Conceptual Reference Database for Building Envelope Research Prev
Next

In-cavity evaporation allowance--A drying capacity indicator for wood-frame wall system

Mao, Q., Fazio, P. and Rao, J.
2009
Building and Environment, 44(12): 2418-2429
Drying capacity; Building envelope; Wood-frame wall; Rain penetration; Moisture accumulation; Moisture limit


Mao, Q., Fazio, P. and Rao, J., (2009), "In-cavity evaporation allowance--A drying capacity indicator for wood-frame wall system", Building and Environment, 44(12): 2418-2429.
Abstract:
Although moisture significantly affects the performance and durability of building envelope systems, effective methods to quantify the relative drying capacity of these systems are yet to be developed. A new testing method and an evaluation approach for comparing the drying capacity of wood-frame wall systems in evacuating water due to rain penetration in the stud cavities are presented in this paper. A controllable and consistent moisture loading is created by placing a water tray on a load cell at the bottom of the stud cavity of the wall assembly which is then subjected to lab generated indoor/outdoor conditions. The data on water evaporation from water trays and the monitored moisture accumulations in the materials surrounding the stud cavities are used to establish load-response relations. Using these relations the relative performance of various building envelope systems in preventing biodeterioration caused by rainwater penetration into the stud cavities can be compared. The concept of in-cavity evaporation allowance (ICEA) has been proposed and it is based on the limit of 20% moisture content (MC) being reached at any location of the building envelope.

This publication in whole or part may be found online at: This link has not been checked.here.

Related Concepts


Author Information and Other Publications Notes
Mao, Q.
  1. A limit state design (LSD) approach for comparing relative drying performance of wood-frame envelope systems with full-scale lab, A roadmap towards intelligent net zero- and positive-energy buildings,
  2. A new test method to determine the relative drying capacity of building envelope panels of various configurations
  3. A new testing method to evaluate the relative drying performance of different building envelope systems using water trays
  4. Effect of capillarity on rainwater penetration in the building envelope
  5. Experimental Determination of Drying Capacity of Wood-Frame Envelope Systems for Comparative Studies and Limit State Design
  6. Test method to measure the relative capacity of wall panels to evacuate moisture from their stud cavity  
Fazio, P.
Paul Fazio, Professor of Building, Civil & Environmental Engineering, Concordia University, Montreal
  1. A limit state design (LSD) approach for comparing relative drying performance of wood-frame envelope systems with full-scale lab, A roadmap towards intelligent net zero- and positive-energy buildings,
  2. A new test method to determine the relative drying capacity of building envelope panels of various configurations
  3. A new testing method to evaluate the relative drying performance of different building envelope systems using water trays
  4. A quantitative study for the measurement of driving rain exposure in the Montr¨¦al region
  5. A review of research activities in energy efficiency in buildings in Canada
  6. Airtightness testing and air flow modeling of two and three-unit multifamily buildings
  7. Airtightness testing of two- and three-unit buildings with a single fan
  8. Approach for the simulation of wetting due to rain infiltration for building envelope testing
  9. Approach for urban driving rain index by using climatological data recorded at suburban meteorological station
  10. Behavior of wall assemblies with different wood sheathings wetted by simulated rain penetration
  11. Building Physics: 3rd International Conference in Building Physics
  12. Building pressurisation can affect possibility of mould growth
  13. Cavity pressure in rain screen walls
  14. Comparaison de m¨¦thodes de mesure de flux de chaleur pour sp¨¦cimens de grandes et moyennes dimensions
  15. Continuous folded plate structures under uniform load
  16. Creative case adaptation for building engineering design
  17. Design and construction of an environmental chamber facility
  18. Design Methodology of Solar Neighborhoods
  19. Development of experimental procedure to evaluate potential movement of mold spores from wall cavity to indoor environment
  20. Development of HAM tool for building envelope analysis
  21. Effect of capillarity on rainwater penetration in the building envelope
  22. Environmental chamber for investigation of building envelope performance
  23. Essai sur les toits plats isol¨¦s ¨¤ la fibre de cellulose
  24. Evaluation of radiance's genBSDF capability to assess solar bidirectional properties of complex fenestration systems
  25. Experimental evaluation of potential transport of mold spores from moldy studs in full-size wall assemblies
  26. Experimental setup for the study of air leakage patterns
  27. Experimental study of temperature distributions across two curtain wall systems
  28. Folded sandwich plate structures
  29. Identification and transport investigation of microbial volatile organic compounds in full-scale stud cavities
  30. IFC-based framework for evaluating total performance of building envelopes
  31. Impact of added insulation on air leakage patterns
  32. Impact of air leakage pattern on reinsulated walls
  33. Influence of air space on multi-layered material water vapor permeability measurement
  34. Influence of facade geometry on weathering
  35. Integrated analysis of whole building heat, air and moisture transfer
  36. Interzonal air and moisture transport through large horizontal openings in a full-scale two-story test hut: Part 1 - Experimental study
  37. Interzonal air and moisture transport through large horizontal openings in a full-scale two-story test-hut: Part 2- CFD study
  38. Large scale testing of two flat roof assemblies insulated with cellulose
  39. Mapping of air leakage in exterior wall assemblies
  40. Measuring air leakage characteristics with flexible double air chambers
  41. Measuring air leakage of full-scale curtain wall sections using a non-rigid air-chamber method
  42. Methods for the assessment of moisture content of envelope assemblies
  43. Modeling of moisture behavior of wood planks in nonvented flat roofs
  44. Modelling of indoor air humidity: the dynamic behaviour within an enclosure
  45. Moisture buffering capacities of five North American building materials
  46. Moisture performance of leaky exterior walls with added insulation
  47. Nonlinear elastic analysis of panelized shear sandwich walls
  48. Numerical investigation of the influence of room factors on HAM transport in a full-scale experimental room
  49. Performance evaluation protocol for full-scale wood-frame building envelopes
  50. Potential of rain screen walls to prevent rain penetration: pressurized cavity principle
  51. Quantitative driving rain exposure on a vertical wall at various Canadian cities
  52. Rapport Final Projet Site Internet - L'enveloppe du batiment et l'efficacit¨¦ ¨¦nerg¨¦tique
  53. Review and framework for large-scale laboratory studies on wetting and drying of building envelopes
  54. Study of the reduced impact of thermal bridges in two sprayed-applied polyurethane wall assemblies
  55. Study on thermal performance of curtain walls using infrared thermography
  56. Test method to measure the relative capacity of wall panels to evacuate moisture from their stud cavity
  57. Testing of flat roofs insulated with cellulose fiber
  58. The dynamic modelling of air humidity behaviour in a multi-zone space
  59. Transfer of heat, moisture and air through metal curtain walls
  60. Transient model for coupled heat, air and moisture transfer through multilayered porous media
  61. Use of an environmental chamber to investigate large-scale envelope specimen hygrothermal performance  
Rao, J.
Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal
  1. A limit state design (LSD) approach for comparing relative drying performance of wood-frame envelope systems with full-scale lab, A roadmap towards intelligent net zero- and positive-energy buildings,
  2. A new test method to determine the relative drying capacity of building envelope panels of various configurations
  3. A new testing method to evaluate the relative drying performance of different building envelope systems using water trays
  4. Building Physics: 3rd International Conference in Building Physics
  5. Building pressurisation can affect possibility of mould growth
  6. Comparaison de m¨¦thodes de mesure de flux de chaleur pour sp¨¦cimens de grandes et moyennes dimensions
  7. Design and construction of an environmental chamber facility
  8. Development of experimental procedure to evaluate potential movement of mold spores from wall cavity to indoor environment
  9. Development of HAM tool for building envelope analysis
  10. Effect of capillarity on rainwater penetration in the building envelope
  11. Environmental chamber for investigation of building envelope performance
  12. Evaluation of radiance's genBSDF capability to assess solar bidirectional properties of complex fenestration systems
  13. Experimental evaluation of potential transport of mold spores from moldy studs in full-size wall assemblies
  14. Experimental study of temperature distributions across two curtain wall systems
  15. Identification and transport investigation of microbial volatile organic compounds in full-scale stud cavities
  16. Interzonal air and moisture transport through large horizontal openings in a full-scale two-story test hut: Part 1 - Experimental study
  17. Interzonal air and moisture transport through large horizontal openings in a full-scale two-story test-hut: Part 2- CFD study
  18. Measuring air leakage characteristics with flexible double air chambers
  19. Measuring air leakage of full-scale curtain wall sections using a non-rigid air-chamber method
  20. Numerical investigation of the influence of room factors on HAM transport in a full-scale experimental room
  21. Review and framework for large-scale laboratory studies on wetting and drying of building envelopes
  22. Statistical analysis of microbial volatile organic compounds in an experimental project: identification and transport analysis
  23. Study of the reduced impact of thermal bridges in two sprayed-applied polyurethane wall assemblies
  24. Test method to measure the relative capacity of wall panels to evacuate moisture from their stud cavity
  25. Transfer of heat, moisture and air through metal curtain walls
  26. Use of an environmental chamber to investigate large-scale envelope specimen hygrothermal performance  



CRDBER, at CBS, BCEE, ENCS, Concordia,