Conceptual Reference Database for Building Envelope Research Prev
Next

Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part I -- field measurements

Simonson, C. J., Salonvaara, M., Ojanen, T.
2004
Journal of Thermal Envelope and Building Science, Vol. 28, No. 1, 63-101


Simonson, C. J., Salonvaara, M., Ojanen, T., (2004), "Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part I -- field measurements", Journal of Thermal Envelope and Building Science, Vol. 28, No. 1, 63-101.
Abstract:
In this paper, measurements are presented which quantify the mass transfer of tracer gases and water vapor between indoor air and a permeable and hygroscopic building envelope. The transfer of tracer gases through the envelope requires the entire envelope to be permeable, while the transfer of moisture requires sufficient hygroscopic mass to be in contact with the indoor air. The results show that mass transfer can improve the indoor air quality and climate. The diffusion of gases through the building envelope significantly increases the effective ventilation rate for poorly ventilated rooms, but only moderately increases the effective ventilation for well-ventilated rooms. Moisture transfer, on the other hand, has a significant influence on the indoor humidity for both poorly and well-ventilated rooms.

Related Resources:

This publication in whole or part may be found online at: This link has not been checked.here.

Related Concepts


Author Information and Other Publications Notes
Simonson, C. J.
  1. An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part II: Experimental, numerical and analytical data
  2. Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood
  3. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part II --verification and numerical studies
  4. Improving indoor climate and comfort with wooden structures
  5. Integration of simplified drying tests and numerical simulation in moisture performance analysis of the building envelope
  6. Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation
  7. Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact
  8. Moisture performance of an airtight, vapor-permeable building envelope in a cold climate
  9. Moisture, thermal and ventilation performance of Tapanila ecological house  
Salonvaara, M.
Research Scientist, VTT Building Technology, Espoo, Finland
  1. Drying capabilities of wood frame walls with wood siding
  2. EIFS hygrothermal performance due to initial construction moisture as a function of air leakage, interior cavity insulation, and climate conditions
  3. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part II --verification and numerical studies
  4. Hygrothermal performance of a new light gauge steel-framed envelope system
  5. Hygrothermal system-performance of a whole building
  6. Improving indoor climate and comfort with wooden structures
  7. Influence of material properties on the hygrothermal performance of a high-rise residential wall
  8. Integrated hygrothermal performance of building envelopes and systems
  9. Integration of simplified drying tests and numerical simulation in moisture performance analysis of the building envelope
  10. Measurements and two-dimensional computer simulations of the hygrothermal performance of a wood frame wall
  11. Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation
  12. Moisture transport in building envelopes using an approximate factorization solution method
  13. Numerical simulation of mould growth in timber frame walls
  14. Prediction of hygrothermal performance of building envelope parts coupled with indoor climate
  15. Stochastic building envelope modeling -- the influence of material properties  
Ojanen, T.
Tiiomo Ojanen Senior research scientist VTT Building Technology, Finland.
  1. Drying capabilities of wood frame walls with wood siding
  2. Effect of exfiltration on the hygrothermal behaviour of a residential wall assembly: results from calculations and computer simulations
  3. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part II --verification and numerical studies
  4. Improving indoor climate and comfort with wooden structures
  5. Improving the drying efficiency of timber frame walls in cold climates, by using exterior insulation
  6. Integration of simplified drying tests and numerical simulation in moisture performance analysis of the building envelope
  7. Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation
  8. Modeling heat, air and moisture transport through building materials and components
  9. Moisture and bio-deterioration risk of building materials and structuresL?hdesm?ki
  10. Moisture buffer value of building materials
  11. Moisture Buffer Value of Materials in Buildings
  12. Moisture performance of an airtight, vapor-permeable building envelope in a cold climate
  13. Moisture transport coefficient of pine from gamma ray absorption measurements
  14. Numerical simulation of mould growth in timber frame walls
  15. Thermal and moisture performance of a sealed cold-roof system with a vapor-permeable underlay
  16. Towards modelling of decay risk of wooden materials  



CRDBER, at CBS, BCEE, ENCS, Concordia,