Conceptual Reference Database for Building Envelope Research Prev
Next

Collection of airborne microorganisms by a new electrostatic precipitator

Mainelis, G., Adhikari, A., Willeke, K., Lee, S. A., Reponen, T. and Grinshpun, S. A.
2002
JOURNAL OF AEROSOL SCIENCE, 33 (10): 1417-1432


Mainelis, G., Adhikari, A., Willeke, K., Lee, S. A., Reponen, T. and Grinshpun, S. A., (2002), "Collection of airborne microorganisms by a new electrostatic precipitator", JOURNAL OF AEROSOL SCIENCE, 33 (10): 1417-1432.
Abstract:
Bioaerosol exposure assessment and the protection of civil/govemmental/military establishments from bioterrorism require the development of low-power bioaerosol collectors that are able not only to efficiently collect airborne microorganisms, but also to preserve their biological integrity. In search for such a method, a new bioaerosol sampler was evaluated. In this device, the airborne microorganisms are imparted electrical charges and are then deposited in an electrical field onto a growth medium (agar). Experiments were conducted with Pseudomonas fluorescens vegetative cells, Bacillus subtilis var. niger (BG) endospores (used to simulate the spores of anthrax-causing Bacillus anthracis when testing bioaerosol sensors) and Penicillium brevicompactum fungal spores. It was found that 80-90% of initially "charge-neutralized" biological particles were removed from the air, when a small amount of ionization was generated in the electrostatic precipitator's (ESP) inlet and a precipitation voltage of +/-4000 V was applied across the agar plates. Over 70% of viable BG and P. brevicompactum spores entering the ESP were enumerated as colony forming units. The bioefficiency of the new sampler was about the same as that of the Biosampler, which was tested in parallel. In experiments with sensitive P. fluorescens vegetative cells, the ESP enumerated twice as many cells as the Biosampler. The latter result indicates that the electrostatic collection method may be especially useful for the collection and enumeration of sensitive airborne microorganisms. Experiments investigating the effect of aging time on the amount of electrical charge carried by the airborne microorganisms showed that the level of electrical charge gradually decreases with increasing aging time. However, even after the P. fluorescens cells had remained airborne for an hour, they retained enough electrical charge to be collected with efficiency higher than 70%.

Related Resources:


Related Concepts


Author Information and Other Publications Notes
Mainelis, G.
  1. Bioaerosol collection by a new electrostatic precipitator
  2. Collection of airborne spores by circular single-stage impactors with small jet-to-plate distance
  3. Release of Streptomyces albus propagules from contaminated surfaces  
Adhikari, A.
  1. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations
  2. Bioaerosol collection by a new electrostatic precipitator
  3. Studies on airborne fungal spores from two indoor cowsheds of suburban and rural areas of West Bengal, India  
Willeke, K.
  1. Aerosol characteristics of airborne actinomycetes and fungi
  2. Bioaerosol collection by a new electrostatic precipitator
  3. Characteristics of airborne actinomycete spores
  4. Collection of bioaerosol particles by impaction: effect of fungal spore agglomeration and bounce
  5. Collection of fungal spores on air filters and spore reentrainment from filters into air
  6. Development and evaluation of aerosol generators for biological materials
  7. Effect of impact stress on microbial recovery on an agar surface
  8. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores
  9. Evaluation of a new personal sampler for enumerating airborne spores
  10. Fungal fragments as indoor air biocontaminants
  11. Improved aerosol collection by combined impaction and centrifugal motion
  12. Inlet sampling efficiency of bioaerosol samplers
  13. Long-term sampling of airbome bacteria and fungi into a non-evaporating liquid
  14. Performance characteristics of the button personal inhalable aerosol sampler
  15. Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores
  16. Performance of bioaerosol samplers: collection characteristics and sampler design considerations
  17. Release of lead-containing particles from a wall enclosure
  18. Release of Streptomyces albus propagules from contaminated surfaces
  19. Source strength of fungal spore aerosolization from moldy building material
  20. Techniques for dispersion of microorganisms into air  
Lee, S. A.
     
Reponen, T.
  1. Aerodynamic diameters and respiratory deposition estimates of viable fungal particles in mold problem dwellings
  2. Aerodynamic versus physical size of spores: measurement and implication for respiratory deposition
  3. Aerosol characteristics of airborne actinomycetes and fungi
  4. Bioaerosol collection by a new electrostatic precipitator
  5. Characteristics of airborne actinomycete spores
  6. Collection of airborne spores by circular single-stage impactors with small jet-to-plate distance
  7. Collection of bioaerosol particles by impaction: effect of fungal spore agglomeration and bounce
  8. Collection of fungal spores on air filters and spore reentrainment from filters into air
  9. Comparison of concentrations and size distributions of fungal spores in buildings with and without mould problems
  10. Control of exposure to airborne viable microorganisms during remediation of moldy buildings; report of three case studies
  11. Development and evaluation of aerosol generators for biological materials
  12. Effect of building frame and moisture damage on microbiological indoor air quality in school buildings
  13. Effect of indoor sources on fungal spore concentrations and size distributions
  14. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores
  15. Evaluation of a new personal sampler for enumerating airborne spores
  16. Everyday activities and variation of fungal spore concentrations in indoor air
  17. Field Testing of New Aerosol Sampling Method With a Porous Curved Surface as Inlet
  18. Fungal fragments as indoor air biocontaminants
  19. Fungal spore source strength tester: laboratory evaluation of a new concept
  20. Long-term sampling of airbome bacteria and fungi into a non-evaporating liquid
  21. Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores
  22. Personal exposures and microenvironmental concentrations of particles and bioaerosols
  23. Release of Streptomyces albus propagules from contaminated surfaces
  24. Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types
  25. Techniques for dispersion of microorganisms into air
  26. Total and culturable airborne bacteria and fungi in arid region flood-damaged residences
  27. Viable fungal spores as indoor aerosols  
Grinshpun, S. A.
  1. Aerodynamic versus physical size of spores: measurement and implication for respiratory deposition
  2. Aerosol characteristics of airborne actinomycetes and fungi
  3. Bioaerosol collection by a new electrostatic precipitator
  4. Characteristics of airborne actinomycete spores
  5. Collection of airborne spores by circular single-stage impactors with small jet-to-plate distance
  6. Collection of bioaerosol particles by impaction: effect of fungal spore agglomeration and bounce
  7. Collection of fungal spores on air filters and spore reentrainment from filters into air
  8. Development and evaluation of aerosol generators for biological materials
  9. Effect of impact stress on microbial recovery on an agar surface
  10. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores
  11. Evaluation of a new personal sampler for enumerating airborne spores
  12. Field Testing of New Aerosol Sampling Method With a Porous Curved Surface as Inlet
  13. Fungal fragments as indoor air biocontaminants
  14. Fungal spore source strength tester: laboratory evaluation of a new concept
  15. Improved aerosol collection by combined impaction and centrifugal motion
  16. Inlet sampling efficiency of bioaerosol samplers
  17. Long-term sampling of airbome bacteria and fungi into a non-evaporating liquid
  18. Performance characteristics of the button personal inhalable aerosol sampler
  19. Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores
  20. Release of lead-containing particles from a wall enclosure
  21. Release of Streptomyces albus propagules from contaminated surfaces
  22. Techniques for dispersion of microorganisms into air  



CRDBER, at CBS, BCEE, ENCS, Concordia,