Conceptual Reference Database for Building Envelope Research Prev
Next

Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores

Aizenberg, V., Reponen, T., Grinshpun, S.A. and Willeke, K.
2000
AIHAJ, 61 (6): 855-864
aerosol sampling, bioaerorsol, enumeration, filtration, impaction


Aizenberg, V., Reponen, T., Grinshpun, S.A. and Willeke, K., (2000), "Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores", AIHAJ, 61 (6): 855-864.
Abstract:
Performance of three devices used for the total enumeration of airborne spores-the Air-O-Cell sampling cassette, the Burkard personal volumetric air sampler, and the Button Aerosol Sampler-was evaluated under controlled laboratory conditions. The first two are glass-slide impacters; the third collects spores on a filter. The samplers were challenged with 0.44-5.10 mum polystyrene latex particles and five microorganisms of 0.84-3.07 mum mean aerodynamic diameter: Streptomyces albus, Bacillus subtilis, Cladosporium cladosporioides, Penicillium brevicompactum, and Penicillium melinii. An optical particle counter measured the particle concentrations upstream and downstream of each sampler, and thus determined the physical collection efficiency of the three samplers. Collection efficiency of the Button Aerosol Sampler was close to 100% for the entire particle size range studied. The cut-off size of each impactor was 2.3-2.4 mum. Acridine orange (with epifluorescent microscopy) and lactophenol cotton blue (with bright light microscopy) staining techniques were used for the microscopic enumeration of spores. No significant difference in microscopic counts was found (at the 95% significance level) when using these two techniques with the Button Aerosol Sampler filters. When the lactophenol cotton blue staining was used to compare total microbial counts yielded by all three samplers, the Button Sampler showed significantly higher counts for the smaller size microorganisms (B. subtilis and C. cladosporioides). For the larger microorganisms (P. brevicompactum and P. melinii) all three samplers yielded similar results. Uniformity of particle deposition on the collection surface was highest for the Button Aerosol Sampler due to the design of its inlet. Thus, the filter collection method used with the Button Aerosol Sampler is suitable and can be advantageous for the enumeration of total airborne spores.

Related Resources:

This publication in whole or part might be found online. Check the sources on the related article below. Or use search engines on the web.

Related Concepts


Author Information and Other Publications Notes
Aizenberg, V.
  1. Evaluation of a new personal sampler for enumerating airborne spores
  2. Performance characteristics of the button personal inhalable aerosol sampler  
Reponen, T.
  1. Aerodynamic diameters and respiratory deposition estimates of viable fungal particles in mold problem dwellings
  2. Aerodynamic versus physical size of spores: measurement and implication for respiratory deposition
  3. Aerosol characteristics of airborne actinomycetes and fungi
  4. Bioaerosol collection by a new electrostatic precipitator
  5. Characteristics of airborne actinomycete spores
  6. Collection of airborne microorganisms by a new electrostatic precipitator
  7. Collection of airborne spores by circular single-stage impactors with small jet-to-plate distance
  8. Collection of bioaerosol particles by impaction: effect of fungal spore agglomeration and bounce
  9. Collection of fungal spores on air filters and spore reentrainment from filters into air
  10. Comparison of concentrations and size distributions of fungal spores in buildings with and without mould problems
  11. Control of exposure to airborne viable microorganisms during remediation of moldy buildings; report of three case studies
  12. Development and evaluation of aerosol generators for biological materials
  13. Effect of building frame and moisture damage on microbiological indoor air quality in school buildings
  14. Effect of indoor sources on fungal spore concentrations and size distributions
  15. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores
  16. Evaluation of a new personal sampler for enumerating airborne spores
  17. Everyday activities and variation of fungal spore concentrations in indoor air
  18. Field Testing of New Aerosol Sampling Method With a Porous Curved Surface as Inlet
  19. Fungal fragments as indoor air biocontaminants
  20. Fungal spore source strength tester: laboratory evaluation of a new concept
  21. Long-term sampling of airbome bacteria and fungi into a non-evaporating liquid
  22. Personal exposures and microenvironmental concentrations of particles and bioaerosols
  23. Release of Streptomyces albus propagules from contaminated surfaces
  24. Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types
  25. Techniques for dispersion of microorganisms into air
  26. Total and culturable airborne bacteria and fungi in arid region flood-damaged residences
  27. Viable fungal spores as indoor aerosols  
Grinshpun, S. A.
  1. Aerodynamic versus physical size of spores: measurement and implication for respiratory deposition
  2. Aerosol characteristics of airborne actinomycetes and fungi
  3. Bioaerosol collection by a new electrostatic precipitator
  4. Characteristics of airborne actinomycete spores
  5. Collection of airborne microorganisms by a new electrostatic precipitator
  6. Collection of airborne spores by circular single-stage impactors with small jet-to-plate distance
  7. Collection of bioaerosol particles by impaction: effect of fungal spore agglomeration and bounce
  8. Collection of fungal spores on air filters and spore reentrainment from filters into air
  9. Development and evaluation of aerosol generators for biological materials
  10. Effect of impact stress on microbial recovery on an agar surface
  11. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores
  12. Evaluation of a new personal sampler for enumerating airborne spores
  13. Field Testing of New Aerosol Sampling Method With a Porous Curved Surface as Inlet
  14. Fungal fragments as indoor air biocontaminants
  15. Fungal spore source strength tester: laboratory evaluation of a new concept
  16. Improved aerosol collection by combined impaction and centrifugal motion
  17. Inlet sampling efficiency of bioaerosol samplers
  18. Long-term sampling of airbome bacteria and fungi into a non-evaporating liquid
  19. Performance characteristics of the button personal inhalable aerosol sampler
  20. Release of lead-containing particles from a wall enclosure
  21. Release of Streptomyces albus propagules from contaminated surfaces
  22. Techniques for dispersion of microorganisms into air  
Willeke, K.
  1. Aerosol characteristics of airborne actinomycetes and fungi
  2. Bioaerosol collection by a new electrostatic precipitator
  3. Characteristics of airborne actinomycete spores
  4. Collection of airborne microorganisms by a new electrostatic precipitator
  5. Collection of bioaerosol particles by impaction: effect of fungal spore agglomeration and bounce
  6. Collection of fungal spores on air filters and spore reentrainment from filters into air
  7. Development and evaluation of aerosol generators for biological materials
  8. Effect of impact stress on microbial recovery on an agar surface
  9. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores
  10. Evaluation of a new personal sampler for enumerating airborne spores
  11. Fungal fragments as indoor air biocontaminants
  12. Improved aerosol collection by combined impaction and centrifugal motion
  13. Inlet sampling efficiency of bioaerosol samplers
  14. Long-term sampling of airbome bacteria and fungi into a non-evaporating liquid
  15. Performance characteristics of the button personal inhalable aerosol sampler
  16. Performance of bioaerosol samplers: collection characteristics and sampler design considerations
  17. Release of lead-containing particles from a wall enclosure
  18. Release of Streptomyces albus propagules from contaminated surfaces
  19. Source strength of fungal spore aerosolization from moldy building material
  20. Techniques for dispersion of microorganisms into air  



CRDBER, at CBS, BCEE, ENCS, Concordia,