Conceptual Reference Database for Building Envelope Research Prev
Next

Integrated hygrothermal performance of building envelopes and systems

Karagiozis, A. and M. Salonvaara
1999
Proceedings of Building Simulation '99, Volume 1: 293-301
Moisture Control, Moisture Engineering, Building Envelope Modeling, Whole Building Performance, Moisture Supply, Ventilation Moisture Control


Karagiozis, A. and M. Salonvaara, (1999), "Integrated hygrothermal performance of building envelopes and systems", Proceedings of Building Simulation '99, Volume 1: 293-301.
Abstract:
Many recent, moisture-originated failures in lowrise residential and high-rise residential/commercial buildings have put a significant pressure to change construction codes in North America and Europe. However, solutions to moisture induced problems may be difficult when several interacting mechanisms of moisture transport are present. Recently, a new approach to building envelope durability assessment has been introduced in North America. The approach employs moisture engineering, which requires system information about the wall systems as constructed or with aging characteristics coupled with advanced modeling to predict the long-term performances of building envelope systems. This permits the comparison and ranking of individual building envelope systems with respect to total hygrothermal performance.

While critical information can be obtained by investigating the one to one relationships of a building envelope to interior and exterior environments, the total behavior of the actual whole building is not accounted for. This paper goes one step further, by incorporating the individual hygrothermal performances of all walls, roof, floor and mechanical systems. The direct and indirect coupling of the building envelope and indoor environment with HVAC system are included in the analysis. The full house hygrothermal performance of an aerated concrete wall system are examined for a hot and humid climate. The hour by hour drying potential of each system was then numerically analyzed using real weather conditions of Miami. The results clearly demonstrated the limited drying potential for the wall system in that climate. Furthermore, the selected exterior thermal insulation strategies and interior vapor control strategies in this study clearly show the critical behavior of the full house with respect to drying initial construction moisture. The results show the importance of the total hygrothermal behavior of the whole house to the coupling between the various envelope parts, interior and exterior environments and HVAC system. From these results moisture control strategies are identified for the whole house hygrothermal performance.


Related Resources:


Related Concepts


Author Information and Other Publications Notes
Karagiozis, A.
Achilles N. Karagiozis, Oak Ridge National Laboratory, Building Technology Center, Oak Ridge
  1. A North American research approach to moisture design by modeling
  2. Advanced hygrothermal modeling of building materials using MOISTURE-EXPERT 1.0
  3. Advanced hygrothermal models and design models
  4. An educational hygrothermal model: WUFI-ORNL/IBP
  5. Applied moisture engineering
  6. Barrier EIFS clad walls: Results from a moisture engineering study
  7. Boundary element analysis of uncoupled quasi-static hygrothermoelasticity for two-dimensional composite walls
  8. Building enclosure hygrothermal performance study phase I
  9. Drying capabilities of wood frame walls with wood siding
  10. EIFS hygrothermal performance due to initial construction moisture as a function of air leakage, interior cavity insulation, and climate conditions
  11. Hygrothermal system-performance of a whole building
  12. Importance of moisture control in building performance
  13. Influence of material properties on the hygrothermal performance of a high-rise residential wall
  14. Integrated approaches for moisture analysis
  15. Measurements and two-dimensional computer simulations of the hygrothermal performance of a wood frame wall
  16. Moisture transport in building envelopes using an approximate factorization solution method
  17. Position paper on material characterization and HAM model benchmarking
  18. Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope
  19. Wind-driven rain distributions on two buildings
  20. WUFI-ORNL/IBP - A North American Hygrothermal Mode  
Salonvaara, M.
Research Scientist, VTT Building Technology, Espoo, Finland
  1. Drying capabilities of wood frame walls with wood siding
  2. EIFS hygrothermal performance due to initial construction moisture as a function of air leakage, interior cavity insulation, and climate conditions
  3. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part I -- field measurements
  4. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part II --verification and numerical studies
  5. Hygrothermal performance of a new light gauge steel-framed envelope system
  6. Hygrothermal system-performance of a whole building
  7. Improving indoor climate and comfort with wooden structures
  8. Influence of material properties on the hygrothermal performance of a high-rise residential wall
  9. Integration of simplified drying tests and numerical simulation in moisture performance analysis of the building envelope
  10. Measurements and two-dimensional computer simulations of the hygrothermal performance of a wood frame wall
  11. Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation
  12. Moisture transport in building envelopes using an approximate factorization solution method
  13. Numerical simulation of mould growth in timber frame walls
  14. Prediction of hygrothermal performance of building envelope parts coupled with indoor climate
  15. Stochastic building envelope modeling -- the influence of material properties  



CRDBER, at CBS, BCEE, ENCS, Concordia,