Please see the Google Scholar page for the updated list (last updated in 2023).
Graduate students and post-doctoral fellows at IMPACT are marked with an asterisk *.
Disclaimer: Posting of copies of papers is intended for educational purposes only and adherence to copyright laws is assumed.
2023: | |
Journal Papers: | |
171. A. Tehrani*, M. Ashikuzzaman*, H. Rivaz, Lateral Strain Imaging using Self-supervised and Physically Inspired Constraints in Unsupervised Regularized Elastography. IEEE Trans. Medical Imaging (TMI), in press, IEEE Xplore , arXiv, Code |
|
170. S. Goudarzi*, J. Whyte, M. Boily, A. Towers, R. Kilgour, H. Rivaz, A Segmentation of Arm Ultrasound Images in Breast Cancer-Related Lymphedema: A Database and Deep Learning Algorithm. IEEE Trans. Biomed. Eng. (TBME), IEEE Xplore |
|
169. S. Goudarzi*, A. Basarab, H. Rivaz, A Unifying Approach to Inverse Problems of Ultrasound Beamforming and Deconvolution. IEEE Trans. Comp. Imaging (TCI), IEEE Xplore, arXiv |
|
168. Jafarpisheh*, L. Castaneda-Martinez, H Whitson, I. Rosado-Mendez (joint senior author), H. Rivaz, Physics-Inspired Regularized Pulse-Echo Quantitative Ultrasound: Efficient Optimization with ADMM, IEEE Trans. UFFC (TUFFC), in press |
|
167. N. Masoumi*, H. Rivaz, I. Hacihaliloglu, M. Ahmad, I. Reinertsen, Y. Xiao, The big bang of deep learning in ultrasound-guided surgery: a review. IEEE Trans. UFFC (TUFFC), IEEE Xplore, PDF |
|
166. M. Ashikuzzaman*, A. Tehrani*, H. Rivaz, Exploiting Mechanics-Based Priors for Lateral Displacement Estimation in Ultrasound Elastography, IEEE Trans. Medical Imaging (TMI), 2023, in press, arXiv, IEEE Xplore, Code |
|
165. Belasso, C. J., Cai, Z., Bezgin, G., Pascoal, T., Stevenson, J., Rahmouni, N., C Tissot, F Lussier, P Rosa-Neto, JP Soucy, Rivaz, H. Benali, H., |
|
164. J Corban, N Karatzas, KY Zhao, A Babouras, S Bergeron, T Fevens, H Rivaz, PA Martineau, Using an Affordable Motion Capture System to Evaluate the Prognostic Value of Drop Vertical Jump Parameters for Noncontact ACL Injury, The American Journal of Sports Medicine, SageJournals |
|
163. A. J. Crooka, S. Masia, N. Naghdi, A. Roussaca, M. Rye, B. Rosenstein, H. Rivaz, M. Boily, M. Weber, M. Fortin, Comparison of multifidus muscle intramuscular fat by ultrasound echo intensity and fat- water based MR images in individuals with chronic low back pain, Musculoskeletal Science Practice, Elsevier, PDF |
|
162. M. Aktar*, J. Reyes, D. Tampieri, H. Rivaz, Y. Xiao, M. Kersten, Deep Learning for Collateral Evaluation in Ischemic Stroke with Imbalanced Data. Springer IJCAR, 2023, Springer |
|
Conference Papers: | |
161. A. Tehrani*, H. Rivaz, Infusing physically inspired known operators in deep models of ultrasound elastography MICCAI, Vancouver, 2023 (MICCAI Acceptance rate is ~30%) arXiv |
|
160. S Salari *, A Rasoulian, H Rivaz, Y Xiao, Towards multi-modal anatomical landmark detection for ultrasound-guided brain tumor resection with contrastive learning MICCAI, Vancouver, 2023 (MICCAI Acceptance rate is ~30%) arXiv |
|
159. S Salari*, A Rasoulian, H Rivaz, Y Xiao, FocalErrorNet: Uncertainty-aware focal modulation network for inter-modal registration error estimation in ultrasound-guided neurosurgery MICCAI, Vancouver, 2023 (MICCAI Acceptance rate is ~30%) arXiv |
|
158. M. Aktar*, H. Rivaz, M. Kersten, Y Xiao, VesselShot: Few-shot learning for cerebral blood vessel segmentation, MICCAI MLCN Workshop, Vancouver, 2023 arXiv |
|
157. Z. Qiu*, H. Rivaz, Y Xiao, Is visual explanation with Grad-CAM more reliability for deeper neural networks? a case study with automatic pneumothorax diagnosis MICCAI MLMI Workshop, Vancouver, 2023 arXiv |
|
156. P. Roshanzamir*, H. Rivaz, J Ahn, H Mirza, N Naghdi, M Anstruther, M Battie, M Fortin, Y Xiao, How inter-rater variability relates to aleatoric and epistemic uncertainty: a case study with deep learning-based paraspinal muscle segmentation MICCAI UNSURE Workshop, Vancouver, 2023 arXiv |
|
155. A. KZ Tehrani*, I. Rosade-Mendez, H. Rivaz, Homodyned k-distribution: parameter estimation and uncertainty quantification using bayesian neural networks IEEE International Symposium on Biomedical Imaging (ISBI), 2023 IEEE Xplore |
|
154. H. Asgariandehkordi*, S. Goudarzi, A. Basarab, H. Rivaz, Deep Ultrasound Denoising Using Diffusion Probabilistic Models IEEE IUS (International Ultrasound Symposium), 2023 arXiv |
|
153. M. Sharifzadeh*, H. Benali, H. Rivaz, Frequency-Space Prediction Filtering for Phase Aberration Correction in Plane-Wave Ultrasound IEEE IUS (International Ultrasound Symposium), 2023 arXiv |
|
152. M. Sharifzadeh*, H. Benali, H. Rivaz, Robust RF Data Normalization for Deep Learning IEEE IUS (International Ultrasound Symposium), 2023 arXiv |
|
151. S Gharamaleki*, B. Helfield, H. Rivaz, Deformable-Detection Transformer for Microbubble Localization in Ultrasound Localization Microscopy, IEEE IUS (International Ultrasound Symposium), 2023 arXiv |
|
150. A. KZ Tehrani*, I. Rosade-Mendez, H. Rivaz, Model Projected Statistical Features for Homodyned K-Distribution Parameters Estimation, IEEE IUS (International Ultrasound Symposium), 2023 |
|
149. S. Salari*, H. Rivaz, Y. Xiao, Dense Error Map Estimation for MRI-Ultrasound Registration in Brain Tumor Surgery Using Swin UNETR, IEEE IUS (International Ultrasound Symposium), 2023 arXiv |
|
148. A. K. Z. Tehrani* I. Rosado-Mendez, H. Whitson, H. Rivaz, A deep learning approach for patchless estimation of ultrasound quantitative parametric image with uncertainty measurement, SPIE Medical Imaging, 2023 arXiv |
|
147. S. Salari*, A. Mashhadia, M. Battie, M. Fortin, H. Rivaz, Y. Xiao, Uncertainty-aware transformer model for anatomical landmark detection in paraspinal muscle MRIs, SPIE Medical Imaging, 2023 Won Best Student Paper Award in Image Processing |
|
146. S. Goudarzi*, H. Rivaz, Deep ultrasound denoising without clean data, SPIE Medical Imaging, 2023 Finalist for the Robert F. Wagner All Conference Best Student Paper Award arXiv |
|
2022: | |
Journal Papers: | |
145. S. Goudarzi*, A. Basarab, H. Rivaz, Inverse Problem of Ultrasound Beamforming with Denoising-Based Regularized Solutions. IEEE Trans. UFFC (TUFFC), in press IEEE Xplore, arXiv, Code |
|
144. M. Sharifzadeh*, H. Benali, H. Rivaz, Investigating Shift Variance of Convolutional Neural Networks in Ultrasound Image Segmentation, IEEE Trans. UFFC (TUFFC), in press IEEE Xplore, arXiv, Code |
|
143. A. Pirhadi*, S. Salari*, M. Ahmad, H. Rivaz, Y. Xiao, Robust landmark-based brain shift correction with a Siamese neural network in ultrasound-guided brain tumor resection. Springer IJCARS, 2022 Springer |
|
142. N. Masoumi*, H. Rivaz, M. Ahmad, Y. Xiao, DiffeoRaptor: Diffeomorphic Inter-modal Image Registration using RaPTOR, Springer IJCARS, 2022 arXiv, Code |
|
141. S. Goudarzi*, H. Rivaz, Deep Reconstruction of High-Quality Ultrasound Images from Raw Plane-Wave Data: A Simulation and In Vivo Study, Ultrasonics, in press arXiv, Code |
|
140. M. Ashikuzzaman*, T. J. Hall, H. Rivaz, Incorporating Gradient Similarity for Robust Time Delay Estimation in Ultrasound Elastography, IEEE Trans. UFFC (TUFFC), in press IEEE Xplore, arXiv, Code |
|
139. A. K. Z. Tehrani*, I Rosado-Mendez, H. Rivaz, Robust Scatterer Number Density Segmentation of Ultrasound Images, IEEE Trans. UFFC (TUFFC), in press IEEE Xplore, arXiv, Code |
|
138. M. Ashikuzzaman*, H. Rivaz, Second-Order Ultrasound Elastography with L1-norm Spatial Regularization, IEEE Trans. UFFC (TUFFC), in press IEEE Xplore, arXiv, Code |
|
137. A. K. Z. Tehrani*, M. Sharifzadeh*, E. Boctor, H. Rivaz, Bi-Directional Semi-Supervised Training of Convolutional Neural Networks for Ultrasound Elastography Displacement Estimation, IEEE Trans. UFFC (TUFFC), in press IEEE Xplore, arXiv, Code |
|
Conference Papers: | |
136. A. Tehrani*, H. Rivaz, Physically Inspired Constraint for Unsupervised Regularized Ultrasound Elastography, MICCAI, Singapore, 2022 (among the top 13% accepted before the rebuttal phase) arXiv |
|
135. M. Sharifzadeh*, H. Benali, H. Rivaz Segmentation of Intraoperative 3D Ultrasound Images Using a Pyramidal Blur-Pooled 2D U-Net, MICCAI CuRIOUS, Singapore, 2022, pp 69-75 Springer |
|
134. P. Roshanzamir*, H. Rivaz , Joshua Ahn, H Mirza, N Naghdi, M Anstruther, M Battie, M Fortin, Y Xiao, Joint paraspinal muscle segmentation and inter-rater labeling variability prediction with multi-task TransUNet, MICCAI UNSURE Workshop, Singapore, 2022 Springer |
|
133. N. Jafarpisheh*, L. C. Martinez, H. Whitson, I. M. Rosado-Mendez, H. Rivaz, Adaptive Weighting Strategy in Regularized Quantitative Ultrasound, IEEE IUS 2022, Venice, Italy |
|
132. S. Gharamaleki*, B. Helfield, H. Rivaz, Transformer-based Microbubble Localization, IEEE IUS 2022, Venice, Italy arXiv |
|
131. H Whitson , N Jafarpisheh*, H. Rivaz, I Rosado-Mendez, T J. Hall, Comparative Performance of 1D and 2D Regularized Quantitative Ultrasound for Curvilinear Transducers in the Presence of Aberration Induced Clutte, IEEE IUS 2022, Venice, Italy |
|
130. M. Ashikuzzaman*, B. Helfield, H. Rivaz, Analytic Optimization-based Microbubble Tracking in Ultrasound Super-Resolution Microscopy, IEEE IUS 2022, Venice, Italy arXiv |
|
129. A. Tehrani*, I. M. Rosado-Mendez, H. Rivaz, Deep estimation of viscoelastic and backscatter quantitative ultrasound, 183rd Acoustical Society of America (ASA), Nashville (invited talk) arXiv |
|
128. A. Tehrani*, I M Rosado-Mendez, H. Rivaz, Deep Estimation of Speckle Statistics Parametric Images, IEEE EMBC, Glasgow, Scotland, 2022 arXiv |
|
127. B. Gheflati*, H. Rivaz, Vision Transformer for Classification of Breast Ultrasound Images, IEEE EMBC, Glasgow, Scotland, 2022 arXiv |
|
2021: | |
Journal Papers: | |
126. A. K. Z. Tehrani*, M. Amiri*, I. Rosado-Mendez, T. J. Hall, H. Rivaz, Ultrasound Scatterer Density Classification Using Convolutional Neural Networks and Patch Statistics, IEEE Trans. UFFC (TUFFC), in press pdf, supplementary material. |
|
125. M Ashikuzzaman*, N Jafarpisheh*, S Rottoo, P Brisson, H. Rivaz, Fast and Robust Localization of Surgical Array using Kalman Filter. International Journal of Computer Assisted Radiology and Surgery (Springer IJCARS), in press pdf. |
|
124. M. Ashikuzzaman*, A. S Naini, A. Samani, H. Rivaz, Combining First and Second Order Continuity Constraints in Ultrasound Elastography, IEEE Trans. UFFC (TUFFC), in press pdf, Supplementary Material. |
|
123. S. Goudarzi*, A. Asif, H. Rivaz, pdf. |
|
122. N. Masoumi*, C. Belasso, M. Ahmad, H. Benali, Y. Xiao, H. Rivaz, |
|
121. Y. Xiao, M. Fortin, J. Ahn, H. Rivaz, T. Peters, M. Battie, |
|
120. A. Thibault, M. Boily, H. Rivaz, D. Dragutan, P. Jarzem, M. Weber, M. Fortin, |
|
119. M. Mirzaei*, A. Asif, H. Rivaz, |
|
118. N. Jafarpisheh*, T. Hall, H. Rivaz (joint senior author), I. Rosado-Mendez, pdf. |
|
117. A. Zayed*, H. Rivaz, |
|
Conference Papers: | |
116. H Rasaee*, H. Rivaz, Explainable AI and Susceptibility to Adversarial attacks: a Case Study in the Classification of Breast Ultrasound Images, IEEE International Ultrasonics Symposium (IUS), 2021. IEEE Xplore, arXiv |
|
115. M. Sharifzadeh*, H. Benali, H. Rivaz, An Ultra-Fast Method for Simulation of Realistic Ultrasound Images, IEEE International Ultrasonics Symposium (IUS), 2021. IEEE Xplore, arXiv |
|
114. M. Sharifzadeh*, A. Tehrani, H. Benali, H. Rivaz, Ultrasound Domain Adaptation Using Frequency Domain Analysis, IEEE International Ultrasonics Symposium (IUS), 2021. IEEE Xplore, arXiv |
|
113. N. Jafarpisheh*, I. Rosado-Mendez, T. Hall, H. Rivaz, Estimation of the Scatterer Size Distributions in Quantitative Ultrasound Using Constrained Optimization, IEEE International Ultrasonics Symposium (IUS), 2021. IEEE Xplore, arXiv |
|
112. B. Behboodi*, H. Rivaz, S. Lalondrelle, E. Harris, Automatic 3D Ultrasound Segmentation of Uterus Using Deep Learning, IEEE International Ultrasonics Symposium (IUS), 2021. IEEE Xplore, arXiv |
|
111. M. Sharifzadeh*, H. Benali, H. Rivaz, Shift-invariant segmentation in breast ultrasound images, IEEE International Ultrasonics Symposium (IUS), 2021. IEEE Xplore |
|
110. S. Goudarzi*, A. Asif, H. Rivaz, Pruning MobileNetV2 for Efficient Implementation of Minimum Variance Beamforming, MICCAI ASMUS Workshop, 2021 Springer link |
|
109. A. Pirhadi, H. Rivaz, O. Ahmad, Y. Xiao, Robust ultrasound-to-ultrasound registration for intra-operative brain shift correction with a Siamese neural network, MICCAI ASMUS Workshop, 2021 Springer link |
|
108. M Ashikuzzaman*, N. Jafarpisheh*, S Rottoo, P Brisson, H. Rivaz, Fast and Robust Localization of Surgical Array using Kalman Filter, International Conference on Information Processing in Computer-Assisted Interventions (IPCAI), 2021, in press. pdf. |
|
107. N. Jafarpisheh*, I. M. Rosado-Mendez, T. J. Hall, H. Rivaz, Analytical Regularized Estimation of Effective Scatterer Diameter and Acoustic Concentration in Quantitative Ultrasound, IEEE ISBI, 2021, in press. |
|
106. A. Tehrani*, H. Rivaz, |
|
105. B. Behboodi*, H. Rasaee*, A. Tehrani*, H. Rivaz, |
|
2020: | |
Journal Papers: | |
104. S. Goudarzi*, A. Asif, and H. Rivaz, |
|
103. M. Amiri*, R. Brooks, H. Rivaz, |
|
102. M. Amiri*, R. Brooks, B. Behboodi*, H. Rivaz, pdf. |
|
101. A. Tehrani*, H. Rivaz, |
|
100. M. Sharifzadeh*, H. Benali, H. Rivaz, |
|
99. M. Aktar*, D. Tampieri, H. Rivaz, M. Kersten-Oertel, Y. Xiao, Automatic Collateral Circulation Scoring in Ischemic Stroke using 4D CT Angiography with Low-Rank and Sparse Matrix Decomposition, Springer IJCARS, in press, pdf. |
|
98. C. Belasso*, B. Behboodi, H. Benali, M. Boily, H. Rivaz, M. Fortin, LUMINOUS database: lumbar multifidus muscle segmentation from ultrasoun images, BMC Musculoskeletal Disorders, 2020, pdf. |
|
97. N. Zhang*, M. Ashikuzzaman*, H. Rivaz, Clutter Suppression in Ultrasound: Performance Evaluation and Review of Low-Rank and Sparse Matrix Decomposition Methods, Springer Biomedical Engineering Online, in press, pdf. |
|
96. M. Mirzaei*, A. Asif, M. Fortin, H. Rivaz, |
|
95. A. Roy, H. Rivaz, A Rizk, S Frenette, M Boily, M Fortin, pdf. |
|
94. A. Grimwood, H. Rivaz, H Zhou H McNair, K Yakubowski, J Bamber, A Tree, E Harris, |
|
93. N Nandlall, H. Rivaz, A Rizk, S Frenette, M Boily, M Fortin The effect of low back pain and lower limb injury on lumbar multifidus muscle morphology and function in university soccer players, BMC Musculoskeletal Disorders, in press, pdf. |
|
92. M Ashikuzzaman*, C Belasso*, G Kibria*, A Bergdahl, C Gauthier, H. Rivaz, |
|
91. A. Schyver, H. Rivaz, A Rizk, S Frenette, M Boily, M Fortin |
|
90. M. Mirzaei*, A. Asif, M. Fortin, H. Rivaz, |
|
89. J Levesque, H. Rivaz, A Rizk, S Frenette, M Boily, M Fortin Associations among lumbar multifidus muscle characteristics, body composition and injury in university rugby players, Journal of Athletic Training, in press, pdf. |
|
88. Y Xiao, H. Rivaz, M Chabanas, M Fortin, I Machado, Y Ou, M Heinrich, J Schnabel, X Zhong, A Maier, W Wein, R Shams, S Kadoury, D Drobny, M Modat, I Reinertsen, |
|
Conference Papers: | |
87. A. Tehrani*, M. Mirzaei*, H. Rivaz, Semi-Supervised Training of Optical Flow Convolutional Neural Networks in Ultrasound Elastography, MICCAI, 2020, in press, pdf. |
|
86. N. Jafarpisheh*, I. M. Rosado-Mendez, T. J. Hall, H. Rivaz, Evaluation of Contrast-to-Noise Ratio of Parametric Images of Regularized Estimates of Quantitative Ultrasound Parameters, IEEE IUS, 2020, in press. |
|
85. S. Goudarzi*, A. Asif, H. Rivaz, Ultrasound Beamforming using MobileNetV2, IEEE IUS, 2020, in press. |
|
84. S. Goudarzi*, A. Asif, H. Rivaz, Angular Apodization Estimation Using Independent Component Analysis in Coherent Plane- Wave Compounding, IEEE IUS, 2020, in press. |
|
83. M. Ashikuzzaman*, T. Hall, H. Rivaz, Adaptive Data Function for Robust Ultrasound Elastography, IEEE IUS, 2020, in press. |
|
82. P. Chalangari*, T. Fevens, H. Rivaz, 3D Human Knee Flexion Angle Estimation Using Deep Convolutional Neural Networks, IEEE EMBC, 2020, in press. |
|
81. M. Aktar*, Y. Xiao, D Tampieri, H. Rivaz, M. Kersten-Oertel, Radiomics-based Machine Learning Approach to Assess Collateral Circulation in Ischemic Stroke on Non-contrast Computed Tomography, MICCAI CLIP Workshop, 2020, in press. |
|
80. A. KZ. Tehrani*, M. Amiri*, I. Rosado-Mendez, T.J. Hall, H. Rivaz, A Pilot Study on Scatterer Density Classification of Ultrasound Images Using Deep Neural Networks, IEEE EMBC, 2020, in press. |
|
79. M. Mirzaei*, A. Asif, H. Rivaz, Synthetic aperture with high lateral sampling frequency for ultrasound elastography, IEEE EMBC, 2020, in press. |
|
78. A. KZ. Tehrani*, M. Amiri*, H. Rivaz, Real-time and High Quality Ultrasound Elastography Using Convolutional Neural Network by Incorporating Analytic Signal, IEEE EMBC, 2020, in press. |
|
77. B. Behboodi*, M. Fortin, C. J.Belasso*, R. Brooks, H. Rivaz, Receptive Field Size as a Key Design Parameter for Ultrasound Image Segmentation with U-Net, IEEE EMBC, 2020, in press. |
|
76. M. Amiri*, A. KZ. Tehrani*, H. Rivaz, Segmentation of Ultrasound Images based on Scatterer Density using U-Net, IEEE EMBC, 2020, in press. |
|
75. A. Zayed*, G. Cloutier, H. Rivaz, Automatic Frame Selection using CNN in Ultrasound Elastography, IEEE EMBC, 2020, in press. |
|
74. M. Ashikuzzaman*, H. Rivaz, Incorporating Multiple Observations in Global Ultrasound Elastography, IEEE EMBC, 2020, in press. |
|
73. M. Ashikuzzaman*, H. Rivaz, Denoising RF Data via Robust Principal Component Analysis: Results in Ultrasound Elastography, IEEE EMBC, 2020, in press. |
|
72. N. Kheirkhah, H. Rivaz, A. Samani, and A. Sadeghi-Naini, A Tissue Mechanics Based Method to Improve Tissue Displacement Estimation in Ultrasound Elastography, IEEE EMBC, 2020, in press. |
|
71. N. Jafarpisheh*, I. M. Rosado-Mendez, T. J. Hall, H. Rivaz, Regularized Estimation of Effective Scatterer Size and Acoustic Concentration Quantitative Ultrasound Parameters Using Dynamic Programming, IEEE EMBC, 2020, in press. |
|
70. S. Goudarzi*, A. Asif, H. Rivaz, High Frequency Ultrasound Image Recovery Using Tight Frame Generative Adversarial Networks, IEEE EMBC, 2020, in press. |
|
69. B. Behboodi*, M. Amiri*, R. Brooks, H. Rivaz, Breast lesion segmentation in ultrasound images with limited annotation data, IEEE ISBI 2020, pp 1834-1837, pdf. |
|
2019: | |
Journal Papers: | |
68. M. Mirzaei*, A. Asif, H. Rivaz, |
|
67. M. Ashikuzzaman*, C.J. Gauthier, H. Rivaz, |
|
66. M. Fortin, A Rizk, S Frenette, M Boily, H. Rivaz, |
|
65. M.D. Horeh*, A. Asif, H. Rivaz, |
|
64. N. Masoumi*, Y. Xiao*, H. Rivaz, |
|
63. HS Hashemi*, S Fallone, M Boily, A Towers, RD Kilgour, H. Rivaz, |
|
Conference Papers: | |
62. M. Amiri*, R. Brooks, H. Rivaz, Fine tuning U-Net for ultrasound image segmentation: which layers?, MICCAI MIL3ID Workshop, 2019, in press, pdf. |
|
61. W Xia, M Fortin, J Ahn, H. Rivaz, M Battie, T Peters, and Y Xiao, Automatic paraspinal muscle segmentation in patients with lumbar pathology using deep convolutional neural network, MICCAI 2019, in press |
|
60. A. Zayed*, H. Rivaz, Automatic Frame Selection Using MLP Neural Network in Ultrasound Elastography, ICIAR, Springer, Cham, 2019, pp 462-472 |
|
59. B. Behboodi*, H. Rivaz, Ultrasound segmentation using U-Net: learning from simulated data and testing on real data, IEEE EMBC, pp 6628-6631 IEEE Xplore |
|
58. A. Zayed*, H. Rivaz, Fast Approximate Time-Delay Estimation in Ultrasound Elastography Using Principal Component Analysis, IEEE EMBC, pp. 6204-6207 IEEE Xplore |
|
57. S. Goudarzi*, A. Asif, H. Rivaz, Multi-focus ultrasound imaging using generative adversarial networks, IEEE ISBI 2019, pp. 1118-1121 |
|
56. Z. Vajihi*, I. Rosado-Mendez, T.J. Hall, H. Rivaz, L1 and L2 Norm Regularization of Acoustic Attenuation And Backscatter Coefficients Using Dynamic Programming, IEEE ISBI 2019, pp. 1749-1752 |
|
55. M. Ashikuzzaman*, C Belasso, C Gauthier, H. Rivaz, Suppressing Clutter Components in Ultrasound Color Flow Imaging Using Robust Matrix Completion Algorithms: Simulation and Phantom Study, IEEE ISBI 2019, pp. 745-749 |
|
54. M. Mirzaei*, A. Asif, H. Rivaz, Ultrasound elastography utilizing pre-beamformed data, IEEE ISBI 2019, pp. 1725-1728 |
|
2018: | |
Journal Papers: | |
53. Z. Vajihi*, I. Rosado-Mendez, T.J. Hall, H. Rivaz, Low Variance Estimation of Backscatter Quantitative Ultrasound Parameters Using Dynamic Programming, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control (TUFFC), vol 65, Nov 2018, pp 2042-2053, IEEE Xplore, pdf. |
|
52. R Shams*, Y Xiao*, F Hebert, M Abramowitz, R Brooks, H Rivaz, Assessment of Rigid Registration Quality Measures in Ultrasound-Guided Radiotherapy, IEEE Trans. Medical Imaging, 2018, vol 37, pp 428-437 IEEE Xplore, pdf. |
|
51. M. Ghasemi Amidabadi*, M. Omair Ahmad, H. Rivaz, Supervised Classification of the Accuracy of the Time Delay Estimation in Ultrasound Elastography, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control (TUFFC), 2018, vol 65, pp 21-29 IEEE Xplore, pdf. |
|
50. P Khavari*, A Asif, M Boily,H. Rivaz, Non-Local Coherent Denoising Of RF Data For Ultrasound Elastography, Journal of Healthcare Engineering, (Impact factor 0.97, invited manuscript), 2018 pdf. |
|
49. Y Xiao*, M Fortin*, M Battie, H. Rivaz, Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles, European Spine Journal, 2018, Vol 27, Issue 10, pp 2442-2448 Springer, pdf. |
|
48. Y. Xiao*, M. Boily, H. S. Hashemi, H. Rivaz, High-Dynamic-Range Ultrasound: Application for Imaging Tendon Pathology, Ultrasound in Medicine and Biology (UMB), 2018, Vol 44, Issue 7, Pages 1525-1532 sciencedirect, pdf. |
|
47. Y. Xiao*, L. Eikenes, I. Reinertsen, H. Rivaz, Nonlinear deformation of tractography in ultrasound-guided low-grade gliomas resection, International Journal of Computer Assisted Radiology and Surgery (IJCARS), 2018, Vol 13, Issue 3, pp 457-467 Springer, pdf. |
|
46. Y Xiao*, H Rivaz, H Kasuya, S Yokosako, C Mindru, J Teitelbaum, D Sirhan, D Sinclair, M Angle, B Lo, Intra-operative video characterization of carotid artery pulsation patterns in case series with post- endarterectomy hypertension and hyperperfusion syndrome, Translational Stroke Research, Vol 9, Issue 5, pp 452-458 Springer, pdf. |
|
Conference Papers: | |
45. G. Kibria*, H. Rivaz, Global Ultrasound Elastography Using Convolutional Neural Network, MICCAI POCUS 2018, pp 21-28 Springer, pdf, short version on arXiv. |
|
44. P. Khavari*, A. Asif, H. Rivaz, Non-local Super Resolution in Ultrasound Imaging, IEEE MMSP 2018 In press, pdf. |
|
43. H. S. Hashemi*, S. Fallone, M. Boily, A. Towers, R. Kilgour, H. Rivaz, |
|
42. H. Khodadadi*, A. Aghdam, H. Rivaz, Direct Strain Estimation in Ultrasound Elastography Using A Novel Dynamic Programming Approach, IEEE ISBI 2018, pp 1182-1186 IEEE Xplore, pdf. |
|
2017: | |
Journal Papers: | |
41. H. Hashemi*, H. Rivaz, Global Time-Delay Estimation in Ultrasound Elastography, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control (TUFFC), Oct. 2017, vol 64, pp 1625-1636, (Among Editor’s Selection of Articles in TUFFC in 2017, Dec 2018) IEEE Xplore, pdf, code |
|
40. M. Omidyeganeh*, Y. Xiao*, M. O. Ahmad, H. Rivaz, Estimation of Strain Elastography from Ultrasound Radio-Frequency Data by Utilizing Analytic Gradient of the Similarity Metric, IEEE Trans. Medical Imaging, 2017, vol 36, pp 1347-1358 IEEE Xplore, pdf. |
|
39. S. R. Mousavi, H. Rivaz, A. Sadeghi-Naini, G. Czarnota, A. Samani, Breast Ultrasound Elastography using Full Inversion Based Elastic Modulus Reconstruction, IEEE Trans. Computational Imaging, 2017, vol 3, pp 774-782 IEEE Xplore, pdf. |
|
38. Y. Xiao*, M. Fortin*, G. Unsgard, H. Rivaz, I. Reinertsen, REtroSpective Evaluation of Cerebral Tumors (RESECT): a clinical database of pre-operative MRI and intra-operative ultrasound in low-grade glioma surgeries, Medical Physics, 2017, vol 44, pp 3875-3882 MedPhys, pdf, Ultrasound, MRI and landmarks, Direct Link. |
|
37. S. R. Mousavi, H. Rivaz, G. Czarnota, A. Samani, A. Sadeghi-Naini, Ultrasound Elastography of Prostate Using an Unconstrained Modulus Reconstruction Technique: A Pilot Clinical Study, Translational Oncology, 2017, vol 10, pp 744-751 Translational Oncology, pdf. |
|
36. M. Fortin*, M. Omidyeganeh*, M. O. Ahmad, M. Crites-Battie, H. Rivaz, Evaluation of an automated thresholding algorithm for the quantification of paraspinal muscle composition from MRI images, Springer BioMedical Engineering Online, 2017 22;16(1):61. pdf, Springer, Code and instructions. |
|
Conference Papers: | |
35. N. Masoumi*, Y. Xiao*, H. Rivaz, MARCEL (inter-Modality Affine Registration with CorELation ratio): An Application for Brain Shift Correction in Ultrasound-Guided Brain Tumor Resection, BrainLes MICCAI workshop, Springer LNCS, 2018, pp 55-63 Springer, pdf. |
|
34. Y. Xiao*, A. Alamer V. Fonov, B. Lo, D Tampieri, D.L. Collins, H. Rivaz M. Kersten-Oertl, Towards automatic collateral circulation score evaluation in ischemic stroke using image decompositions and support vector machines, Switch 2017 MICCAI workshop , pp 158-167 Springer, pdf. |
|
33. Y. Xiao*, D. De Nigris, I. Gerard, Y. Ma, D Tampieri, D.L. Collins, H. Rivaz, Automatic registration of MRI and transcranial ultrasound for the analysis of neurological disorders, ISMRM 2017 ISMRM. pdf. |
|
32. M.G. Amidabadi*, M.O. Ahmad, H. Rivaz, Automatic Accuracy Assessment of Ultrasound Elastography Using Correlation Profile and Prior Information of Displacement Continuity, IEEE GlobalSIP 2017, pp 755-759 IEEE GlobalSIP, pdf. |
|
31. M. D. Horeh*, A. Asif, H. Rivaz, Regularized Tracking of Shear-Wave in Ultrasound Elastography, The 42nd IEEE Int. Conference on Acoustic, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp 6264-6268 IEEE Xplore, pdf. |
|
30. H. Hashemi*, M. Boily, P. Martineau H. Rivaz, Ultrasound Elastography: Efficient Estimation of Tissue Displacement Using an Affine Transformation Model, SPIE Medical Imaging, Orlando, FL, 2017 Proc. SPIE 10139, pdf. |
|
2016: | |
29. H. Zhou*, H. Rivaz, Registration of Pre- and Post-resection Ultrasound Volumes with Non-corresponding Regions in Neurosurgery, IEEE Journal Biomedical Health Informatics JBHI, 2016, vol 20, pp 1240-1249 (selected for submission of full paper to IEEE JBHI, only 10 selections out of 2948 submissions to EMBC) IEEE Xplore, pdf, supplementary material. |
|
28. Shams, R.*, Boily, M., Martineau, PA., Rivaz, H., Dynamic Programming on a Tree for Ultrasound Elastography, SPIE Medical Imaging, San Diego, 2016, vol 9790 (Finalist for a Robert F. Wagner All Conference Best Student Paper Award) SPIE Digital Lib, pdf |
|
2015: | |
Journal Papers: | |
27. H. Rivaz, Chen, S, Collins, DL., Automatic Deformable MR-Ultrasound Registration for Image-Guided Neurosurgery, IEEE Trans. Medical Imaging, 2015, vol 34, pp 366-380 (IEEE Xplore), pdf. |
|
26. H. Rivaz, Collins, DL., Deformable Registration of Pre-Operative MR, Pre-Resection Ultrasound and Post-Resection Ultrasound Images of Neurosurgery, International Journal of Computer Assisted Radiology and Surgery, 2015, vol 10, pp 1017-1028 Springer, pdf. |
|
25. H. Rivaz, Collins, DL., Near Real-Time Robust Nonrigid Registration of Volumetric Ultrasound Images For Neurosurgery, Ultrasound in Medicine and Biology, 2015, vol 41, pp 574-587 ScienceDirect, pdf. |
|
24. Karimaghaloo, Z, H. Rivaz, Arnold, D, Collins, DL. Arbel, T, Temporal Hierarchical Adaptive Texture CRF for Automatic Detection of Gadolinium-Enhancing Multiple Sclerosis Lesions in Brain MRI, IEEE Trans. Medical Imaging, 2015, vol 34, pp 1227-1241 IEEE Xplore, pdf. |
|
Conference Papers: | |
23. H. Zhou*, H. Rivaz, Robust Deformable Registration of Pre- and Post-resection Ultrasound Volumes for Visualization of Residual Tumor in Neurosurgery, IEEE EMBC, 2015, pp 141 – 144, (selected for submission of full paper to IEEE JBHI, only 10 selections out of 2948 submissions to EMBC) IEEE Xplore, pdf. |
|
22. H. Khodadadi*, A. Aghdam, H. Rivaz, Edge-Preserving Ultrasonic Strain Imaging with Uniform Precision, IEEE EMBC, 2015, pp 3835 – 3838IEEE Xplore, pdf. |
|
2014: | |
Journal Papers: | |
21. H. Rivaz, Karimaghaloo, Z, Fonov, V, Collins, DL., Nonrigid Registration of Ultrasound and MRI Using Contextual Conditioned Mutual Information, IEEE Trans. Medical Imaging, 2014, vol. 33 pp 708-725 (IEEE Xplore), pdf. | |
20. H. Rivaz, Karimaghaloo, Z, Collins, DL., Self-Similarity Weighted Mutual Information: a New Non-rigid Image Registration Metric, Medical Image Analysis, 2014, vol. 18 pp 343-358 (ScienceDirect), pdf. |
|
19. H. Rivaz, Boctor, E., Choti, M., Hager, G., Ultrasound Elastography Using Multiple Images, Medical Image Analysis, February 2014, vol. 18 pp 314-329 (ScienceDirect), pdf. |
|
Conference Papers: | |
18. H. Rivaz, Collins, DL., Simulation of Ultrasound Images for Validation of MR to Ultrasound Registration in Neurosurgery, AECAI MICCAI, 2014 pp 23-32 (Springer LNCS), pdf. |
|
Before 2014: | |
17. Karimaghaloo, Z., Rivaz, H., Arnold, D., Collins, DL, Arbel, T, Adaptive Voxel, Texture and Temporal CRF for Detection of MS Lesions in Brain MRI, MICCAI, Nagoya, Japan, Sept. 2013 pp 543-550 [Acceptance rate: 32%] pdf. | |
16. Rivaz, H., Collins, D.L., Self-Similarity Weighted Mutual Information: a New Non-rigid Image Registration Metric, Medical Image Computing and Computer Assisted Intervention, MICCAI, Oct 2012, pp 91-98 [Acceptance rate: 30%]. pdf. | |
15. Rivaz, H, Boctor, E., Choti, M., Hager, G., Real-Time Regularized Ultrasound Elastography, IEEE Trans. Medical Imaging, April 2011, vol. 30 pp 928-945 pdf Code. | |
14. Rivaz, H., Boctor, E., Foroughi, P., Zellars, R., Fichtinger, G., Hager, G., Ultrasound Elastography: a Dynamic Programming Approach, IEEE Trans. Medical Imaging, Oct. 2008, vol. 27 pp 1373-1377 pdf Code. | |
13. Rivaz, H., Boctor, E., Choti, M., Hager, G., Ultrasound Elastography Using Three Images, Medical Image Computing and Computer Assisted Intervention, MICCAI, Toronto, Canada, Sept. 2011, pp 371-378 [Acceptance rate: 30%] pdf Code. | |
12. Foroughi, P., Rivaz, H., Fleming, I., Hager, G., Boctor, E. Tracked Ultrasound Elastography (TrUE), Medical Image Computing and Computer Assisted Intervention, MICCAI, Beijing, China, Sept. 2010, pp 9-16 [Acceptance rate: 32%] pdf. | |
11. Rivaz, H., Kang, H., Stolka, P., G. Hager, Boctor, E. Novel reconstruction and feature exploitation techniques for sensorless freehand 3D ultrasound, SPIE Medical Imaging, 2010, pp 762911-762919 pdf. | |
10. Rivaz, H., Kapoor, A., Fleming, I., Hager, G., Boctor, E. A novel method for monitoring liver ablation using ultrasound elastography, SPIE Medical Imaging, 2010, 7629131-7629138 pdf. | |
9. Rivaz, H., Foroughi, P., Fleming, I., Zellars, R., Boctor, E., Hager, G., Tracked Regularized Ultrasound Elastography for Targeting Breast Radiotherapy, Medical Image Computing and Computer Assisted Intervention, MICCAI, London, UK, Sept. 2009, pp 507-515 [Acceptance rate: 33%] pdf. | |
8. Rivaz, H., Shinagawa, Y., Liang, J., Physical Priors in Virtual Colonoscopy, SPIE Medical Imaging 2009, pp 7260191-72601912 pdf. | |
7. Rivaz, H., Fleming, I., Assumpcao, L., Fichtinger, G., Hamper, U., Choti, M., Hager, G., Boctor, E., Ablation Monitoring with Elastography: 2D In-vivo and 3D Ex-vivo Studies, Medical Image Computing and Computer Assisted Intervention, MICCAI, New York, NY, Sept. 2008, pp 458-466 [Acceptance rate: 30%] pdf. | |
6. Rivaz, H., Fleming, L., Matinfar, M, Ahmad, O, Kamen, A, Choti, M, Hager, G., Boctor, E. Ablation Monitoring with a Regularized 3D Elastography Technique, IEEE Int. Ultrasonics Symposium, Beijing, China, Oct. 2008, pp 308-312 pdf. | |
5. Rivaz, H., Rohling, R., An Active Dynamic Vibration Absorber for a Hand-Held Vibro-Elastography Probe, ASME Journal of Vibration Acoustics pdf. | |
4. Rivaz, H., Zellars, R., Hager, G. Fichtinger, G., Boctor, E., Beam Steering Approach to Speckle Characterization and Out-of-Plane Motion Estimation in Real Tissue, IEEE Int. Ultrasonics Symposium, New York, NY, Oct. 2007 pp 781-784 pdf. | |
3. Rivaz, H., Boctor, E., Fichtinger, G., A Robust Meshing and Calibration Approach for Sensorless Freehand 3D Ultrasound, SPIE Medical Imaging, San Diego, CA, Feb. 2007, Vol. 6513, pp 181-188 pdf. | |
2. Rivaz, H., Rohling, R., A Hand-Held Probe for Vibro-Elastography, Medical Image Computing and Computer Assisted Intervention, MICCAI, 2006, pp 613-620 pdf. | |
1. Rivaz, H., Boctor, E., Fichtinger, G., Ultrasound Speckle Detection using Low Order Statistics, IEEE Int. Ultrasonics Symposium, Vancouver, Canada, Oct. 2006, pp 2092-2095 pdf. |