significantly different” only if the difference is statistically
significant at the 0.05 level according to the corrected two-tailed t-test[7]. Now,
our observations are highlighted as follows.

1. LazyTree achieves remarkably good performance on AUC among C4.5 and its
variants in Table 2 and Table 3. LazyTree performs significantly better than
C4.5 (31 wins and 0 loss). As the results show, C4.5 variants can improve
the AUC values of C4.5. However, LazyTree considerably outperforms these
models in AUC (compared with C4.5-L, 15 wins and 1 loss; compared with
C4.5-M, 9 wins and 4 losses; compared with C4.5-LY, 17 wins and 0 loss). In
addition, decision trees with m-Branch or with Ling&Yan’s algorithm can
not generate multiple probabilities for the samples falling into the same leaf.

2. In Table 4 and Table 5, LazyTree is the best model among C4.4 and its
variants in AUC. LazyTree significantly outperforms C4.4 (10 wins and 1
loss). Since C4.4 is the state-of-art decision tree model designed for yielding
accurate ranking, this comparison provides strong evidence to the ranking
performance of LazyTree. LazyTree also outperforms most of C4.4 variants in
AUC (compared with C4.4-nLa, 28 wins and 0 loss; compared with C4.4-M,
2 wins and 3 losses; compared with C4.4-LY, 15 wins and 1 loss).

3. LazyTree-B performs greatly better than C4.5-B and C4.4-B. C4.5-B has
good ranking performance compared with other typical models. However,
LazyTree, which uses a new similarity metric at leaves, with bagging ap-
plied, produces better AUC values than C4.5-B ( 15 wins and 0 loss). Our
model also performs better than C4.4-B (7 wins and 2 losses). Due to space
limitation, we did not present the experiment results in this paper.

4. Besides having good performance on ranking, LazyTree also has better ro-
bustness and stability than other models. The average standard deviation of
LazyTree in AUC is 4.37, which is lowest among all models.

Generally speaking, LazyTree is a trade-off between the quality of probability-
based ranking and the comprehensibility of results when selecting the best model.
Furthermore, we observed that Ling&Yan’s algorithm works better in a rela-
tively small tree and m-Branch works consistently in any tree size.

5 Conclusion

In this paper, we analyzed that traditional decision trees have inherent defects in
achieving precise ranking, and proposed to resolve those issues by representing
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the similarity between each sample at a leaf and an unlabeled sample. One key
observation is that for a leaf, deploying a lazy probability estimator is an optimal
alternative to produce a unique probability estimate for a specific sample, com-
pared with directly using frequency-based probability estimation based on the
leaf samples. Experiment results prove our expectation that LazyTree outper-
forms or is competitive with typical decision tree models in ranking quality. In
our future work, there is much room to make further progress. For instance, after
learning a tree structure using the LazyTree algorithm, other parameter-learning
methods can be used to tune the probability estimation at a leaf. Additionally,
we can find the right tree size for our model, i.e. possibly grow a tree into C4.5
and use the leave-one-out technique to learn a weight for each sample at leaves,
then continue fully splitting the tree, and lastly, for the samples at each leaf, we
can normalize the weights and output the normalized values as the probability
estimation for that leaf.
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Table 2. Results of AUC & standard deviation: comparing LazyTree with C4.5
and its variants

Sample Set LazyTree C4.5 C4.5-L C4.5-M C4.5-LY
anneal 94.94±4.60 83.49±5.05 • 89.12±4.34 • 89.48±5.93 • 90.94±4.77 •
anneal.ORIG 93.75±6.76 85.93±5.12 • 89.23±6.61 • 90.07±7.77 • 90.19±5.08 •
audiology 69.93±1.51 61.50±1.55 • 62.04±2.36 • 62.70±2.42 • 68.94±2.01
autos 94.17±2.28 73.70±5.77 • 91.98±3.78 • 93.59±2.65 87.97±4.33 •
balance-scale 54.89±7.58 52.67±7.13 • 56.56±8.43 55.04±7.03 61.07±7.37
breast-cancer 67.19±12.29 61.34±10.14• 62.26±9.25 62.34±9.22 66.95±11.35
breast-w 98.39±1.20 96.42±3.04 • 97.44±2.24 97.40±2.26 96.20±3.53 •
colic 86.12±7.49 81.30±8.24 • 84.86±7.06 85.45±6.70 83.84±7.61
colic.ORIG 85.45±6.89 83.30±7.50 • 84.38±6.34 85.13±6.03 76.79±9.31 •
credit-a 91.19±3.74 88.39±4.34 • 89.94±3.74 90.09±3.68 89.71±3.82
credit-g 71.40±5.14 69.36±5.44 • 72.18±4.47 72.67±4.51 70.14±5.52
diabetes 78.80±6.34 76.33±6.88 • 77.59±6.51 77.95±6.39 76.14±6.13
glass 81.88±6.33 77.29±5.27 • 80.00±5.96 80.36±6.07 78.00±8.04
heart-c 83.53±0.63 83.12±0.74 • 83.25±0.65 83.27±0.66 83.59±0.65
heart-h 83.73±0.61 81.08±4.56 81.15±4.59 81.18±4.60 81.61±4.01
heart-statlog 84.18±8.77 81.25±9.47 • 84.91±7.88 85.03±7.92 84.04±8.49
hepatitis 82.67±12.14 69.09±15.74• 70.16±14.77• 70.31±14.85• 71.56±15.70•
hypothyroid 83.65±6.76 68.18±6.85 • 63.68±6.65 • 68.25±6.74 • 78.87±7.56 •
ionosphere 92.03±4.81 88.71±5.94 • 89.87±5.15 • 90.14±5.01 80.39±8.96 •
iris 98.79±2.22 98.94±1.65 98.58±2.09 98.58±2.09 98.72±2.08
kr-vs-kp 99.92±0.10 99.81±0.26 99.88±0.12 99.88±0.12 99.71±0.22 •
labor 93.83±13.01 79.65±20.97• 84.15±18.11• 84.15±18.11• 84.02±18.81•
letter-2000 90.72±1.51 86.45±1.68 • 85.84±1.92 • 92.08±1.27 ◦ 85.62±2.19 •
lymph 86.33±4.97 71.44±9.71 • 86.21±5.30 86.29±5.31 86.53±5.15
mushroom 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.44±0.19 •
primary-tumor 72.26±3.37 64.19±3.03 • 68.38±3.04 • 70.79±2.94 72.41±3.53
segment 99.09±0.40 98.30±0.71 • 98.88±0.45 • 98.94±0.43 • 94.01±1.10 •
sick 99.12±1.70 93.63±4.41 • 93.79±4.19 • 94.43±3.68 • 92.32±4.71 •
sonar 75.42±10.32 70.07±10.39• 73.80±10.90 74.16±10.82 70.95±10.79
soybean 99.09±1.02 98.07±1.82 97.89±1.64 • 98.94±1.36 98.45±2.67
splice 98.11±0.71 96.85±1.10 • 98.09±0.84 98.17±0.80 98.14±0.65
vehicle 86.23±2.88 82.69±3.73 • 87.02±2.70 87.32±2.58 ◦ 79.00±3.70 •
vote 98.46±1.96 96.86±3.08 • 97.59±2.26 97.59±2.26 98.49±1.74
vowel 93.74±2.03 92.79±2.05 • 90.56±2.50 • 95.63±1.43 ◦ 85.05±3.35 •
waveform-5000 86.64±1.22 84.48±1.52 • 86.95±1.20 ◦ 88.54±1.16 ◦ 84.87±1.67 •
zoo 87.90±3.88 79.57±5.53 • 80.10±6.28 • 80.29±5.91 • 85.67±4.36
Average 87.32±4.37 82.12±5.29 84.40±4.84 85.17±4.74 84.18±5.31

•, ◦ statistically significant degradation or improvement compared with LazyTree

Table 3. Summary on t-test of AUC comparisons on LazyTree, C4.5 and its
variants. An entry w/t/l means the number of wins, ties and loses for the model
at the corresponding row, compared to the model at the corresponding column.

Models C4.5 C4.5-L C4.5-M C4.5-LY
C4.5-L 12/22/2
C4.5-M 18/18/0 8/28/0
C4.5-LY 13/19/4 5/23/8 5/22/9
LazyTree 31/5/0 15/20/1 9/23/4 17/19/0
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Table 4. Results of AUC & standard deviation: comparing LazyTree with C4.4
and its variants

Sample Set LazyTree C4.4 C4.4-nLa C4.4-M C4.4-LY
anneal 94.94±4.60 93.67±6.25 83.12±5.48 • 93.74±6.10 92.64±3.78 •
anneal.ORIG 93.75±6.76 91.01±8.07 • 85.57±5.21 • 92.07±8.27 91.30±6.62 •
audiology 69.93±1.51 64.04±2.38 • 62.61±1.42 • 64.96±2.20 • 69.36±1.90
autos 94.17±2.28 91.33±4.13 • 73.94±5.86 • 94.06±2.37 87.30±4.40 •
balance-scale 54.89±7.58 61.40±6.73 ◦ 56.12±5.49 56.35±6.06 63.36±6.66 ◦
breast-cancer 67.19±12.29 60.53±10.08 57.53±11.17• 61.85±10.78 61.93±12.25
breast-w 98.39±1.20 98.22±1.25 96.04±2.66 • 98.23±1.26 89.62±5.54 •
colic 86.12±7.49 83.96±7.41 79.14±7.56 • 87.00±7.30 83.38±7.48
colic.ORIG 85.45±6.89 83.00±6.55 78.08±8.22 • 83.98±6.16 75.18±10.36•
credit-a 91.19±3.74 89.59±3.81 84.85±4.98 • 91.26±3.57 89.03±3.97
credit-g 71.40±5.14 70.07±4.70 63.95±5.59 • 73.48±4.41 69.64±5.62
diabetes 78.80±6.34 76.20±5.10 70.29±5.84 • 78.95±5.35 70.62±7.71 •
glass 81.88±6.33 80.11±6.91 74.70±6.44 • 81.57±6.56 79.11±8.57
heart-c 83.53±0.63 83.27±0.75 82.78±0.91 • 83.46±0.70 83.17±0.90
heart-h 83.73±0.61 83.30±0.64 • 82.50±0.93 • 83.66±0.63 82.98±0.97 •
heart-statlog 84.18±8.77 82.81±8.28 78.17±9.59 • 85.29±7.98 82.45±8.75
hepatitis 82.67±12.14 79.50±14.28 71.34±17.24 80.93±13.76 72.85±17.17
hypothyroid 83.65±6.76 80.62±8.24 85.47±7.85 85.64±7.81 80.87±10.73
ionosphere 92.03±4.81 93.43±4.44 86.56±7.55 • 93.11±4.68 82.04±6.86 •
iris 98.79±2.22 98.67±1.98 97.40±3.00 98.69±1.99 97.87±2.79
kr-vs-kp 99.92±0.10 99.93±0.08 99.81±0.27 99.93±0.08 99.83±0.17
labor 93.83±13.01 87.17±18.05 84.60±18.31 89.35±16.49 85.81±20.46
letter-2000 90.72±1.51 85.26±2.05 • 86.03±1.68 • 92.59±1.25 ◦ 84.51±2.21 •
lymph 86.33±4.97 86.30±4.58 71.71±8.87 • 87.03±4.49 86.35±5.54
mushroom 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.44±0.19 •
primary-tumor 72.26±3.37 68.53±3.05 • 63.40±2.82 • 71.59±2.89 72.79±3.57
segment 99.09±0.40 99.08±0.42 98.11±0.71 • 99.19±0.39 94.60±1.25 •
sick 99.12±1.70 99.03±0.66 96.37±3.09 99.16±0.62 95.07±3.67
sonar 75.42±10.32 78.38±9.04 72.33±9.56 • 79.24±9.15 73.32±11.87
soybean 99.09±1.02 98.02±1.62 • 97.70±1.89 • 98.94±1.36 98.38±2.69
splice 98.11±0.71 98.06±0.71 94.96±1.23 • 98.49±0.64 ◦ 97.08±1.04 •
vehicle 86.23±2.88 85.96±2.75 78.11±3.71 • 87.34±2.57 79.29±3.80 •
vote 98.46±1.96 97.43±2.37 96.50±3.31 • 97.49±2.38 98.53±1.67
vowel 93.74±2.03 91.57±2.34 • 92.14±2.13 • 96.07±1.41 ◦ 85.25±3.58 •
waveform-5000 86.64±1.22 81.36±1.41 • 79.03±1.61 • 87.15±1.21 82.78±1.91 •
zoo 87.90±3.88 80.26±6.35 • 79.76±5.60 • 80.52±6.00 • 85.62±4.37
Average 87.32±4.37 85.59±4.65 81.69±5.22 87.01±4.41 83.98±5.58

•, ◦ statistically significant degradation or improvement compared with LazyTree

Table 5. Summary on t-test of AUC comparisons on LazyTree, C4.4 and its
variants. An entry w/t/l means the number of wins, ties and loses for the model
at the corresponding row, compared to the model at the corresponding column.

Models C4.4 C4.4-nLa C4.4-M C4.4-LY
C4.4-nLa 1/11/24
C4.4-M 16/18/1 26/10/0
C4.4-LY 5/20/11 13/18/5 4/16/16
LazyTree 10/25/1 28/8/0 2/31/3 15/20/1


