Conceptual Reference Database for Building Envelope Research Prev
Next

What's New

From Jan-1-2014 to Jun-30-2014

Updates and changes:

(Back to What's New List)
  • Added references: 100
  • Added concepts: 4
  • Added essays: 0

References

  1. Casoria, S., Sybille, G. and Brunelle, P., (2003), Hysteresis modeling in the MATLAB/Power System Blockset. (26-6-14)
  2. Wallner, G. M., Hausner, R., Hegedys, H., Schobermayr, H. and Lang, R. W., (2006), Application demonstration and performance of a cellulose triacetate polymer film based transparent insulation wall heating system. (26-6-14)
  3. Qu, J., Song, J., Qin, J., Song, Z., Zhang, W., Shi, Y., Zhang, T., Zhang, H., Zhang, R., He, Z. and Xue, X., (2014), Transparent thermal insulation coatings for energy efficient glass windows and curtain walls. (26-6-14)
  4. Wong, I. L., Eames, P. C. and Perera, R. S., (2007), A review of transparent insulation systems and the evaluation of payback period for building applications. (26-6-14)
  5. Kessentini, H., Capdevila, R., Castro, J., Oliva, A. and Bouden, C., (2014), Three dimensional heat transfer analysis of combined conduction and radiation in honeycomb transparent insulation. (25-6-14)
  6. Lewandowski, W. M. and Lewandowska-iwaniak, W., (2014), The external walls of a passive building: A classification and description of their thermal and optical properties. (18-6-14)
  7. Biswas, K., Lu, J., Soroushian, P. and Shrestha, S., (2014), Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard,. (17-6-14)
  8. Jaworski, M., (2014), Thermal performance of building element containing phase change material (PCM) integrated with ventilation system ?An experimental study. (17-6-14)
  9. Azenha, A. V. M., Sousa, H. and Samagaio, A., (2012), Thermal enhancement of plastering mortars with Phase Change Materials: Experimental and numerical approach. (17-6-14)
  10. Lahme, J. R. a., Christensen, N. U., Heiselberg, ., Hansen, M. and Grau, K., (2009), Numerical method for calculating latent heat storage in constructions containing phase change material. (17-6-14)
  11. Aadmi, M., Karkri, M. and Hammouti, M., (2014), Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental invest. (16-6-14)
  12. Mitchell, S. L. and Vynnycky, M., (2014), On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions. (16-6-14)
  13. Tabares-velasco, P. C., Christensen, C. and Bianchi, M., (2012), Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. (13-6-14)
  14. Bony, J. and Citherlet, S., (2007), Numerical model and experimental validation of heat storage with phase change materials. (13-6-14)
  15. Canot, E. , March, E. , Muhieddine, M., (2009), Various approaches for solving problems in heat conduction with phase change. (13-6-14)
  16. Molina, ., Bustamante, W., Rao, J., Fazio, P. and Vera, S., (2014), Evaluation of radiance's genBSDF capability to assess solar bidirectional properties of complex fenestration systems. (13-6-14)
  17. Poirier, D. and Salcudean, M., (1988), On numerical methods used in mathematical modeling of phase change in liquid metals. (13-6-14)
  18. Farid, M., Khudhair, A., Razack, S. A. and Al-hallaj, S., (2004), A review on phase change energy storage: materials and applications. (12-6-14)
  19. Sassi, O., Sifrini, I., Dumas, J. P. and Clausse, D., (1988), Theoretical curves in thermal analysis for the melting of binaries showing solid solutions. (12-6-14)
  20. Barreneche, C., Navarro, M. E., Fern¨¢ndez, A. I., Cabeza, L. F. and Haghighat-, E.A.F., (2013), Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale. (12-6-14)
  21. Barreneche, C., Sol¨¦, A., Mir¨®, L., Martorell, I., Fern¨¢ndez, A. I. and Cabeza, L. F., (2013), Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM). (12-6-14)
  22. Behzadi, S. and Farid, M. M., (2014), Long term thermal stability of organic PCMs. (12-6-14)
  23. Gibout, S., Franquet, E., B¨¦d¨¦carrats, J. and Dumas., J., (2012), Comparison of different modelings of pure substances during melting in a DSC experiment. (11-6-14)
  24. Gibout, S., Franquet, E., Marechal, W. and Dumas, J., (2013), On the use of a reduced model for the simulation of melting of solutions in DSC experiments. (11-6-14)
  25. Dumas, J. P., Gibout, S., C¨¦zac, P., Franquet, E. and Haillot, D., (2013), Model for the DSC thermograms of the melting of ideal binary solutions. (11-6-14)
  26. Franquet, E., Gibout, S., B¨¦d¨¦carrats, J., Haillot, D. and Dumas, J., (2012), Inverse method for the identification of the enthalpy of phase change materials from calorimetry experiments. (11-6-14)
  27. Lin, W., Dalmazzone, D., F¨¹rst, W., Delahaye, A., Fournaison, L. and Clain, P., (2013), Accurate DSC measurement of the phase transition temperature in the TBPB–water system. (11-6-14)
  28. Heim, D. and Clarke, J., (2004), Numerical modelling and thermal simulation of PCM¨Cgypsum composites with ESP-r. (11-6-14)
  29. Ibanez, M., Lazaro, A., Zalba, B. and Cabeza, L. F., (2005), An approach to the simulation of PCMs in building applications using TRNSYS. (11-6-14)
  30. Banu, D., Feldman, D., Haghighat, F., Paris, J., and Hawes, D., (1998), Energy-Storing Wallboard: Flammability Tests. (11-6-14)
  31. Scalat, S., Banu, D., Hawes, D., Parish, J., Haghighata, F. and Feldman, D., (1996), Full scale thermal testing of latent heat storage in wallboard. (11-6-14)
  32. Haghighat, F. (Ed.), (2014), Best Practice for Architects and Engineers. (11-6-14)
  33. Mirzaei, P. A. and Haghighat, F., (2012), Modeling of phase change materials for applications in whole building simulation. (11-6-14)
  34. El-sawi, A., Haghighat, F. and Akbari, H., (2013), Centralized latent heat thermal energy storage system: Model development and validation. (11-6-14)
  35. El-sawi, A., Haghighat, F. and Akbari, H., (2014), Assessing long-term performance of centralized thermal energy storage system. (11-6-14)
  36. Haghighat, F. (Ed.), (2013), Final Report, IEA, annex 23, applying energy storage in buildings of the future. (11-6-14)
  37. Johannes, K., Virgone, J., Kuznik, F., Wang, X. and Haavi , T., (2010), One dimensional benchmark based on PCM. (11-6-14)
  38. Hawes, D. W., Banu, D. and Feldman, D., (1992), The stability of phase change materials in concrete. (11-6-14)
  39. Cekon, M., Kalousek, M., Hraska, J. and Ingeli, R., (2014), Spectral optical properties and thermodynamic performance of reflective coatings in a mild climate zone. (10-6-14)
  40. Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S. and Zalewski, L., (2011), A review on phase-change materials: Mathematical modeling and simulations. (10-6-14)
  41. Zhang, P., Ma, Z. W., Shi, X. J. and Xiao, X., (2014), Thermal conductivity measurements of a phase change material slurry under the influence of phase change. (10-6-14)
  42. Dutil, Y., Rousse, D., Lassue, S., Zalewski, L., Joulin, A., Virgone, J., Kuznik, F., Johannes, K., Dumas, J., B¨¦d¨¦carrats, J., Castell, A. and Cabeza, L. F., (2014), Modeling phase change materials behavior in building applications: Comments on material characterization and model validation. (10-6-14)
  43. Dumas, J., Gibout, S., Zalewski, L., Johannes, K., Franquet, E., Lassue, S., Bedecarrats, J., Tittelein, P. and Kuznik, F., (2014), Interpretation of calorimetry experiments to characterise phase change materials. (10-6-14)
  44. Zhu, Z. M. and Wang, S., (2009), Dynamic characteristics and energy performance of buildings using phase change materials: A review. (10-6-14)
  45. Sage-lauck, J. S. and Sailor, D. J., (2014), Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building. (10-6-14)
  46. Hern¨¢ndez-p¨¦rez, I., ¨¢lvarez, G., Xam¨¢n, J., Zavala-guill¨¦n, I., Arce, J. and Sim¨¢, E., (2014), Thermal performance of reflective materials applied to exterior building components¡ªA review. (10-6-14)
  47. Hellinga, H. and Hordijk, T., (2014), The D&V analysis method: A method for the analysis of daylight access and view quality. (10-6-14)
  48. Skinner, E. A., (1996), A Guide to Constructs of Control. (10-6-14)
  49. Meerbeek, B., Kulve, M., Gritti, T., Aarts, M., Loenen, E. v. and Aarts, E., (2014), Building automation and perceived control: A field study on motorized exterior blinds in Dutch offices. (10-6-14)
  50. Yadav, A. K. and Chandel, S. S., (2014), Solar radiation prediction using Artificial Neural Network techniques: A review. (9-6-14)
  51. Khalil, S. A., Shaffie, A. M., (2013), A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt. (9-6-14)
  52. Boland, J., Huang, J. and Ridley, B., (2013), Decomposing global solar radiation into its direct and diffuse components. (9-6-14)
  53. Badescu, V., Gueymard, C. A., Cheval, S., Oprea, C., Baciu, M., Dumitrescu, A., Iacobescu, F., Milos, I. and Rada, C., (2012), Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models. (9-6-14)
  54. Besharat, F., Dehghan, A. A. and Faghih, A. R., (2013), Empirical models for estimating global solar radiation: A review and case study. (9-6-14)
  55. Athienitis, D.B.A.K., (2012), A Control Algorithm for Optimal Energy Performance of a Solarium/Greenhouse with Combined Interior and Exterior Motorized Shading. (6-6-14)
  56. Athienitis, A. K. and Tzempelikos, A., (2002), A methodology for simulation of daylight room illuminance distribution and light dimming for a room with a controlled shading device. (6-6-14)
  57. Bomberg, M. and Andreas, F., (2013), The energy conundrum of modern buildings. (5-6-14)
  58. Coquilla, R. V., (2009), Review of Anemometer Calibration Standards. (5-6-14)
  59. Thalfeldt, M., Pikas, E., Kurnitski, J. and Voll, H., (2013), Facade design principles for nearly zero energy buildings in a cold climate. (4-6-14)
  60. Hu, J. and Karava, P., (2014), Model predictive control strategies for buildings with mixed-mode cooling. (4-6-14)
  61. Karava, P., Athienitis, A. K., Stathopoulos, T. and Mouriki, E., (2012), Experimental study of the thermal performance of a large institutional building with mixed-mode cooling and hybrid ventilation. (4-6-14)
  62. Tzempelikos, A., Athienitis, A. K. and Karava, P., (2007), Simulation of fa?ade and envelope design options for a new institutional building. (3-6-14)
  63. Athienitis, A. K., Liu, C., Hawes, D., Banu, D. and Feldman, D., (1997), Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. (21-5-14)
  64. Kosny, J., Shrestha, S., Stovall, T. and Yarbrough, D., (2010), Theoretical and experimental thermal performance analysis of complex thermal storage membrane containing bio-based phase-change. (21-5-14)
  65. Os¨®rioa, T. and Carvalho, M.J., (2014), Testing of solar thermal collectors under transient conditions. (29-4-14)
  66. Almeida, P., Carvalho, M. J., Amorim, R., Mendes, J. F. and Lopes, V., (2014), Dynamic testing of systems ?Use of TRNSYS as an approach for parameter identification. (29-4-14)
  67. Ko?¨ª, J., Mad¨§ra, J., ?erny, R., (2014), Robert Cern? Generation of a critical weather year for hygrothermal simulations using partial weather data sets. (29-4-14)
  68. Huang, N. Y., Write, J. and Collins, M. R., (2006), Thermal resistance of a window with an enclosed venetian blind: guarded heated plate measurements. (28-4-14)
  69. O'brien, W. and Athienitis, K. K. a. K., (2013), Manually-operated window shade patterns in office buildings: A critical review. (28-4-14)
  70. Laouadi, A., (2009), Thermal modeling of shading devices of windows,. (28-4-14)
  71. Heath, F. M. a. and Shea, E.F.A., (2014), Conditions affecting the moisture buffering measurement performed on compressed earth blocks. (17-3-14)
  72. Liu, S., Li, Y. and Zhang, Y., (2014), Mathematical solutions and numerical models employed for the investigations of PCMs' phase transformations. (17-3-14)
  73. Shan, F., Tang, F., Cao, L. and Fang, G., (2014), Performance evaluations and applications of photovoltaic-thermal collectors and systems. (17-3-14)
  74. Manna, D., Vigni, V., Sanseverino, E. R., Dio, V. and Romano, P., (2014), Reconfigurable electrical interconnection strategies for photovoltaic arrays: A review. (17-3-14)
  75. Zheng, C. w. and Pan, J., (2014), Assessment of the global ocean wind energy resource. (17-3-14)
  76. Karakaya, E., Hidalgo, A. and Nuur, C., (2014), Diffusion of eco-innovations: A review. (17-3-14)
  77. Date, A., Date, A., Dixon, C. and Akbarzadeh, A., (2014), Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation. (17-3-14)
  78. Woods, J., (2014), Membrane processes for heating, ventilation, and air conditioning. (17-3-14)
  79. Haq, M. A., Hassan, M. Y., Abdullah, H., Rahman, H. A., Abdullah, P., Hussin, F., Said, D. M. and Buildings, R.O.L.C.T.I.C., (2014), their performance and affecting factors. (17-3-14)
  80. Zhang, N. and Choi, Y., (2014), A note on the evolution of directional distance function and its development in energy and environmental studies 1997?013. (17-3-14)
  81. Notton, G., Motte, F., Cristofari, C. and Canaletti, J., (2014), Performances and numerical optimization of a novel thermal solar collector for residential building. (17-3-14)
  82. Yu, L., Belousov, L., Firsov, V. A. and Shutov, A. I., (1992), Temperature dependence of the modulus of elasticity of industrial glasses. (6-3-14)
  83. Abdel-ghany, A. M. and Al-helal, I. M., (2014), Methods for determining the temperature of a plastic net under solar and thermal radiation conditions. (6-3-14)
  84. Shi, X., Memon, S. A., Tang, W., Cui, H. and Xing, F., (2014), Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. (20-2-14)
  85. Cabeza, L. F., Castell, A., Barreneche, C., Gracia, A. and Fern¨¢ndez, A. I., (2011), Materials used as PCM in thermal energy storage in buildings: A review. (12-2-14)
  86. Waqas, A. and Din, Z.U., (2013), Phase change material (PCM) storage for free cooling of buildings' review. (12-2-14)
  87. Soares, N., Costa, J. J., Gaspar, A. R. and Santos, P., (2013), Review of passive PCM latent heat thermal energy storage systems towards buildings energy efficiency. (12-2-14)
  88. Kuznik, F., Virgone, J. and Noel, J., (2008), Optimization of a phase change material wallboard for building use. (7-2-14)
  89. Tyagi, V. V., Rahim, N. A. A., Rahim, N. A. and Selvaraj, J. A., (2013), Progress in solar PV technology: Research and achievement. (7-2-14)
  90. Skoplaki, E. and Palyvos, J. A., (2009), On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. (7-2-14)
  91. Sun, C., Giles, H. and Lian, Z., (2014), The dynamic impact of window characteristics on shading factor and energy consumption. (7-2-14)
  92. Kuznik, F. and Virgone, J., (2009), Experimental assessment of a phase change material for wall building use. (7-2-14)
  93. Pomianowski, M., Heiselberg, P. and Zhang, Y., (2013), Review of thermal energy storage technologies based on PCM application in buildings. (7-2-14)
  94. Goia, F., Perino, M. and Serra, V., (2014), Experimental analysis of the energy performance of a full-scale PCM glazing prototype. (7-2-14)
  95. Soares, N., Gaspar, A. R., Santos, P. and Costa, J. J., (2014), Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates. (7-2-14)
  96. Oleskowicz-popiel, C. and Sobczak, M., (2014), Effect of the roller blinds on heat losses through a double-glazing window during heating season in Central Europe. (7-2-14)
  97. Maki, A. And Valkealahti, S., (2012), Power Losses in Long String and Parallel-Connected Short Strings of Series-Connected Silicon-Based Photovoltaic Modules Due to P. (5-2-14)
  98. Bastani, A., Haghighat, F. and Kozinski, J., (2014), Designing building envelope with PCM wallboards: Design tool development. (5-2-14)
  99. Albatici, R., Passerini, F., Tonelli, A. M. and Gialanella, S., (2013), Assessment of the thermal emissivity value of building materials using an infrared thermovision technique emissometer. (29-1-14)
  100. Li, Y. M., (2007), Improved uncertainty for a modified commercial emissometer. (29-1-14)

Essay

  1. No Entered.

Web Links

  • No new entry.
  • Concept

    1. PCM- application for centralized TES: 13-6-14
    2. PCM-Application in building: 13-6-14
    3. PCM-charaterization and modeling: 13-6-14
    4. PCM-Phase change material: 13-6-14


    Back to What's New List


    CRDBER, at CBS, BCEE, ENCS, Concordia,