Conceptual Reference Database for Building Envelope Research Prev
Next

Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope

Kščnzel, H. M., Holm, A., Zirkelbach, D. and Karagiozis, A. N.
2005
Solar Energy, 78(4): 554-561


Kščnzel, H. M., Holm, A., Zirkelbach, D. and Karagiozis, A. N., (2005), "Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope", Solar Energy, 78(4): 554-561.
Abstract:
The hygrothermal behaviour of the building envelope affects the overall performance of a building. Numerous tools exist for the simulation of the heat and moisture transfer in the building envelope and whole building simulation tools for energy calculations. However, working combinations of both models for practical application are just about to be developed. In this paper such a combined model, that takes into account moisture sources and sinks inside a room, input from the envelope due to capillary action, diffusion and vapour absorption and desorption as a response to the exterior and interior climate conditions as well as the well-known thermal parameters will be described. The new model is validated by performing a series of field experiments and the moisture buffering capacity of the building envelope is investigated. In the conclusions the possible range of future applications of hygrothermal building performance models is addressed and the needs for further research are identified.

This publication in whole or part might be found online. Check the sources on the related article below. Or use search engines on the web.

Related Concepts


Author Information and Other Publications Notes
Kščnzel, H. M.
Fraunhofer-Institute for building physics (Director: Prof. Dr.-Ing. habil. Dr. h.c. mult. Dr. E.h. mult. K. Gertis)
  1. Calculation of heat and moisture transfer in exposed building components
  2. Combined effect of temperature and humidity of the detoriation process of insulation materials in ETICS
  3. Flexible vapor control solves moisture problems of building assemblies - smart retarder to replace the conventional PE-film
  4. Moisture buffering effects of interior linings made from wood or wood based products
  5. Mold growth prediction by computational simulation
  6. Simultaneous heat and moisture transport in building components. one- and two-dimensional calculation using simple parameters
  7. Two-dimensional transient heat and moisture simulations of rising damp with WUFI 2D
  8. Uncertainty of hygrothermal calculations
  9. WUFI-ORNL/IBP - A North American Hygrothermal Mode  
Holm, A.
Gunnar Holm Department of Biotechnology, Technical University of Denmark, Building 221, DK-2800 Lyngby, Denmark.
  1. An educational hygrothermal model: WUFI-ORNL/IBP
  2. Combined effect of temperature and humidity of the detoriation process of insulation materials in ETICS
  3. Determination of moisture and salt content distributions by combining NMR and gamma ray measurements
  4. Drying of an AAC flat roof in different climates Computational sensitivity analysis versus material property measurements
  5. Moisture buffering effects of interior linings made from wood or wood based products
  6. Moisture-buffering effect - experimental investigations and validation
  7. Non-isothermal moisture transfer in porous building materials
  8. Position paper on material characterization and HAM model benchmarking
  9. Practical application of an uncertainty approach for hygrothermal building simulations--drying of an AAC flat roof
  10. Previous Experimental Studies and Field Measurements on Moisture Buffering by Indoor Surface Materials
  11. Stochastic building envelope modeling -- the influence of material properties
  12. The hygrothermal behaviour of rooms: combining thermal building simulation and hygrothermal envelope calculation
  13. Two-dimensional transient heat and moisture simulations of rising damp with WUFI 2D
  14. Uncertainty approaches for hygrothermal building simulations - drying of an AAC flat roof in different climates
  15. Uncertainty of hygrothermal calculations  
Zirkelbach, D.
     
Karagiozis, A. N.
Achilles N. Karagiozis, Oak Ridge National Laboratory, Building Technology Center, Oak Ridge
  1. A North American research approach to moisture design by modeling
  2. Advanced hygrothermal modeling of building materials using MOISTURE-EXPERT 1.0
  3. Advanced hygrothermal models and design models
  4. An educational hygrothermal model: WUFI-ORNL/IBP
  5. Applied moisture engineering
  6. Barrier EIFS clad walls: Results from a moisture engineering study
  7. Boundary element analysis of uncoupled quasi-static hygrothermoelasticity for two-dimensional composite walls
  8. Building enclosure hygrothermal performance study phase I
  9. Drying capabilities of wood frame walls with wood siding
  10. EIFS hygrothermal performance due to initial construction moisture as a function of air leakage, interior cavity insulation, and climate conditions
  11. Hygrothermal system-performance of a whole building
  12. Importance of moisture control in building performance
  13. Influence of material properties on the hygrothermal performance of a high-rise residential wall
  14. Integrated approaches for moisture analysis
  15. Integrated hygrothermal performance of building envelopes and systems
  16. Measurements and two-dimensional computer simulations of the hygrothermal performance of a wood frame wall
  17. Moisture transport in building envelopes using an approximate factorization solution method
  18. Position paper on material characterization and HAM model benchmarking
  19. Wind-driven rain distributions on two buildings
  20. WUFI-ORNL/IBP - A North American Hygrothermal Mode  



CRDBER, at CBS, BCEE, ENCS, Concordia,